6. Előadás: Sorbanállási modellek, III.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "6. Előadás: Sorbanállási modellek, III."

Átírás

1 6. Előadás: Sorbanállási modellek, III..5. Az M/M//GD/c/ sorbanállási rendszer Az ebben a szakaszban vizsgált sorbanállási rendszer piktogrammja az. ábrán látható. Ennek értelmében a születési halálozási folyamat paraméterei a következőképpen állapot s- s... 2 s. ábra. Az M/M//GD/c/ sorbanállási rendszer piktogrammja specializálódnak: λ j = λ, j = 0,,2,...,c λ c = 0 µ 0 = 0 µ j = µ, j =,2,,...,c Mivel λ c = 0, azért ez a sorbanállási rendszer sohasem éri el c+, vagy bármely annál magasabb típusú állapotot. A megfelelő születési halálozási folyamatra a stacionárius állapot valószínűségek a ρ = λ jelöléssel nyilvánvalóan most is úgy adódnak, hogy µ π j = ρ j π 0, j =,2,...,c π j = 0, j = c+,c+2,... (.) A π 0 értékét meghatározó egyenlet: π 0 (+ρ+ρ 2 + +ρ c ) =. Ennek a megoldása pedig a véges geometriai sor összegképletének az alkalmazásával: π 0 = ρ ρ c+. Vegyük észre, hogy a stacionárius valószínűségek a ρ = λ < feltétel nélkül is léteznek, µ hiszen π 0 értékének a kiszámításához most véges geometriai sort kellett összegezni.

2 A sorbanállási rendszerben a stacionárius állapot beállta után tartózkodó ügyfelek átlagos L számának a meghatározása L értékének meghatározása is véges összeg kiszámítását igényli: L = c jπ j = c jρ j π 0 = ρ ρ c+ c jρ j. Az S = c jρ j = ρ + 2ρ 2 + ρ + + cρ c összeget ismét úgy számolhatjuk ki a legegyszerűbben, ha kivonjuk belőle a ρ-szorosát (ρs = ρ 2 +2ρ +ρ + +cρ c+ ): Ezért most S ρs = ρ+ρ 2 +ρ + +ρ c cρ c+ = ρ+ρ 2 +ρ + +ρ c +ρ c+ (c+)ρ c+ = ρ( ρc+ ) ρ S = ρ( ρc+ ) ( ρ) 2 Így végül a keresett L-re azt kapjuk, hogy (c+)ρ c+ (c+)ρc+. ρ L = ρ ρ (c+)ρc+ = ρ ρc+2 (c+)ρ c+ +(c+)ρ c+2 ρ c+ ( ρ)( ρ c+ ) = ρ (c+)ρc+ +cρ c+2 ( ρ)( ρ c+ ) = ρ ρ (c+)ρc +cρ c+ ρ c+. (.2) A speciális λ = µ esetben L értéke az (.2) képlettel nem számolható, ekkor azonban ha visszamegyünk a stacionárius valószínűségeket megadó (.) képletekhez, és azokban figyelembe vesszük, hogy ρ = λ =, azt kapjuk, hogy µ π j = π 0, j =,2,...,c π j = 0, j = c+,c+2,... Ezért minden állapot stacionárius valószínűsége egyenlő, azaz π j = c+, j = 0,,...,c, és így L = c j c+ = c+ c j = c(c+) = c c

