Háromszögek fedése két körrel
|
|
- Kinga Péter
- 6 évvel ezelőtt
- Látták:
Átírás
1 SZTE Bolyai Intézet, Geometria Tanszék április 24.
2 Motiváció Jól ismert a kerületi szögek tétele, vagy más megfogalmazásban a látókörív tétel.
3 Motiváció A tételből a következő állítás adódik:
4 Motiváció A tételből a következő állítás adódik: Definíció Jelöljük azon háromszögek halamzát, amelyeknek egységnyi oldalukkal szemben γ szög van H γ -val, H γ = {ABC c = 1 és C = γ}.
5 Motiváció A tételből a következő állítás adódik: Definíció Jelöljük azon háromszögek halamzát, amelyeknek egységnyi oldalukkal szemben γ szög van H γ -val, H γ = {ABC c = 1 és C = γ}. Állítás Minden H H γ háromszög lefedhető egy 1/(2 sin γ) sugarú körrel.
6 Motiváció Állítás Minden H H γ háromszög lefedhető egy 1/(2 sin γ) sugarú körrel. Magyarázat:
7 Motiváció Állítás Minden H H γ háromszög lefedhető egy 1/(2 sin γ) sugarú körrel. Magyarázat: Definíció = sin γ = AE AD = 1/2 R
8 Problémafelvetés Kérdés Mit mondhatunk akkor, ha nem egy, hanem két kört használunk? Pontosabban: határozzuk meg azt a legkisebb R γ sugarat, amire teljesül, hogy kettő R γ sugarú körrel minden H γ -beli háromszög lefedhető!
9 Problémafelvetés Kérdés Mit mondhatunk akkor, ha nem egy, hanem két kört használunk? Pontosabban: határozzuk meg azt a legkisebb R γ sugarat, amire teljesül, hogy kettő R γ sugarú körrel minden H γ -beli háromszög lefedhető! Kérdés Speciálisan: igazoljuk, hogy két 1/2 sugarú körrel minden olyan háromszög lefedhető, amelynek egyik oldala egységnyi, és ezzel az oldallal szemben 45 -os szög van! (Arany Dániel Matematikaverseny, 1999.)
10 Értsük meg a problémát Háromszögek egy családjának minden elemét akarjuk lefedni minimális sugarú körpárral. Értelmes a kérdés? Mindig lefedhető a család minden eleme két körrel? Van minimális?
11 Értsük meg a problémát Háromszögek egy családjának minden elemét akarjuk lefedni minimális sugarú körpárral. Értelmes a kérdés? Mindig lefedhető a család minden eleme két körrel? Van minimális? Világos, hogy R γ 1 2 sin γ. Másrészt R γ 1 4. A minimális sugár létezése ezek alapján legalábbis hihető.
12 Értsük meg a problémát Háromszögek egy családjának minden elemét akarjuk lefedni minimális sugarú körpárral. Értelmes a kérdés? Mindig lefedhető a család minden eleme két körrel? Van minimális? Világos, hogy R γ 1 2 sin γ. Másrészt R γ 1 4. A minimális sugár létezése ezek alapján legalábbis hihető. R γ meghatározásához két dolgot kell ellenőriznünk: valóban minden elemet le lehet fedni ekkora sugarú körökkel, legalább egy háromszöghöz kellenek is ekkora körök.
13 A megoldás vázlata A megoldás során négy különböző esetet célszerű tárgyalni: (1) γ < 45, (2) 45 γ < 60, (3) 60 γ 90, (4) 90 < γ.
14 A megoldás vázlata A megoldás során négy különböző esetet célszerű tárgyalni: (1) γ < 45, (2) 45 γ < 60, (3) 60 γ 90, (4) 90 < γ. Jegyezzük újra meg, hogy a teljes megoldáshoz az eddig elmondottak szerint összesen 8 lépést kell ellenőriznünk.
