Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)
|
|
- Fanni Kerekesné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)./ Egy televízió készülék meghibásodásainak átlagos száma óra alatt. A meghibásodások száma a vizsgált időtartam hosszától függ. Határozzuk meg annak a valószínűségét, hogy a készülék 2 óra alatt elromlik! 2./ Egy 5 oldalas könyvben 2 sajtóhiba található. Mekkora a valószínűsége annak, hogy véletlenszerűen kiválasztott oldalon a./ nem lesz sajtóhiba, b./ legfeljebb2 sajtóhiba lesz, ha feltételezzük, hogy a sajtóhibák száma Poisson-eloszlású? 3./ Egy édességboltba a délután 2 és 3 óra között érkező vevők száma Poissoneloszlású valószínűségi változó 4 várható értékkel. Mennyi annak a valószínűsége, hogy a délután 2 és 3 óra közötti időintervallumban a./ 5 perc alatt -nél több vevő érkezik, b./ két vevő érkezése között eltelt idő több, mint 3 perc? 4./ Egy konzervgyár valamelyik üveggyártótól literes üvegeket rendel. 2 darab üveg közül átlagosan 5 selejtes. a./ Mekkora annak a valószínűsége, hogy üveget átnézve, abban pontosan selejtes üveget találunk? b./ Mennyi annak a valószínűsége, hogy a selejtes üvegek száma legalább lesz? 5./ Egy elektronikus műszer alkatrészből áll. Egy alkatrész a többitől függetlenül, valószínűséggel romlik el egy év alatt. Mennyi a valószínűsége annak, hogy legalább két alkatrész elromlik egy év alatt? 6./ Egy hagyományos izzólámpa átlagos élettartama 4 hónap. Mi a valószínűsége, hogy beszerelés után 6 hónappal is világítani fog az izzó, ha megfigyelésekből tudjuk, hogy az élettartam exponenciális valószínűségi változó? 7./ Annak a valószínűsége, hogy egy benzinkútnál a tankolásra 6 percnél többet kell várni a tapasztalatok szerint,. Mennyi a valószínűsége, hogy véletlenszerűen a benzinkúthoz érve 3 percen belül sorra kerülünk? 8./ Egy autóbusz egy útkereszteződéshez véletlenszerűen érkezik. A várakozási idő átlagosan 2 másodperc. Tekintsük valószínűségi változónak a várakozási időt. Határozzuk meg annak a valószínűségét, hogy: a./ a várakozási idő legfeljebb 5 másodperccel tér el a várható értéktől; b./ a várakozási idő a szórásnál nagyobb értékkel tér el a várható értéktől! 9./ Egy intézet külföldről könyveket rendel. Az ehhez szükséges devizára várni kell, a tapasztalatok alapján általában ½ évet. A várakozási idő
2 exponenciális eloszlású. Mennyi a valószínűsége, hogy az intézet egy negyedéven belül megkapja a könyveket?./ A vizsgálatok szerint egy adott útszakaszon a két kátyú közötti távolság, mint valószínűségi változó exponenciális eloszlású, m átlagos távolsággal. Határozzuk meg annak a valószínűségét, hogy véletlenszerűen kijelölt két szomszédos kátyú távolsága 3 m-nél nagyobb lesz!./ Egy automata gépen gyártott tengelyek átmérője 64 mm várható értékű,,24 mm szórású, normális eloszlású valószínűségi változó. Az első osztályú termékeknél.2 mm a tűréshatár, a másodosztályúaknál,3 mm. a./ Mennyi lesz db termék értékesítéséből származó várható bevétel,ha az első osztályú termék eladási ára 2 Ft/db, a másodosztályúaké pedig 5Ft/db? b./ Milyen pontosságot biztosíthatunk,95 valószínűséggel a tengely átmérőjére? 