3 A sorbanállási rendszerben a stacionárius állapot beállta után kiszolgálás alatt lévő ügyfelek átlagos L s számának a meghatározása Az M/M//GD/ / rendszerhez hasonlóan: L s = 0π 0 +(π +π 2 + +π c ) = π 0 = ρ ρ c+. A sorbanállási rendszerben a stacionárius állapot beállta után sorbanálló ügyfelek átlagos L q számának a meghatározása Ismét az M/M//GD/ / rendszerhez hasonlóan: L q = L L s = ρ ρ (c+)ρc +cρ c+ ρ c+ [ ρ ]. ρ c+ A stacionárius állapot kialakulása után egy átlagos ügyfél által a sorbanállási rendszerben eltöltött idő számítása Kicsit nehezebb a W és a W q értékek meghatározása. A Little-féle L = λw formula most nem érvényes minden változtatás nélkül. Ebben ugyanis λ az időegység alatt a sorbanállási rendszerbe ténylegesen megérkező ügyfelek átlagos számát jelöli. A most vizsgált, véges kapacitással rendelkező rendszerben továbbra is átlagosan λ ügyfél érkezik be időegységenként, azonban ezek közül λπ c ügyfél a rendszert foglalt állapotban találja és távozik. Így időegységenként átlagosan λ λπ c = λ( π c ) beérkező fog ténylegesen belépni a rendszerbe. Ezért most nyilván azt kapjuk, hogy és W = W q = L λ( π c ) L q λ( π c ). Megjegyezzük, hogy az M/M//GD/c/ sorbanállási rendszer esetén a stacionárius állapot akkor is létezik, ha λ µ. Ez azért van így, mert a sorbanállási rendszer véges kapacitása λ µ esetén is megakadályozza, hogy a rendszer kipukkadjon.. Példa Átlagosan óránként 0 autó érkezik egy Mac Donalds gyorsétkező egy kiszolgálóhelyes autós ablakához. Tegyük fel, hogy az átlagos kiszolgálási idő perc, és hogy a beérkezési időpontok közti távolságok, valamint a kiszolgálási idők exponenciális eloszlásúak. Válaszolja meg a következő kérdéseket:

4 . A napi forgalom stabilizálódása után milyen valószínűséggel lesz szabad a kiszolgálóhely? 2. Mennyi a kiszolgálásra váró autók átlagos száma? (Az éppen kiszolgált autót nem tekintjük sorbanállónak.). Mennyi időt tölt el egy átlagos autós a kiszolgálóhely előtt (a kiszolgálással együtt)?. Átlagosan hány ügyfelet fognak óránként kiszolgálni? Megoldás: A feltevések szerint ez egy M/M//GD/ / sorbanállási rendszer, amelyben óránként átlagosan 0 autó érkezik be, és egy autóst átlagosan percenként szolgálnak ki. Ezért λ = 6 perc és µ = perc, azazλ = 6 autó/perc, µ = autós/perc és ρ = 6 = 2.. π 0 = ρ = 2 =, vagyis a a kiszolgálóhely átlagosan az idő egyharmadában lesz szabad. 2. A kérdés az L q értékének a meghatározására irányul, a levezetett képlet szerint autó fog átlagosan sorbanállni. L q = ρ2 ρ = ( ) A W mennyiséget kell meghatározni. Ehhez először = L = ρ ρ = 2 2 = 2 autó. Így a W = L λ 2 autó képletet alkalmazva W = = 2 perc. 6 autó/perc

5 . Ha a kiszolgálóhely mindig foglalt lenne, akkor óránként átlagosan 60 perc autós/perc = 5 autóst szolgálnának ki. Azonban az első kérdésre adott válaszból tudjuk, hogy π 0 =, vagyis a kiszolgálóhely csak az idő 2 -ában foglalt. Így a kiszolgálóhely óránként átlagosan 2 5 = 0 autóst fog kiszolgálni. Ennek így is kell történnie, mert a stacionárius állapotban 0 autó érkezik óránként, ezért 0 kiszolgált autósnak is kell elhagynia a rendszert. 2. Példa Tegyük fel, hogy az autótulajdonosok akkor tankolnak, amikor a tankjuk félig van tele. Jelenleg átlagosan 7 és fél ügyfél érkezik az egyetlen töltővel rendelkező benzinkúthoz. Átlagosan percbe telik az autók kiszolgálása. Tegyük fel, hogy a beérkezési és kiszolgálási idők exponenciálisak.. Számítsa ki L és W értékét erre az esetre! 2. Tegyük fel, hogy benzinhiány fog fellépni, és az emberek pánikszerűen vásárolják fel a benzint. Ennek a jelenségnek a modellezéséhez tételezzük fel, hogy most minden autótulajdonos akkor tankol, amikor a tankja háromnegyedig van tele. Mivel most alkalmanként kevesebb benzint töltenek a tulajdonosok autóikba, ezért feltesszük, hogy az átlagos kiszolgálási idő nagysága és egyharmad percre csökkent. A pánikszerű felvásárlás hogyan befolyásolja L és W értékének az alakulását? Megoldás:. Most is M/M//GD/ / sorbanállási rendszerrel van dolgunk, óránként 7, 5 beérkező autóval és percenként kiszolgálással. Ezért a szomszédos beérkezések közt eltelő időintervallumok átlagos hossza λ = 7,5 óra = 60 = 8 perc, a kiszol- 7,5 gálások átlagos hossza pedig µ = perc. Így a szomszédos beérkezések közt eltelő időintervallumok exponenciális eloszlásának a λ paramétere λ = 8 autó/perc, az autók kiszolgálási idői exponenciális eloszlásának a µ paraméterére pedig µ = 5