15 A megoldás vázlata A megoldás során négy különböző esetet célszerű tárgyalni: (1) γ < 45, (2) 45 γ < 60, (3) 60 γ 90, (4) 90 < γ. Jegyezzük újra meg, hogy a teljes megoldáshoz az eddig elmondottak szerint összesen 8 lépést kell ellenőriznünk. Előrebocsájtjuk, hogy mindig a γ szárszögű egyenlőszárú háromszög lesz az, amivel alsó becslést adunk R γ -ra.
16 Észrevétel A skatulya-elv miatt van olyan kör, ami a háromszög legalább két csúcsát lefedi. Ebből a következő hasznos állítás adódik. Állítás (A legrövidebb oldal korlát) Ha egy háromszöget két egyforma sugarú körrel lefedünk, akkor a körök átmérője legalább akkora, mint a háromszög (egyik) legrövidebb oldala.
17 Észrevétel A skatulya-elv miatt van olyan kör, ami a háromszög legalább két csúcsát lefedi. Ebből a következő hasznos állítás adódik. Állítás (A legrövidebb oldal korlát) Ha egy háromszöget két egyforma sugarú körrel lefedünk, akkor a körök átmérője legalább akkora, mint a háromszög (egyik) legrövidebb oldala. Ezt az állítást H γ egy speciális elemére alkalmazva alsó korlátot kapunk R γ -ra.
18 A tompaszögű eset (γ > 90 ) Először megoldjuk a (4)-es alesetet, vagyis ha γ > 90. Ehhez számítsuk ki először a γ szárszögű egyenlőszárú háromszög szárának hosszát.
19 A tompaszögű eset (γ > 90 ) Először megoldjuk a (4)-es alesetet, vagyis ha γ > 90. Ehhez számítsuk ki először a γ szárszögű egyenlőszárú háromszög szárának hosszát. Az ábráról leolvasható, hogy BC = 1 2 sin γ. Innen adódik a 2 legrövidebb oldal korlát miatt, hogy R γ 1 4 sin γ. 2
20 A tompaszögű eset (γ > 90 ) 1 Másrészt két 4 sin γ sugarú körrel valóban bármelyik H γ -beli 2 háromszög lefedhető.
21 A tompaszögű eset (γ > 90 ) 1 Másrészt két 4 sin γ sugarú körrel valóban bármelyik H γ -beli 2 háromszög lefedhető. Ehhez tekintsük a következő ábrát: Itt AFB γ és így BF 1 2 sin γ. 2
22 A tompaszögű eset (γ > 90 ) Így az AF és BF szakaszok fölé rajzolt Thalész-körök sugara 1 legfeljebb 4 sin γ, és ketten együtt lefedik a háromszöget. 2 Az eddigiekből következik, hogy γ > 90 esetén R γ = 1 4 sin γ. 2
23 Hegyesszög kontra tompaszög Most megmutatjuk, hogy γ 90 esetben elegendő nem tompaszögű háromszögekre szorítkozni. Ez hasznos lesz a további elemzés rövidítéséhez, mivel majd a magasságpontot használni fogjuk.
24 Hegyesszög kontra tompaszög Most megmutatjuk, hogy γ 90 esetben elegendő nem tompaszögű háromszögekre szorítkozni. Ez hasznos lesz a további elemzés rövidítéséhez, mivel majd a magasságpontot használni fogjuk. Vegyük észre, hogy ha 1 2, akkor a 2 -t fedő körök világos módon fedik 1 -t is, másrészt 2 fedéséhez legalább akkor körök kellenek, mint 1 -hez. Ezért ha 1, 2 H γ, és 1 2, akkor R γ meghatározása szempontjából 1 irreleváns, figyelmen kívül hagyható.
25 Hegyesszög kontra tompaszög Állítás Ha γ < 90 és 1 H γ háromszög tompaszögű, akkor létezik 2 H γ hegyesszögű háromszög, hogy 1 2.
26 Hegyesszög kontra tompaszög Állítás Ha γ < 90 és 1 H γ háromszög tompaszögű, akkor létezik 2 H γ hegyesszögű háromszög, hogy 1 2. Bizonyítás: Legyen β > 90, az ábra szerint. Az AB C H γ, szögei γ, 180 β és β γ. A tompaszög γ-val csökkent. Addig ismételjük, amíg hegyeszögű lesz.