2./ Tengelyek hossza normális eloszlású valószínűségi változó, m várható értékkel,,6 cm szórással. A tapasztalatok alapján a tengelyek 4,78%-a hosszabb, mint 82 cm. Mekkora lehet a tengelyek hosszának várható értéke? 3./ Egy tengely hossza normális eloszlású valószínűségi változó 2 mm várható értékkel és,2 szórással. Mekkora tűrést kell megengedni, hogy a tengelyek 96%-a megfeleljen? 4./ Kovács úr egy vendéglőben kedvenc ételét, rántott szeletet rendel. A tapasztalat szerint ennek a súlya közelítőleg normális eloszlású,, σ = 2 gramm szórással. a./ Milyen súlyúnak várható a rántott szelet, ha 6% annak a valószínűsége, hogy 9 g-nál kisebb súlyút hoznak? b./ 96% valószínűséggel milyen pontosságot biztosíthatunk a rántott szelet súlyára? c./ Mekkora valószínűséggel lesz a súlynak a várható értéktől vett eltérése kisebb, mint 2 g? 5./ Egy fafeldolgozó telepen deszkákat készítenek. Ezek hossza normális eloszlású, m = 4 cm várható értékkel és σ = 3 cm szórással. a./ A deszkák hány százaléka lesz 398 cm-nél hosszabb és 4 cm-nél rövidebb? b./ Mekkora annak a valószínűsége, hogy a deszkák hossza a 4 cmtől legfeljebb 2,5 cm-rel tér el? 6./ Egy löveg tüzel egy 2 méter távoli célpontra. A lőtávolság ingadozása az 2 méter körül normális eloszlású 4 méter szórással. Hatásosnak tekintünk egy lövést, ha a találat a célhoz 5 méternél közelebb esik. A lövések hány százaléka lesz hatásos?
3 Megoldások = meghibásodás, így ( )./ óra alatt, M ξ = λ =,. A ξ valószínűségi változó az első meghibásodásig eltelt idő, exponenciális eloszlású λ =, paraméterrel. 2 Így ( < 2) = F( 2) = e =, 83 P ξ. 2 = sajtóhiba, így ( ) 4 2./ oldalon, 4 M ξ = λ =,. 5 Az egy oldalon található sajtóhibák száma Poisson-eloszlású, így annak a valószínűsége, hogy egy oldalon nincs sajtóhiba:,4,4 p = P( ξ = ) = e =, 673.! véletlenszerűen választott oldal esetén a ξ valószínűségi változó a sajtóhiba mentes oldalak száma, már binomiális eloszlású, így a./ ( ) P ξ = =,673,3297 =, 5. 2 P ξ k. k k b./ ( 2) =,673,3297 =, 35 k= 4 = vevő, így ( ) 3./ 5 perc alatt M ξ = λ =. 4 a./ A 2 és 3 óra között beérkező vevők száma Poisson-eloszlású, így P ξ = P ξ ( ) ( )= e =,47!! 2! 3! 4! 5! 6! 7! 8! 9!! b./ Két érkező vevő között eltelt idő exponenciális eloszlású λ = paraméterrel, így 3 P ξ 3 = P ξ 3 = F 3 = e. ( ) ( ) ( ) ( ) 5 4./ s = =, M ξ = n p = λ =, = 2 Poisson-eloszlással közelítve: a./ P( ξ = ) = e =, 365.! b./ P ( ξ ) = P( ξ < )= p, így ( ) e!! 2! 2 3! 3 4! 4 5! 5 6! 6 7! 7 8! 8 9 =,9998 9!.
4 5./ ( ξ ) = n p = λ =, = M. P 6./ ( ξ )! ( ξ 2) = ( P( ξ = ) P( ξ = ) ) = e e =,2642. M = 4 λ =. 4 P ( ξ 6) = P( ξ < 6) = F( 6) = e 4 =, / P ( ξ 6 ) =,. 8./ M ( ξ ) 6! ( 6) ( 6) ( 6) ( 6 λ 6 ξ = P ξ < = F = e ) = λ,, = P e így 6λ ln,, = e, amiből λ = =,3838. Ezek után 6, P ξ < 3 = F 3 = e =,6838 ( ) ( ). = 2 λ = 2 P ξ M ξ < 5 = P 5 ξ = F F 5 ( ) ( ) ( ) ( ) = a./ ( ) 5 e 2 e 2 = =,859. b./ D ( ξ ) = 2 P( ξ < ) P( ξ 4) = P( ξ 4) = F( 4) = 4 = e 2 =, / M ( ξ ) =,5 λ = 2 2, P( ξ <,) = F(,) = e =,3935../ M ( ξ ) P = λ = 3 ( ξ 3) = P( ξ 3) = F( 3) = e =,32../ m = 64; σ =, 24 P I. oszt. = P 63,98 ξ 64,2 = F 64,2 F 63, 98 a./ ( ) ( ) ( ) ( ) = 64, ,98 64 Φ Φ = Φ(,83) Φ(, 83)=,24,24 Φ (,83) ( Φ(,83) ) = 2 Φ(,83) = 2,7967 =,5934.