6 és autó/perc. Így ρ = 8 =. Ezzel azt kapjuk, hogy 2 L = ρ ρ = 2 2 = autó W = L λ = autó = 8 perc. 8 autó/perc 2. Változatlanul M/M//GD/ / sorbanállási rendszerrel van dolgunk, de mivel minden autós kétszer olyan gyakran kell, hogy tankoljon, azért óránként 2 7, 5 = 5, azaz percenként 5 60 = autó fog tankolni, ezért most λ = autó/perc, míg a kiszolgálási idők exponenciális eloszlásának a µ paramétere most µ = = 0 0 autó/perc. Így nyilván ρ = λ µ = = 0 2 = 5. Ezzel pedig azt kapjuk, hogy 6 0 L = ρ ρ = = 5 autó és W = L λ = 5 autó = 20 perc, autó/perc vagyis a felvásárlási láz hosszú sorokat eredményezett.. Példa Egy fodrászüzletben, ahol egyetlen fodrász dolgozik, 0 ülőhely van (a fodrász széket is beleértve). Két egymásutűán beérkező vendég érkezési időpontja között a távolság exponenciális eloszlású, és átlagosan 20 potenciális vendég érkezik óránként az üzletbe. Ha egy vendég megérkezésekor az üzlet tele van, a vendég távozik. A fodrász a forgalom nagyságától függetlenül, átlagosan 2 perc alatt vágja le az ügyfelek haját. A hajvágási idők exponenciális eloszlásúak. 6

7 . Átlagosan hány hajvágást végez el a fodrász óránként, illetve óránként átlagosan hány potenciális vendég nem fog az üzletben maradni? 2. Átlagosan mennyi időt fognak az üzletbe belépő (és ottmaradó) vendégek eltölteni? Megoldás:. Most M/M//GD/0/ sorbanállási rendszerrel van dolgunk, melyben a szomszédos beérkezési időpontok között eltelő időintervallumok átlagos hossza λ = 20 óra = = perc, a kiszolgálások átlagos hossza pedig = 2 perc. Így µ a szomszédos beérkezések közt eltelő időintervallumok exponenciális eloszlásának a λ paramétere λ = vendég/perc, a vendégek kiszolgálási idői exponenciális eloszlásának a µ paraméterére pedig µ = 2 a sorbanállási rendszerünkben c = 0, azért és π 0 = ρ = ρc+ vendég/perc. Így ρ = ( ) π 0 = 0 = 0 0,75. 2 = és mivel Ellenőrizhető, hogy π 0 értéke 2 tizedesjegyre pontosan 0, , ehelyett a közelítő értéket fogjuk tovább használni. Így óránként átlagosan 20( ) = 5 vendég haját vágják le, összhangban azzal, hogy a fodrász 2 percenként vágja le egy vendég haját, azaz folyamatos munka mellett óránként átlag 5 vendéggel végez. A folyamatos munkája viszont azért biztosított, mert π 0 = 0, gyakorlatilag nullával egyenlő. Ez egyben azt is jelenti, hogy átlagosan 20 5 = 5 potenciális vendég nem fog belépni az üzletbe. 2. W meghatározásához először L értékére azt kapjuk, hogy: L = ρ ρ (c+)ρc +cρ c+ = 0 +0 ρ c+ Ezért W = 9,67 vendég. L λ( π 0 ) 9,67 ( = 2 9,67 = 6,0 perc,9 óra. ) 7

8 A fodrászüzlet tehát túlzsúfolt, a fodrásznak azt lehet tanácsolni, hogy vegyen fel legalább még egy alkalmazottat. Feladatok. Minden légiutast és csomagját át kell vizsgálni, és ellenőrizni kell, hogy nem visznek-e fel fegyvert a repülőgépre. Tegyük fel, hogy a Ferihegyi repülőtérre átlagosan 0 utas érkezik percenként (a beérkezési időközök exponenciális eloszlásúak). A fegyverek kiszűrésére a repülőtéren fémdetektorral és poggyász-átvilágító készülékkel felszerelt ellenőrzőpontot állítottak fel. Az ellenőrzőpont működtetéséhez két emberre van szükség. Az ellenőrzőpontnál percenként átlagosan 2 utast tudnak átvizsgálni (az átvilágításhoz szükséges idő exponenciális). Válaszoljunk a következő kérdésekre (tegyük fel, hogy a repülőtéren egy ellenőrzőpont van): a) Mi a valószínűsége annak, hogy egy utasnak várakoznia kell az átvizsgálás előtt? b) Átlagosan hány utas fog várakozni az ellenőrzőpontnál kialakult sorban? c) Átlagosan mennyi időt tölt az utas az ellenőrzőpontnál? 2. A Differenciálegyenletek Tanszék lassú vagy gyors másológép bérlését fontolgatja. A tanszék szerint a munkatársak ideje átlagosan 000 Ft-ot ér óránként. A lassú másológép bérleti díja óránként 800 Ft, és egy munkatárs átlagosan 0 perc alatt végez a másolással (exponenciális eloszlással). A gyors másológép bérleti díja 000 Ft/óra, és egy munkatárs 6 perc alatt képes elvégezni a másolást. Átlagosan munkatárs szeretné használni a gépet óránként (a beérkezések között eltelt idő exponenciális eloszlású). Melyik gépet bérelje a tanszék?. Egy gyorsétteremnek utcára nyíló ablaka van. Átlagosan 0 vendég érkezik óránként az ablakhoz. Átlagban perc alatt szolgálják ki őket. Tegyük fel, hogy a beérkezések közti és a kiszolgálási időtartamok egymástól független, exponenciális eloszlásúak. a) Átlagosan hány vendég várakozik a sorban? 8

9 b) Átlagosan mennyi időt töltenek el a vendégek az étterem előtt (a beérkezés kezdetétől a kiszolgálás befejezéséig)? c) Az idő hányadrészében várakozik -nál több vendég kiszolgálásra (ebbe beleértjük az éppen az ablaknál levő vendéget is, ha van ilyen)?. Egy kiszolgáló egység egyetlen kiszolgálóhelyből áll, amelyik átlagosan 2 ügyfelet tud ellátni óránként (a kiszolgálási idők exponenciális eloszlásúak). Átlagosan ügyfél érkezik óránként az egységhez (a beérkezési időközök exponenciális eloszlásúaknak tekinthetők). A rendszer kapacitása ügyfél. a) Átlagosan hány potenciális ügyfél lép be a rendszerbe óránként? b) Milyen valószínűséggel lesz a kiszolgáló egység foglalt? 5. Átlagosan 0 autót (a beérkezési időközök exponenciális eloszlásúak) csábítanak a reklámok óránként arra, hogy megálljanak a Burger King étterem utcára nyíló ablaka előtt. Ha négynél több autó várakozik a sorban (az ablaknál lévő autóval együtt), a további autók már nem állnak be a sorba. Átlagosan percbe telik (exponenciális eloszlással) az autósok kiszolgálása. a) Átlagosan hány autó várakozik az ablaknál (az éppen kiszolgálás alatt lévőket leszámítva)? b) Átlagosan hány autóst szolgálnak ki óránként? c) Épp most álltam be a sorba. Átlagosan mennyi idő alatt kapom meg a megrendelt ételt? 9

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

10. Exponenciális rendszerek

10. Exponenciális rendszerek 1 Exponenciális rendszerek 1 Egy boltba exponenciális időközökkel átlagosan percenként érkeznek a vevők két eladó, ndrás és éla, átlagosan 1 illetve 6 vevőt tud óránként kiszolgálni mennyiben egy vevő

Részletesebben

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható folytonos idejű Markovláncok  segítségével. E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga B csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

4. Előadás: Sorbanállási modellek, I.

4. Előadás: Sorbanállási modellek, I. 4. Előadás: Sorbanállási modellek, I. Wayne L. Winston: Operációkutatás, módszerek és alkalmazások, Aula Kiadó, Budapest, 2003 könyvének 20. fejezete alapján... A sorbanállási elmélet alapfogalmai A sorbanállási

Részletesebben

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése 62. Vándorgyűlés, konferencia és kiállítás Siófok, 2015. 09. 16-18. Farkas Csaba egyetemi tanársegéd Dr. Dán András professor

Részletesebben

Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak

Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak Gazdaság- és Társadalomtudományi Kar Menedzsment és Vállalatgazdaságtan Tanszék Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak Készítette: dr. Koltai Tamás egyetemi tanár Budapest, 2012.