27 Egy hasznos lemma Állítás Az ABC hegyesszögű háromszögben a C csúcsnál levő γ szöggel szemben fekvő oldal egységnyi, M a magasságpont. Ekkor CM = 1 tan γ.
28 Egy hasznos lemma Állítás Az ABC hegyesszögű háromszögben a C csúcsnál levő γ szöggel szemben fekvő oldal egységnyi, M a magasságpont. Ekkor Bizonyítás: CM = 1 tan γ. CE CM = AE 1, CM = CE AE = 1 tan γ.
29 Kövér háromszögek (45 γ < 60 ) Rátérhetünk a (2)-es esetre, amikor 45 γ < 60. (Ez az eset tartalmazza az Arany Dániel feladat megoldását.)
30 Kövér háromszögek (45 γ < 60 ) Rátérhetünk a (2)-es esetre, amikor 45 γ < 60. (Ez az eset tartalmazza az Arany Dániel feladat megoldását.) Először is jegyezzük meg, hogy γ szászögű egyenlőszárú háromszög legkisebb szöge γ, így a vele szemben fekvő egységnyi oldala a legrövidebb oldala. Ebből következik a legrövidebb oldal korlát miatt, hogy R γ 1/2.
31 Kövér háromszögek (45 γ < 60 ) Rátérhetünk a (2)-es esetre, amikor 45 γ < 60. (Ez az eset tartalmazza az Arany Dániel feladat megoldását.) Először is jegyezzük meg, hogy γ szászögű egyenlőszárú háromszög legkisebb szöge γ, így a vele szemben fekvő egységnyi oldala a legrövidebb oldala. Ebből következik a legrövidebb oldal korlát miatt, hogy R γ 1/2. Vegyük észre, hogy tan 45 = 1, és így tan γ 1, ha 45 γ < 60. Ezt beírva az előző lemmánkba nyerjük, hogy CM = 1 tan γ < 1.
32 Kövér háromszögek (45 γ < 60 ) Így az AB és CM szakaszok Thalész-körei lefednek tetszőleges H γ -beli háromszöget, ha 45 γ < 60.
33 Kövér háromszögek (45 γ < 60 ) Az eddigiekből következik, hogy R γ = 1/2 minden 45 γ < 60 esetén! Vegyük továbbá azt is észre, hogy ezek a háromszögek nem fedhetők le gazdaságosan két egyforma sugarú körrel, a fedések mindig lötyögnek. Ennek szemléletes oka, hogy a vizsgált háromszögek kövérek.
34 Kövér háromszögek (45 γ < 60 ) Az eddigiekből következik, hogy R γ = 1/2 minden 45 γ < 60 esetén! Vegyük továbbá azt is észre, hogy ezek a háromszögek nem fedhetők le gazdaságosan két egyforma sugarú körrel, a fedések mindig lötyögnek. Ennek szemléletes oka, hogy a vizsgált háromszögek kövérek. Térjünk rá (1)-es esetre, vagyis amikor γ < 45!
35 A γ < 45 esetről
36 A γ < 45 esetről
37 A γ < 45 esetről AO 2 D = 2γ = AO 2 = 1 2 sin 2γ
38 A γ < 45 esetről Ezekből látszik, hogy minden H γ -beli háromszög lefedhető két sugarú körrel. 1 2 sin 2γ
39 A γ < 45 esetről Ezekből látszik, hogy minden H γ -beli háromszög lefedhető két sugarú körrel. 1 2 sin 2γ Annak a precíz bizonyítása, hogy ekkora sugár kell is egy kicsit nehezebb. (Itt is az egyenlőszárú háromszögre érdemes végiggondolni, de megjegyezzük, hogy az előzőekből úgy tűnik, hogy minden hegyesszögű háromszöghöz legalább ekkora kell.) Kapjuk, hogy R γ = 1 2 sin 2γ, ha γ < 45.