5 ( II. oszt. ) = P( 63,93 64,3) P( I. oszt. ) = = F ( 64,3) F( 63,97), 5934 = P ξ 64, ,97 64 Φ, 5934 =,24,24 = Φ(,) Φ(,),5934 = 2 Φ(,), 5934 = = 2,8944,5934 =,954. db termékből: I. oszt.:,5934 = 593,4 593 II. oszt.:,954 = 95,4 95 A bevétel: = 4785 Ft. = P m u ξ m u F m u F m u b./,95 ( ) = ( ) ( ) = m u m m u m Φ Φ =,24,24,24,24.,24 Így,95,24 u Φ =,975 =,96 u =,47.,24,24 2./ σ =, 6 ( ) ( ) ( ) 82 m,478 = P ξ 82 = P ξ 82 = F 82 = Φ 23,6 82 m 82-m Így Φ =,9522 =, 67 m = 8, 998.,6, 6 3./ m = 2 ; σ =, 2,96 = P m u ξ m u = F m u F m u ( ) ( ) ( ) = m u m m u m Φ Φ =,2,2,2,2.,2 Így,96,2 u Φ =,98 = 2,6 u =,42.,2,2
6 4./ σ = 2 9 m m 9 = < = = Φ 23 2 < m 9 m 9 Így Φ =,84 =,995 m =, a./,6 P( ξ 9) F( 9) b./,96 = P( m u ξ m u) = F( m u) F( m u) = m u m m u m Φ Φ = Így,96 2 u Φ =,98 = 2,6 u = 24, c./ P( m 2 ξ m 2) = F( m 2) F( m 2) = m 2 m m 2 m 2 Φ = 2 Φ,67 = 2,95 =,95 ( ). Φ 2 = 2 5./ m = 4 ; σ = a./ P( 398 ξ 4) = F( 4) F( 398) Φ = 3 3 = Φ(,33) Φ(,67) = Φ(,33) ( Φ(, 67) ) = = Φ(,33) Φ(,67) =,6293,7486 =,3779. b./ P( m 2,5 ξ m 2,5) = F( m 2,5) F( m 2, 5) = m 2,5 m m 2,5 m 2,5 Φ = 2 Φ,83 = 2,7967 =,5934 ( ). Φ 2,5 = 3 6./ m = ; σ = ( 5 5) = F( 5) F( 5) Φ = 4 4 Φ, Φ(,) = Φ(,) ( Φ(, )) = 2 Φ(,) = 2,8944 =,7888. P ξ = =
NEVEZETES FOLYTONOS ELOSZLÁSOK
Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó
4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?
HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben
36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25
Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy
2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben
1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok
VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.
Feladatok és megoldások a 13. hétre
Feladatok és megoldások a. hétre Építőkari Matematika A. Az alábbi függvények melyike lehet eloszlásfüggvény? + e x, ha x >, (a F(x =, ha x, (b F(x = x + e x, ha x, (c F(x =, ha x, x (d F(x = (4 x, ha
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!
1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló
Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli
Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Mutassuk meg, hogy tetszőleges A és B eseményekre PA B PA+PB. Mutassuk
1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt
1. Név:......................... Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt a gyártmányt készítik. Egy gyártmány összeszerelési ideje normális eloszlású valószín½uségi változó
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
ÁLTALÁNOS STATISZTIKA
Berzsenyi Dániel Főiskola ÁLTALÁNOS STATISZTIKA Műszaki menedzser alapszak Példatár Dr. Kövesi János Tóth Zsuzsanna Eszter 2006 1 Valószínűségszámítási tételek, feltételes valószínűség, események függetlensége
A sztochasztika alapjai. Szorgalmi feladatok tavaszi szemeszter
A sztochasztika alapjai Szorgalmi feladatok 2011. tavaszi szemeszter 1. feladat Egy kockával dobva mi a dobott szám eloszlásfüggvénye, várható értéke, szórása? 2. feladat Egy marketingakció keretében egy
Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József
Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Matematika III. 5. : Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás
SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.