Részletesebben

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2? HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS,

Részletesebben

Geometriai valo szí nű se g

Geometriai valo szí nű se g Geometriai valo szí nű se g Szűk elméleti áttekintő Klasszikus valószínűség: Geometriai valószínűség: - 1 dimenzióban: - dimenzióban: - + dimenzióban: jó esetek összes eset jó szakaszok teljes szakasz

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Régebbi Matek M1 zh-k. sztochasztikus folyamatokkal kapcsolatos feladatai.

Régebbi Matek M1 zh-k. sztochasztikus folyamatokkal kapcsolatos feladatai. Régebbi Matek M1 zh-k Folyamfeladatokkal, többszörös összef ggőséggel, párosításokkal, Nagy szḿok törvényével, Centrális Határeloszlás tétellel, sztochasztikus folyamatokkal kapcsolatos feladatai. Gráfok

Részletesebben

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok) Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)./ Egy televízió készülék meghibásodásainak átlagos száma óra alatt. A meghibásodások száma a vizsgált időtartam hosszától függ. Határozzuk

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Feladatok és megoldások a 13. hétre

Feladatok és megoldások a 13. hétre Feladatok és megoldások a. hétre Építőkari Matematika A. Az alábbi függvények melyike lehet eloszlásfüggvény? + e x, ha x >, (a F(x =, ha x, (b F(x = x + e x, ha x, (c F(x =, ha x, x (d F(x = (4 x, ha

Részletesebben

8. Előadás: Szimuláció, I.

8. Előadás: Szimuláció, I. 8. Előadás: Szimuláció, I. Wayne L. Winston: Operációkutatás, módszerek és alkalmazások, Aula Kiadó, Budapest, 2003 könyvének 21. fejezete alapján. A szimulációt komplex rendszerek elemzésére, tanulmányozására

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

Tranziens jelenségek rövid összefoglalás

Tranziens jelenségek rövid összefoglalás Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos

Részletesebben

Nevezetes diszkre t eloszlá sok

Nevezetes diszkre t eloszlá sok Nevezetes diszkre t eloszlá sok Szűk elméleti összefoglaló Binomiális eloszlás: Jelölés: X~B(n, p) vagy X B(n, p) Tipikus használata: Egy kétféle kimenetelű (valami beteljesül vagy sem) kísérletet elvégzünk

Részletesebben

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés

Részletesebben

i p i p 0 p 1 p 2... i p i

i p i p 0 p 1 p 2... i p i . vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére

Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére Zubor Zoltán MNB - Biztosításfelügyeleti főosztály MAT Tavaszi Szimpózium 2016. május 7. 1 Háttér Bit. 99. : folyamatos

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!

Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További példák találhatók az fk.sze.hu oldalon a letöltések részben a közlekedési operációkutatásban 1. Oldja meg grafikusan az alábbi feladatokat

Részletesebben

MATEMATIKA HETI 5 ÓRA

MATEMATIKA HETI 5 ÓRA EURÓPAI ÉRETTSÉGI 2008 MATEMATIKA HETI 5 ÓRA IDŐPONT : 2008. június 5 (reggel) A VIZSGA IDŐTARTAMA: 4 óra (240 perc) MEGENGEDETT ESZKÖZÖK: Európai képletgyűjtemény Nem programozható, nem grafikus számológép

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

1. Feladat. 1. ábra. Megoldás

1. Feladat. 1. ábra. Megoldás . Feladat Az. ábrán látható egyenáramú áramkörben, kezdetben mindkét kapcsoló nyitott állásba található. A0 pillanatban zárjuk a kapcsolót, majd megvárjuk, hogy a létrejövő tranziens folyamat során a kondenzátor

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

NEVEZETES FOLYTONOS ELOSZLÁSOK

NEVEZETES FOLYTONOS ELOSZLÁSOK Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Fénypont a falon Feladat

Fénypont a falon Feladat Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.

Részletesebben

7. 17 éves 2 pont Összesen: 2 pont

7. 17 éves 2 pont Összesen: 2 pont 1. { 3;4;5} { 3; 4;5;6;7;8;9;10} A B = B C = A \ B = {1; }. 14 Nem bontható. I. 3. A) igaz B) hamis C) igaz jó válasz esetén, 1 jó válasz esetén 0 pont jár. 4. [ ; ] Más helyes jelölés is elfogadható.