40 Az eredmény A 60 γ 90 eset megoldása kijön az eddigiekből és a sinus-tételből. Az alsó becsléshez használhatjuk a legrövidebb oldal korlátot az egyenlőszárú háromszögre.
41 Az eredmény A 60 γ 90 eset megoldása kijön az eddigiekből és a sinus-tételből. Az alsó becsléshez használhatjuk a legrövidebb oldal korlátot az egyenlőszárú háromszögre. Összefoglalva: R γ = 1 2 sin 2γ, ha γ < , ha 45 γ < sin γ 2, ha 60 γ
42 Hogyan tovább? Oldjuk meg a nyitva hagyott kérdéseket, tegyük teljessé a megoldást!
43 Hogyan tovább? Oldjuk meg a nyitva hagyott kérdéseket, tegyük teljessé a megoldást! Nehezíthetünk a problémán úgy, hogy lényegében minden háromszögre külön tesszük fel a kérdést. Célszerű két szöggel jellemezni a háromszögeket, így felhasználhatjuk eddigi eredményeinket.
44 Hogyan tovább? Oldjuk meg a nyitva hagyott kérdéseket, tegyük teljessé a megoldást! Nehezíthetünk a problémán úgy, hogy lényegében minden háromszögre külön tesszük fel a kérdést. Célszerű két szöggel jellemezni a háromszögeket, így felhasználhatjuk eddigi eredményeinket. Mi történik, ha nem feltétlen egyforma köröket használunk, és a sugarak összegét akarjuk a lehető legkisebbé tenni? (Nehéznek tűnik.)
45 Hogyan tovább? Oldjuk meg a nyitva hagyott kérdéseket, tegyük teljessé a megoldást! Nehezíthetünk a problémán úgy, hogy lényegében minden háromszögre külön tesszük fel a kérdést. Célszerű két szöggel jellemezni a háromszögeket, így felhasználhatjuk eddigi eredményeinket. Mi történik, ha nem feltétlen egyforma köröket használunk, és a sugarak összegét akarjuk a lehető legkisebbé tenni? (Nehéznek tűnik.) Az igazi nehézségek általában akkor kezdődnek, ha 3 alakzattal (körrel) fedünk, a területen még számtalan megoldatlan probléma van.
46 Köszönöm a megtisztelő figyelmet! 1
Háromszögek fedése két körrel
Háromszögek fedése két körrel Vígh-Mácsai Zsanett, Vígh Viktor. Bevezetés Ebben a cikkben háromszögeket fogunk lefedni körökkel (általában kett vel). A fedést egyszer en tartalmazás értelemben használjuk,
Részletesebben18. Kerületi szög, középponti szög, látószög
18. Kerületi szög, középponti szög, látószög Középponti szög fogalma: A körben a középponti szög csúcsa a kör középpontja, két szára a kör két sugara, illetve azok félegyenese. Egy középponti szög (ω)
RészletesebbenEgyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
RészletesebbenArany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.
RészletesebbenMegoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák
Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák Csikós Balázs ELTE TTK Matematikai Intézet Országos Diákkutatói Program, 2009.11.13. Csikós B. (ELTE TTK Matematikai Intézet) Diszkrét
RészletesebbenSíkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
RészletesebbenA Fermat-Torricelli pont
Vígh Viktor SZTE Bolyai Intézet 2014. november 26. Huhn András Díj 2014 Így kezdődött... Valamikor 1996 tavaszán, a Kalmár László Matematikaverseny megyei fordulóján, a hetedik osztályosok versenyén. [Korhű
Részletesebben10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2
10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A
Részletesebben2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
Részletesebben4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig
Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós
RészletesebbenJavítókulcs, Válogató Nov. 25.