1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?
Valószínűségszámítás, földtudomány alapszak, 2015/2016. őszi félév 1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? 2. Két tizenhárom fős vízilabdacsapat mérkőzik
KVANTITATÍV MÓDSZEREK
Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet KVANTITATÍV MÓDSZEREK Példatár a Vezetés és Szervezés, Pénzügy és Műszaki menedzser mesterszakok
Régebbi Matek M1 zh-k. sztochasztikus folyamatokkal kapcsolatos feladatai.
Régebbi Matek M1 zh-k Folyamfeladatokkal, többszörös összef ggőséggel, párosításokkal, Nagy szḿok törvényével, Centrális Határeloszlás tétellel, sztochasztikus folyamatokkal kapcsolatos feladatai. Gráfok
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Számítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
0,9268. Valószín ségszámítás és matematikai statisztika NGB_MA001_3, NGB_MA002_3 zárthelyi dolgozat
A 1. A feln ttkorú munkaképes lakosság 24%-a beszél legalább egy idegen nyelvet, 76%-a nem beszél idegen nyelven. Az idegen nyelvet beszél k 2,5%-a, az idegen nyelvet nem beszél k 10%-a munkanélküli. Véletlenszer
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
3. Egy szabályos dobókockát kétszer feldobva mennyi annak a valószínűsége, hogy a dobott számok különbségének abszolutértéke nagyobb mint 4?
1. Kombinatorikus valószínűség 1. Egy dobókockát kétszer feldobunk. a) Írjuk le az eseményteret! b) Mennyi annak a valószínűsége, hogy az első dobás eredménye nagyobb, mint a másodiké? 2. Mennyi a valószínűsége
földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
2. A ξ valószín ségi változó s r ségfüggvénye a következ : c f(x) =
1 Egy dobozban hat fehér golyó van Egy szabályos dobókockával dobunk, majd annyi piros golyót teszünk a dobozba, amennyit dobtunk Ezután véletlenszer en húzunk egy golyót a dobozból (a) Mi a valószín sége,
Valószínűségszámítás
European Virtual Laboratory of Mathematics Project No. 2006 - SK/06/B/F/PP - 177436 Európai Virtuális Matematikai Laboratórium Árvai- Homolya Szilvia Valószínűségszámítás EVML e-könyvek Miskolc 2008 Sorozat
10. Exponenciális rendszerek
1 Exponenciális rendszerek 1 Egy boltba exponenciális időközökkel átlagosan percenként érkeznek a vevők két eladó, ndrás és éla, átlagosan 1 illetve 6 vevőt tud óránként kiszolgálni mennyiben egy vevő
Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS
Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli
Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli. Igaz-e, hogy tetszőleges A, B és C eseményekre teljesül a A B \ C =
A valószínűségszámítás elemei
Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet
1. Kombinatorikai bevezetés
1. Kombinatorikai bevezetés 1.1. Permutációk Adott n különböző elem ismétlés nélküli permutációján az elemek egy meghatározott sorrendjét értjük. Az n különböző elem összes permutációinak számát P n -nel
Gyakorlat. Szokol Patricia. September 24, 2018
Gyakorlat (Geometriai valószínűség, feltételes valószínűség) September 24, 2018 Geometriai valószínűség 1 Az A és B helységet 5 km hosszú telefonvezeték köti össze. A vezeték valahol meghibásodik. A meghibásodás
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Nevezetes diszkre t eloszlá sok
Nevezetes diszkre t eloszlá sok Szűk elméleti összefoglaló Binomiális eloszlás: Jelölés: X~B(n, p) vagy X B(n, p) Tipikus használata: Egy kétféle kimenetelű (valami beteljesül vagy sem) kísérletet elvégzünk
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK
VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK KOMBINATORIKA Példa: a) Hányféle módon rakható sorba egy csomag Magyar kártya 3 lapja? Nyilván 3! féle módon. Ez nagyon nagy szám, 3!,63 0 35. b) Hányféle módon
vásárlót átlag 2 perc alatt intéz el (blokkolás, kártyaleolvasás), de ez az
1. Név:......................... Egy ABC-ben délután (5-t½ol 9 óráig) a vásárlók száma óránként 200 várható érték½u Poisson eloszlású valószín½uségi változó. A pénztáros egy vásárlót átlag 2 perc alatt
A konfidencia intervallum képlete: x± t( α /2, df )
1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,
Biometria gyakorló feladatok BsC hallgatók számára
Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb
Geometriai valo szí nű se g
Geometriai valo szí nű se g Szűk elméleti áttekintő Klasszikus valószínűség: Geometriai valószínűség: - 1 dimenzióban: - dimenzióban: - + dimenzióban: jó esetek összes eset jó szakaszok teljes szakasz
Munkafüzet a Termelés- és szolgáltatásmenedzsment tárgyhoz
Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Menedzsment és Vállalatgazdaságtan Tanszék Munkafüzet a Termelés- és szolgáltatásmenedzsment
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi
A II. fejezet feladatai
A II. fejezet feladatai Kulcsszavak : valószínűségi változó, eloszlásfüggvény, diszkrét eloszlás, sűrűségfüggvény, nevezetes diszkrét és folytonos eloszlások, valószínűségi változók transzformációja, várható
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Matematika B4 VIII. gyakorlat megoldása
Matematika B4 VIII. gyakorlat megoldása 5.április 7.. Eloszlás- és sűrűségfüggvény Ha az X egy folytonos valószínűségi változó, akkor X-et jól jellemzi az eloszlás illetve a sűrűségfüggvénye. Az eloszlásfüggvény
előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás
13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
A II. fejezet feladatai
A II. fejezet feladatai Kulcsszavak : valószínűségi változó, eloszlásfüggvény, diszkrét eloszlás, sűrűségfüggvény, nevezetes diszkrét és folytonos eloszlások, valószínűségi változók transzformációja, várható
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
egyetemi jegyzet Meskó Balázs
egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.
Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.
1 Kombináció, variáció, permutáció 1. Hányféleképpen rakhatunk be 6 levelet 1 rekeszbe, ha a levelek között nem teszünk különbséget és egy rekeszbe maximum egy levelet teszünk? Mivel egy rekeszbe legfeljebb
3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy
Valószínűségszámítás. zárthelyi dolgozat 009. október 5.. Egy osztályba 3-an járnak. Minden fizikaórán a a többi órától függetlenül a tanár kisorsol egy felelőt, véletlenszerűen, egyenletesen, azaz mindig
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
Negyedik A4 gyakorlat rövid megoldási útmutató
Negyedik A4 gyakorlat rövid megoldási útmutató 2013. október 14. 1. Feltéve, hogy a balkezesek aránya átlagosan 1%, becsüljük meg annak a valószínűségét, hogy 200 véletlenszerűen kiválasztott ember között
MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.
EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?
Valószínűségszámítás, földtudomány alapszak, 2016/2017. őszi félév 1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? 2. Két tizenhárom fős vízilabdacsapat mérkőzik
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?
KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel
KVANTITATÍV MÓDSZEREK
Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet KVANTITATÍV MÓDSZEREK Példatár megoldásokkal Dr. Kövesi János Dr. Tóth Zsuzsanna Eszter Budapest
Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak
Gazdaság- és Társadalomtudományi Kar Menedzsment és Vállalatgazdaságtan Tanszék Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak Készítette: dr. Koltai Tamás egyetemi tanár Budapest, 2012.
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT
1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján
Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Eur.Ing. Frank György c. docens az SzVMSzK Szakmai Kollégium elnöke SzVMSzK mérnök szakértő (B5) A lövedékálló
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft
Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az
Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta
Közlemény Biostatisztika és informatika alajai. előadás: Az orvostudományban előforduló nevezetes eloszlások 6. szetember 9. Veres Dániel Statisztika és Informatika tankönyv (Herényi Levente) már kaható
Modulzáró ellenőrző kérdések és feladatok (2)
Modulzáró ellenőrző kérdések és feladatok (2) 1. Definiálja az alábbi, technikai eszközök üzemi megbízhatóságával kapcsolatos fogalmakat (1): Megbízhatóság. Használhatóság. Hibamentesség. Fenntarthatóság.
1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.
Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7