Részletesebben

KÉSZLETMODELLEZÉS EGYKOR ÉS MA

KÉSZLETMODELLEZÉS EGYKOR ÉS MA DR. HORVÁTH GÉZÁNÉ PH.D. * KÉSZLETMODELLEZÉS EGYKOR ÉS MA Az optimális tételnagyság (Economic Order Quantity) klasszikus modelljét 96-tól napjainkig a világon széles körben alkalmazták és módosított változatait

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség

Részletesebben

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.

Részletesebben

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! 1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Makroökonómia. 2. szeminárium

Makroökonómia. 2. szeminárium Makroökonómia 2. szeminárium Óra előtt Előadásdiák, órai feladatok, gyakorlók, tavalyi ZH, házi feladat stb. https://makrogyakorlatok.wordpress.com/ Következő órán ZH!! 12 pont 20 perc GDP, közbülső termék,

Részletesebben

1. Homogén lineáris egyenletrendszer megoldástere

1. Homogén lineáris egyenletrendszer megoldástere X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Kisérettségi feladatsorok matematikából

Kisérettségi feladatsorok matematikából Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19 2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása Az óra rövid vázlata kapacitás, szabad sávszélesség ping, traceroute pathcar, pcar pathload pathrate pathchirp BART Sprobe egyéb

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA

XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA XY_TNULÓ FELTSOR 8. ÉVFOLYM MTEMTIK 1. feladat: akkumulátor mc006 Egy mobiltelefon akkumulátorának töltöttségi állapota a következőképpen változott két nap leforgása alatt. Habekapcsoljuk,denemhasználjuk,48óraalattmerülleteljesenatelefon.Folyamatoshasználatban

Részletesebben

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy

Részletesebben

A kötélsúrlódás képletének egy általánosításáról

A kötélsúrlódás képletének egy általánosításáról 1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben 1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy

Részletesebben

Makroökonómia. 2. szeminárium

Makroökonómia. 2. szeminárium Makroökonómia 2. szeminárium Óra előtt Előadásdiák, órai feladatok, gyakorlók, tavalyi ZH, házi feladat stb. https://makrogyakorlatok.wordpress.com/ Következő órán ZH!! 12 pont 20 perc GDP, közbülső termék,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

CALL CENTEREK HATÉKONYSÁGI VIZSGÁLATAI

CALL CENTEREK HATÉKONYSÁGI VIZSGÁLATAI CALL CENTEREK HATÉKONYSÁGI VIZSGÁLATAI PERFORMANCE EVALUATION OF CALL CENTERS Sztrik János 1,Barnák Albert 2 Összefoglaló: A Call Centerek egyre fontosabb szerepet töltenek be különböző alkalmazási területeken.

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

3. Egyenletek, egyenletrendszerek, egyenlőtlenségek

3. Egyenletek, egyenletrendszerek, egyenlőtlenségek . Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

(1 pont) (1 pont) Az összevont alak: x függvény. Melyik ábrán látható e függvény grafikonjának egy részlete? (2 pont)

(1 pont) (1 pont) Az összevont alak: x függvény. Melyik ábrán látható e függvény grafikonjának egy részlete? (2 pont) MATEMATIKA ÉRETTSÉGI 014. október 14. KÖZÉPSZINT I. 1) Írja fel annak az egyenesnek az egyenletét, amely áthalad az 1; 3 ponton, és egyik normálvektora a 8;1 vektor! 8x y 5 ) Végezze el a következő műveleteket,

Részletesebben

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0 Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.

Részletesebben

Matematikai alapok és valószínőségszámítás. Normál eloszlás

Matematikai alapok és valószínőségszámítás. Normál eloszlás Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

SZÁMÍTÁSI FELADATOK I.

SZÁMÍTÁSI FELADATOK I. SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),

Részletesebben

Hidden Markov Model. March 12, 2013

Hidden Markov Model. March 12, 2013 Hidden Markov Model Göbölös-Szabó Julianna March 12, 2013 Outline 1 Egy példa 2 Feladat formalizálása 3 Forward-algoritmus 4 Backward-algoritmus 5 Baum-Welch algoritmus 6 Skálázás 7 Egyéb apróságok 8 Alkalmazás

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x

A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x 10. osztály:nevezetes középértékek Összeállította:Keszeg ttila 1 1 számtani közép efiníció 1. (Két nemnegatív szám számtani közepe) Két nemnegatív szám számtani közepének a két szám összegének a felét

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira: 005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen

Részletesebben