Javítókulcs, Válogató 2016. Nov. 25. 1. Az A, B, C pontok által meghatározott hegyesszögű háromszögben az egyes csúcsokhoz tartozó magasságvonalak talppontjait jelölje rendre T A, T B és T C. A T A T B
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
RészletesebbenArany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
RészletesebbenLehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
RészletesebbenFeladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
RészletesebbenA 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
RészletesebbenKoordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
RészletesebbenHúrnégyszögek, Ptolemaiosz tétele
Húrnégyszögek, Ptolemaiosz tétele Markó Zoltán 11C Húrnégyszögek Definíció: Húrnégyszögnek nevezzük az olyan négyszöget, amely köré kör írható Vagyis az olyan konvex négyszögek, amelyeknek oldalai egyben
RészletesebbenBÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK
1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!
RészletesebbenArany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban
Részletesebben9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
RészletesebbenIsmételjük a geometriát egy feladaton keresztül!
Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.
RészletesebbenArany Dániel Matematikai Tanulóverseny 2016/2017-es tanév Kezdők III. kategória I. forduló
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév Kezdők I II. kategória II. forduló Kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy kört
RészletesebbenÉrettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
RészletesebbenÉrettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
RészletesebbenTrigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
RészletesebbenPitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2
1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenXXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály
. feladat: Szupercsiga egy függőleges falon mászik felfelé. Első nap 4 cm-t tesz meg, éjszaka cm-t visszacsúszik. Második napon 9 cm-t tesz meg, éjszaka 4 cm-t csúszik vissza, harmadik napon 6 cm-t mászik,
RészletesebbenFeladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
Részletesebbenpont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen
A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.
Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Egy háromszög egyik oldala 10 cm hosszú, s a rajta fekvő két szög 50 és 70. Számítsd ki a hiányzó szöget és oldalakat! Legyen a = 10 cm; β = 50 és γ = 70. A két szög ismeretében a harmadik
Részletesebben3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.
3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság
Részletesebben54. Mit nevezünk rombusznak? A rombusz olyan négyszög,
52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes
RészletesebbenKoordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
RészletesebbenInteraktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-
Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
RészletesebbenKözéppontos hasonlóság szerkesztések
Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen
RészletesebbenKoordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
RészletesebbenXXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.
XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután
Részletesebben1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:
1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)
RészletesebbenKisérettségi feladatgyűjtemény
Kisérettségi feladatgyűjtemény Halmazok 1. Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik
RészletesebbenKoordináta geometria III.
Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r
RészletesebbenBevezetés a síkgeometriába
a síkgeometriába 2016.01.29. a síkgeometriába 1 Fogalom, alapfogalom Álĺıtás,axióma Térelemek kölcsönös helyzete 2 A szögek A szögek mérése Szögfajták Szögpárok 3 4 a síkgeometriába Fogalom, alapfogalom
RészletesebbenHatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
RészletesebbenHASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
RészletesebbenNémeth László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így
RészletesebbenXVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
RészletesebbenM/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24
OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5
RészletesebbenA 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató
OktatásiHivatal A 014/01. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató 1. feladat: Adja meg az összes olyan (x,
RészletesebbenHáromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek
2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,
Részletesebben13. Trigonometria II.
Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
RészletesebbenÉrettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
RészletesebbenOktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
Részletesebben10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok
10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest
Részletesebben1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
RészletesebbenA TERMÉSZETES SZÁMOK
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
RészletesebbenHaladók III. kategória 2. (dönt ) forduló
Haladók III. kategória 2. (dönt ) forduló 1. Tetsz leges n pozitív egész számra jelölje f (n) az olyan 2n-jegy számok számát, amelyek megegyeznek az utolsó n számjegyükb l alkotott szám négyzetével. Határozzuk
RészletesebbenXXIII. Vályi Gyula Emlékverseny május 13. V. osztály
XXIII. Vályi Gyula Emlékverseny Marosvásárhely 207. május 3. V. osztály. Sári néni a piacon 00 db háromféle tojást vásárolt 00 RON értékben. Tudva azt, hogy a tyúktojás ára 50 bani, a libatojás 5 RON és
RészletesebbenElemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2016. január 11. 1.1. Feladat. (V:266,.L. 1/2000) z háromszögben m(â) = 30 és m( ) = 45. z és oldalakon vegyük fel az és pontokat úgy, hogy 3 = és 2 =. Számítsd ki az
Részletesebben+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93
. Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan
RészletesebbenNémeth László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál
RészletesebbenArany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket
RészletesebbenÉrettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
RészletesebbenRamsey-féle problémák
FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:
RészletesebbenGyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6
Gyakorló feladatok 1. Ismertesd a matematikai indukció logikai sémáját, magyarázzuk meg a bizonyítás lényegét. Bizonyítsuk be, hogy minden n természetes számra 1 + 3 + + (n 1) = n.. Matematikai indukcióval
Részletesebben(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.
Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a
Részletesebben8. Geometria = =
8. Geometria I. Nulladik ZH-ban láttuk: 1. Egy négyzet átlójának hossza 4 + 2. Mennyi a négyzet oldalhossza? (A) 1 + 2 2 (B) 4 + 2 (C) 2 2 + 2 (D) 2 + 2 (E) 2 2 + 1 Egy a oldalú négyzet átlója a 2. Ezt
RészletesebbenHelyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
Részletesebben1. feladat Bizonyítsuk be, hogy egy ABCD húrnégyszögben AC BD
1. feladat Bizonyítsuk be, hogy egy ABCD húrnégyszögben AC BD = DA AB + BC CD AB BC + CD DA. Első megoldás: A húrnégyszögnek az A, B, C, ill. D csúcsoknál levő szögét jelölje rendre α, β, γ, ill. δ, azab,
RészletesebbenHáromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
Részletesebben1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni
1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:
RészletesebbenKoordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
Részletesebben5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
Részletesebben1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
RészletesebbenKoordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
RészletesebbenBartha Gábor feladatjavaslatai az Arany Dániel Matematika Versenyre
Bartha Gábor feladatjavaslatai az Arany Dániel Matematika Versenyre Kérem, hogy a megoldásokat elektronikus (lehetőleg doc vagy docx) formában is küldjétek el a következő e- mail címre: balgaati@gmail.com
RészletesebbenGeometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül
RészletesebbenARCHIMEDES MATEMATIKA VERSENY
Ismétléses permutáció: ha az elemek között van olyan, amelyik többször is előfordul, az elemek egy sorba rendezését ismétléses permutációnak nevezzük. Tétel: ha n elem között p 1, p 2, p 3, p k darab megegyező
RészletesebbenOktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]
OKTV 7/8 A öntő felaatai. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz a fenti feltételeknek?.
RészletesebbenEgybevágóság szerkesztések
Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes
RészletesebbenGeometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!
RészletesebbenBolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás.
Bolyai János Matematikai Társulat Oktatási Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 005/00-os tanév első iskolai) forduló haladók II. kategória nem speciális
RészletesebbenTémák: geometria, kombinatorika és valósuínűségszámítás
Matematika BSc Elemi matematika 3 Témák: geometria, kombinatorika és valósuínűségszámítás Kitűzött feladatok Geometria 1. Egy ABD háromszög szögei rendre α, β, γ. Mekkora szöget zár be egymással a) az
Részletesebben8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész
Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=
RészletesebbenSíkgeometria. Ponthalmazok
Síkgeometria http://zanza.tv/matematika/geometria Ponthalmazok Alapfogalmak: pont egyenes sík (nincs kiterjedése; általában nagy betűvel jelöljük) (végtelen hosszú; általában kis betűvel jelöljük) (végtelen
RészletesebbenGeometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
Részletesebben, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
RészletesebbenCsima Judit BME, VIK, november 9. és 16.
Adatbáziskezelés Függőségőrzés, 3NF-re bontás Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. november 9. és 16. Csima Judit Adatbáziskezelés Függőségőrzés, 3NF-re bontás 1
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
RészletesebbenA középponti és a kerületi szögek összefüggéséről szaktanároknak
A középponti és a kerületi szögek összefüggéséről szaktanároknak Középiskolai tanulmányaink fontos része volt az elemi síkgeometriai tananyag. Ennek egyik nevezetes tétele így szól [ 1 ] : Az ugyanazon
Részletesebben