Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék
|
|
- Piroska Vargané
- 6 évvel ezelőtt
- Látták:
Átírás
1 Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék
2 Alsó felső korlátos maximális folyam 3,9 3 4,2 4,8 4 3,7 2 Transzformáljuk több forrást, több nyelőt tartalmazó feladatra. Megengedett megoldást keresünk 2. Maximális folyamot keresünk 6,9
3 Hálózati folyamok alkalmazásai Repülőjáratok ütemezése Munkák ütemezése Projektek kiválasztása
4 Néhány építőipari alkalmazás Alsó felső korlátos folyam König feladat/házassági feladat/ hozzárendelési feladat Futószalag modell Általánosított Kőnig feladat/ földszállítási feladat Általános szűk keresztmetszet feladat Evakuálási modellek Költségtervezési feladat
5 Kőnig Dénes Kőnig Gyula matematikaprofesszor, rektor Kőnig Dénes matematika tanár (Kőnig-Hall tétel)
6 Kőnig feladat Kőnig Dénes 884. szeptember 2-én született Budapesten. 936-ban Lipcsében jelent meg A véges és végtelen gráfok elmélete című műve.
7 Adott I, I 2,, I m személy (munkás) és J, J 2,, J n munka (m n) Minden munkásnak adjunk munkát! J J 2 J 3 J 4 I * * I 2 * * I 3 * * I 4 * *
8 Kőnig tétel Vagy., minden munkást el tudunk látni munkával vagy 2., létezik a munkásoknak egy olyan részhalmaza (P), hogy a P számossága nagyobb, mint az általuk elvégezhető munkák számossága. P > J(P).
9 A feladat folyam modellje I J s I 2 J 2 t I 3 J 3 I 4 J 4
10 A feladat folyam modellje S I J s I 2 J r t I p J r+ I i J n T I m m>m-p+r p>r
11 Futószalag modell Adottak továbbá a ij 0 (i=, m) (j=, n) nem negatív egész számok, amelyek azt az időt jelentik, amennyi idő alatt az I i munkás a J j munkahelyi feladatot ellátja. Valamely hozzárendelés esetén a futószalag sebességét az határozza meg, hogy mennyi a leghosszabb ideig dolgozó munkás munkaideje.
12 Futószalag modell példa Célunk olyan hozzárendelés megvalósítása, amelynél a leghosszabb ideig dolgozó munkás munkaideje minimális. Az alábbi táblában adottak a tevékenységidők. Az első kiosztásban a 2 időegység lett a legnagyobb, a következőkben ennél jobb lehetőséget keresünk. J J 2 J 3 J 4 I I I I
13 Futószalag modell példa 2 Töröljük a 2 és annál nagyobb időegységeket tartalmazó cellákból a számokat. Az így megváltozott táblázatban keressünk összerendelést. A hol nincs szám az az összerendelés nem lehetséges. Az alábbi táblázatban mutatunk egy összerendelést amelyben 0 a legnagyobb időegység. J J 2 J 3 J 4 I I I I
14 Futószalag modell példa 3 Töröljük a 0 és annál nagyobb időegységeket tartalmazó cellákból a számokat. Az így megváltozott táblázatban keressünk összerendelést. A hol nincs szám az az összerendelés nem lehetséges. Az alábbi táblázatban mutatunk egy összerendelést amelyben 0 a legnagyobb időegység. Egy összerendelés az valójában egy Kőnig feladat. J J 2 J 3 J 4 I I I 3 7 I 4 9 8
15 Általánosított Kőnig feladat α Legyenek adottak az I.I m földnyerő helyek melyek kapacitása α. és a J. J n építési földlerakó helyek, amelyek kapacitása β β J J 2 J 3 J 4 6 I * * 9 I 2 * * 7 I 3 * * 6 I 4 * * m i i n j j
16 A feladat folyam modellje 6 I J 7 s 9 7 I 2 J t 6 I 3 J 3 7 I 4 J 4
17 Kőnig tétel Vagy., minden földet el tudunk szállítani vagy 2., létezik a földnyerő helyeknek egy olyan részhalmaza, hogy az onnan elhelyezni kívánt föld mennyisége nagyobb mint az elfogadható földlerakó helyek kapacitása. P J(P)
18 A feladat folyam modellje S I J β α β r s α I 2 J r t α p Β r+ α i I p J r+ β n α,m I i J n T Minden földet el tudunk szállítani vagy I m i P i i J (P) i
19 Szűk keresztmetszet feladat Adottak még a τ (i=,,m) (j=,,n) értékek, amelyek a I helyről a J helyre történő szállítás idejét jelölik. Feladat: Döntsük el, hogy a föld elszállítható-e az adott helyekről az elfogadható földlerakó helyekre és adjunk egy olyan lehetséges szállítási politikát, amelyre a maximális szállítási idő is minimális.
20 Épület Evakuálási Modellek
21 Modellek Maximális dinamikus folyam Time expended modell Leggyorsabb út (quickest path) Leggyorsabb folyam (quickest flow) Univerzális maximális dinamikus folyam
22 Evakuálási modellek/ max. dinamikus folyam Helység Helység 3 Helység 2
23 Evakuálási modellek/ max. dinamikus folyam Helység Helység 3 Helység 2 4
24 A modell Adott a struktúra (háló) Minden helységhez a kezdetben ott tartózkodók szám, és a maximális befogadóképesség Pld.. helységben (3,5). Minden élre az utazási idő és az átviteli kapacitás időegységenként Pld.: (2,3): 2 időegység az áthaladás egyszerre maximum 3 embernek Feladat: - Adott T időhöz a maximális folyam - Adott v folyam értékhez a minimálisan szükséges idő.
25 Maximális Dinamikus folyamok példa 4,6 2 2,3,2,2 4,5 0, 3 4,5,2 3,7
26 t tér s idő
27 Time expended modell - Világos interpretáció - Több csomópont és él van mint az eredeti hálóban, lassú algoritmus.
28 Általánosítások Adott T időegység alatt mennyi ember tud kijutni? A maximális folyam, hogyan alakul az idő függvényében t=,2,...t? (Universal maximum flow) Csökken a kapacitás az idő előrehaladtával
29 Eredményekből kapható információk Maximális folyam (min. vágás) értéke Egy maximális folyamrendszer Minimális vágás helye
30 Felhasználható ingyenes szoftverek Giden (metanet toolbox) (igraph package)
31 Feladat Helység 4 Helység Helység 3 Helység 2
32 Feladat s 4 Helység 4. 5 fő 2,3 Helység. 7 fő,2,2 3 Helység 3. 6 fő 2 Helység 2. 8 fő,2,2,2 t
33 Feladat s 4 Helység 4. 5 fő, max. 6 fő 2,3 Helység. 7 fő, max,2,2 3 Helység 3. 6 fő 2 Helység 2. 8 fő,2,2,2 t
34 t s
35 Leggyorsabb út / Quickest path Adott: a hálózat az utazási időkkel és a kapacitásokkal Feladat: Adott mennyiségű folyamot a leggyorsabban eljuttatni s-ből t-be egy úton keresztül. Összutazási idő: T= Utazási idők összege az úton+ átküldendő folyam/legkisebb út kapacitás
36 Quickest path/ példa 5,4 2 5,4 4 2,4 5 6,0 3 6,0 20 egységnyi folyam mennyi idő alatt juthat el -ből 4-be?
37 Quickest path/ példa 5,4 2 5,4 4 2,4 5 6,0 3 6,0 20 egységnyi folyam mennyi idő alatt juthat el -ből 4-be? T(,2,4)=20/4+5+5=5 T(,3,4)=20/0+6+6=4
38 Quickest path/ példa 5,4 2 5,4 4 2,4 5 6,0 3 6,0 20 egységnyi folyam mennyi idő alatt juthat el -ből 5-be? T(,2,4,5)= /4=7 T(,3,4,5)= /4=9
39 Felhasznált irodalom H. W. Hamacher, S. A. Tjandra, Mathematical Modelling of Evacuation Problems: A State of Art
40 Köszönöm a figyelmet! Mályusz Levente BME Építéskivitelezési Tanszék
Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék
Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Maximális folyam 7 7 9 3 2 7 source 8 4 7 sink 7 2 9 7 5 7 6 Maximális folyam feladat Adott [N, A] digráf (irányított
Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat)
VII. előadás Legyenek adottak Egyszerű Kőnig-feladat (házasság feladat) I, I 2,, I i,, I m személyek és a J, J 2,, J j,, J n munkák. Azt, hogy melyik személy melyik munkához ért ( melyik munkára van kvalifikálva)
Idõ-ütemterv há lók - I. t 5 4
lõadás:folia.doc Idõ-ütemterv há lók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelõ és Áttekintõ Technika ) semény-csomópontú, valószínûségi változókkal dolgozó
Idő-ütemterv hálók - I. t 5 4
Építésikivitelezés-Vállalkozás / : Hálós ütemtervek - I lőadás:folia.doc Idő-ütemterv hálók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelő és Áttekintő Technika
A Szállítási feladat megoldása
A Szállítási feladat megoldása Virtuális vállalat 201-2014 1. félév 4. gyakorlat Dr. Kulcsár Gyula A Szállítási feladat Adott meghatározott számú beszállító (source) a szállítható mennyiségekkel (transportation
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
HÁLÓZAT Maximális folyam, minimális vágás
HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT informálisan Hálózat Irányított gráf Mindegyik élnek adott a (nemnegatív) kapacitása Spec csúcsok: Forrás (Source): a kiindulási pont csak ki élek Nyelő
Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék
Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm
Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés
Elõadás:Folia201.doc VÁLLALKOZÁS ( tervezés - bonyolítás - változásmenedzsment ) ideiglenes földút monolit vb.támfal javított háttöltés új földtöltés régi töltés humusz teherbíró talaj Tevékenység Sz Megnevezés
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 06/7. félév 7. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom. A projektütemezés alapjai..
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.
Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
Hálózati folyamok. A használt fogalmak definiálása
Hálózati folyamok Hálózat A használt fogalmak definiálása Ez összesen 4 dologból áll: - Egy irányított G gráf - Ennek egy kitüntetett pontja, amit forrásnak hívunk és s-sel jelölünk - A gráf még egy kitüntetett
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje
Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre
Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői
Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői A függvények ábrázolásához használhatjuk a nevezetes szögek, illetve a határszögek értékeit. f (x) = sin x Az ábráról leolvashatjuk a függvény
Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!
Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További példák találhatók az fk.sze.hu oldalon a letöltések részben a közlekedési operációkutatásban 1. Oldja meg grafikusan az alábbi feladatokat
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Dr. Kulcsár Gyula. Virtuális vállalat félév. Projektütemezés. Virtuális vállalat félév 5. gyakorlat Dr.
Projektütemezés Virtuális vállalat 06-07. félév 5. gyakorlat Dr. Kulcsár Gyula Projektütemezési feladat megoldása Projekt: Projektütemezés Egy nagy, összetett, általában egyedi igény alapján előállítandó
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
SZAKIPARI (BEFEJEZŐ) MUNKÁK TECHNOLÓGIAI FOLYAMATÁNAK TERVEZÉSE
SZAKIPARI (BEFEJEZŐ) MUNKÁK TECHNOLÓGIAI FOLYAMATÁNAK TERVEZÉSE PROCESSES PLANNING OF FINISHING TECHNOLOGYES BME ÉPÍTÉSKIVITELEZÉS 2007/2008. ELŐADÓ: KLUJBER RÓBERT FOGALOMTÁR SZAKIPARI (BEFEJEZŐ) MUNKÁK
a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám
Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően
A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása
azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Algoritmuselmélet 11. előadás
Algoritmuselmélet 11. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 26. ALGORITMUSELMÉLET 11. ELŐADÁS 1 Kruskal
Hagyományos ütemezési technikák
Mályusz Levente Hagyományos ütemezési technikák Hagyományos: CPM és MPM technika Előny: egyszerűen kezelhető, számolható Hátrány: nem kezeli a - tevékenységi idők bizonytalanságait - nincs elágazás - sorrendszámolás
Dinamikus programozás - Szerelőszalag ütemezése
Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.
Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük
Összefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Kétszemélyes játékok
Mesterséges Intelligencia alapjai, gyakorlat Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / udapest Kétszemélyes teljes információjú játékok két
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 3. Előadás Előadó: Hajnal Péter Jegyzetelő: Pék Máté 2009. szeptember 21. 1. Folyamok 1.1. Definíció. G = (V, E, K, B) irányított gráf, ha e! v : ekv
Számítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
Diszkrét matematika gyakorlat 1. ZH október 10. α csoport
Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}
Operációkutatás példatár
1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen
1. ÁLTALÁNOS HÁLÓZATI TRENDEK ÉS MOBIL HÁLÓZATI HATÁSAIK
BMEVIHIMA00 HÁLÓZATI TECHNOLÓGIÁK INTEGRÁCIÓJA 1. ÁLTALÁNOS HÁLÓZATI TRENDEK ÉS MOBIL HÁLÓZATI HATÁSAIK 2017. február 21., Budapest előadás 2017. február 7. Fazekas Péter Mit? alapképzés + BSc szakirány
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba
I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Online migrációs ütemezési modellek
Online migrációs ütemezési modellek Az online migrációs modellekben a régebben ütemezett munkák is átütemezhetőek valamilyen korlátozott mértékben az új munka ütemezése mellett. Ez csökkentheti a versenyképességi
Kereskedési rendszerek kétoldalú szerződésekkel
Kereskedési rendszerek kétoldalú szerződésekkel Fleiner Tamás, Jankó Zsuzsanna, Akihisa Tamura, Alexander Teytelboym 2017. június 16. MOK Fleiner Tamás, Jankó Zsuzsanna, Akihisa Tamura, Kereskedési Alexander
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Vállalati modellek. Előadásvázlat. dr. Kovács László
Vállalati modellek Előadásvázlat dr. Kovács László Vállalati modell fogalom értelmezés Strukturált szervezet gazdasági tevékenység elvégzésére, nyereség optimalizálási céllal Jellemzői: gazdasági egység
Metrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Utak és környezetük tervezése
Dr. Fi István Utak és környezetük tervezése 3A előadás: Vonalvezetési elvek Vonalvezetési elvek Vonalvezetés az útvonalat alkotó egyenesek és ívek elrendezése. A vonalvezetés ismérve az ívesség (I) (lásd
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
ADALÉKANYAG SZEMMEGOSZLÁSÁNAK TERVEZÉSE
ADALÉKANYAG SZEMMEGOSZLÁSÁNAK TERVEZÉSE Ismeretek a BME házi feladat elkészítéséhez Dr. Kausay Tibor Kausay 1 Kausay 2 Kausay 3 Ugyanebből a meggondolásból alkalmazzák a négyzetlyukú szitákat, ugyanis
2. Reprezentáció-függvények, Erdős-Fuchs tétel
2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív
Újrahasznosítási logisztika. 7. Gyűjtőrendszerek számítógépes tervezése
Újrahasznosítási logisztika 7. Gyűjtőrendszerek számítógépes tervezése A tervezési módszer elemei gyűjtési régiók számának, lehatárolásának a meghatározása, régiónként az 1. fokozatú gyűjtőhelyek elhelyezésének
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Modern matematikai paradoxonok
Modern matematikai paradoxonok Juhász Péter ELTE Matematikai Intézet Számítógéptudományi Tanszék 2013. január 21. Juhász Péter (ELTE) Modern paradoxonok 2013. január 21. 1 / 36 Jelentés Mit jelent a paradoxon
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási
A feladatok. Csökkentsük a teljes költséget úgy, hogy minimalizáljuk: K V. vásárlási költséget, K S. szállítási költséget, K T. tárolási költséget.
A feladatok Csökkentsük a teljes költséget úgy, hogy minimalizáljuk: vásárlási költséget, S szállítási költséget, T tárolási költséget. 1 A rendszer felépítése B1... Bj... Bm S1 L Sg Sα F1... Fi... Fn
az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára
8. témakör: FÜGGVÉNYEK A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Függvények: 6-30. oldal. Ábrázold a koordinátasíkon azokat a pontokat, amelyek koordinátái kielégítik a következő
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Döntéstámogató módszerek segédlet
Döntéstámogató módszerek segédlet. Jelölések és defnícók.... Út, vágás egy rányított élhalmazban... 4. Maxmáls út mnmáls potencál... 7 4. Mnmáls út maxmáls potencál... 5. Maxmáls folyam mnmáls vágás...
FIT-jelentés :: 2008. Árpád Szakképző Iskola és Kollégium 8001 Székesfehérvár, Seregélyesi út 88-90. OM azonosító: 030216. Intézményi jelentés
FIT-jelentés :: 2008 Árpád Szakképző Iskola és Kollégium 8001 Székesfehérvár, Seregélyesi út 88-90. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az iskolák átlageredményeinek összehasonlítása
Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma
Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben
Ütemezés gyakorlat. Termelésszervezés
Ütemezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Általános ütemezés Egygépes ütemezési problémák Párhuzamos erőforrások ütemezése Flow-shop és job-shop ütemezés
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
V. Lakiteleki Tűzvédelmi Szakmai Napok Kísérleti tapasztalatok, különböző működési elvű, csarnok épületben felszerelt tűzjelző érzékelők füsttel
V. Lakiteleki Tűzvédelmi Szakmai Napok Kísérleti tapasztalatok, különböző működési elvű, csarnok épületben felszerelt tűzjelző érzékelők füsttel történő vizsgálata Szikra Csaba tudományos munkatárs BME
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 5. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom 1. Párhuzamosan
DÖNTÉSTÁMOGATÓ MÓDSZEREK segédlet I. rész
DÖNTÉSTÁMOGATÓ MÓDSZEREK segédlet I. rész DÖNTÉSTÁMOGATÓ MÓDSZEREK.... Jelölések és defnícók.... Út, vágás egy rányított élhalmazban... 4. Maxmáls út mnmáls potencál... 7 4. Mnmáls út maxmáls potencál...
Szemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út
SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
Elektronika Előadás. Analóg és kapcsolt kapacitású szűrők
Elektronika 2 8. Előadás Analóg és kapcsolt kapacitású szűrők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - Ron Mancini (szerk): Op Amps for Everyone, Texas Instruments, 2002 16.
Kémiai reakciók mechanizmusa számítógépes szimulációval
Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1. x 1 0, x 2 0
Gyakorló feladatok Operációkutatás vizsgára 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, b, c, d, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1 x 1 2, 5 z 1 = 4x 1 3x 2 max; z
Nagyordó, Omega, Theta, Kisordó
A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
Analízis I. beugró vizsgakérdések
Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók
2012. október 2 és 4. Dr. Vincze Szilvia
2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex