Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
|
|
- Magda Papp
- 6 évvel ezelőtt
- Látták:
Átírás
1 Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 06/7. félév 7. Előadás Dr. Kulcsár Gyula egyetemi docens
2 Tartalom. A projektütemezés alapjai.. Erőforrás-korlát nélküli projektütemezési feladatok megoldása CPM-módszerrel.. Erőforrás-korlátos projektütemezési feladatok modellezése és heurisztikus megoldása.
3 Felhasznált irodalom Michael L. Pinedo: Planning and Scheduling in Manufacturing and Services. Springer, (nd ed.), 009
4 A projektütemezés alapjai
5 Projekt: Projektütemezés Egy nagy, összetett, általában egyedi igény alapján előállítandó termék vagy nyújtandó szolgáltatás előállítására/teljesítésére irányú törekvés, amely általában nagyszámú komponens feladat/aktivitás végrehajtását igényli. Projektütemezés: Projekt(ek) időbeli végrehajtásának megtervezése úgy, hogy a megfogalmazott célok teljesüljenek figyelembe véve az előírt korlátozásokat.
6 Cél: Projektütemezés jellemzői egy vagy többcélú optimalizálás, amelyben sokféle szempont szerepelhet (pl. minőség, idő, költség, felhasználói elégedettség stb.). Feladatok/aktivitások hálózata alakul ki (pl. megelőzési relációk alapján). Korlátozottan/korlátlanul rendelkezésre álló erőforrásokat kell figyelembe venni.
7 Projekt példák Termelés Tervezés Kutatás/fejlesztés Menedzsment Építés Karbantartás, fenntartás Implementálás, telepítés stb.
8 Hierarchikus tervezés Stratégiai Taktikai Taktikai/ operatív Nagyvonalú folyamattervezés Részletes folyamattervezés Stratégiai erőforrás tervezés Nagyvonalú kapacitástervezés Projektütemezés Operatív Részletes ütemezés 8
9 Egy projekt struktúrája Projekt Fő tevékenység Fő tevékenység Fő tevékenység RCCP Feladat Feladat Feladat Feladat Feladat Feladat Projektütemezés 9
10 A projektütemezés alapjai Projekt/projektek reprezentálása (precedencia gráfok) Modellek és megoldási módszerek Kritikus útvonal módszer (egyszerű) (Critical Path Method, CPM) Erőforrás-korlátos projektütemezés (bonyolult) (Resource-Constrained Project Scheduling, RCPS) Prioritás/szabályalapú megoldási módszerek Tudás-intenzív megoldási módszerek Kiterjesztett modellek és módszerek (összetett)
11 Projekt ábrázolása Feladat p(j) Előfeltétel , 5, 6 4 job on node reprezentáció: job on arc reprezentáció: 4 5 6
12 Projekt ábrázolása Feladat Végrehajtási idő [időegység] Megelőző feladat(ok) , 5 7 4, 5 job on arc reprezentáció:
13 Projekt reprezentálása precedencia gráffal Feladat Végrehajtási idő [időegység] Megelőző feladat(ok) , 5 7 4, 5 job on node ábrázolás Csomópont: feladat A csomópontok számozottak. Irányított él: kötelező sorrendiség Nincs irányított körút. Nincs redundáns él
14 Erőforrás-korlát nélküli projektütemezési feladatok megoldása CPM-módszerrel
15 Projektütemezési feladat erőforráskorlátok nélkül Feltételezzük, hogy: korlátlan erőforrások állnak rendelkezésre párhuzamosan, adott n feladat megelőzési relációkkal. minden egyes feladat p j végrehajtási idejét ismertjük. Az ütemezés célja: a projekt befejezési időpontjának (makespan) minimalizálása. 5
16 A j feladat: Projektütemezési feladat erőforráskorlátok nélkül végrehajtási ideje: p j legkorábbi lehetséges kezdési időpontja: S j legkorábbi lehetséges befejezési időpontja: C j legkésőbbi megengedett befejezési időpontja: C j időtartaléka: slack C p S '' ' j j j j Kritikus feladat: nincs tartaléka slack j 0 Kritikus útvonal: kritikus feladatok láncolata. 6
17 Kritikus útvonal módszer (Critical Path Method, CPM) A CPM módszer két algoritmusból áll: Forward procedure Backward procedure
18 Kritikus útvonal módszer (Critical Path Method, CPM) Előre haladó eljárás (Forward procedure): Kezdeti időpontból indul, a precedencia gráfon végighaladva az irányított élek mentén kiszámítja minden feladat esetében a legkorábbi megengedett indítási és befejezési időpontot. Az utolsónak elkészülő feladat adja meg a projekt befejezési időpontját.
19 Előre haladó eljárás (Forward procedure). lépés: Legyen t = t s (pl. t s = 0 az indítás referencia időpontja). A megelőző feladattal nem rendelkező minden egyes j feladat esetében legyen S j = t és C j = t + p j.. lépés: A megelőző feladattal rendelkező minden egyes j feladat esetében legyen induktív módon: ' ' S j max Ck és C j = S j + p j. all k j. lépés: A legkorábbi projekt-befejezési időpont: C max C,C,...,C ' ' ' max n 9
20 Kritikus útvonal módszer (Critical Path Method, CPM) Visszafelé haladó eljárás (Backward procedure): A projekt befejezési időpontjából indul, a precedencia gráfon az irányított élek mentén visszafelé haladva kiszámítja minden feladat esetében a legkésőbbi megengedett befejezési és indítási időpontot tekintettel arra, hogy a projektbefejezési határidő még tartható legyen.
21 Visszafelé haladó eljárás (Backward procedure). lépés: Legyen t = C max A rákövetkező feladattal nem rendelkező minden egyes j feladat esetében S n legyen C j = C max és S j = C max - p j.. lépés: A rákövetkező feladattal rendelkező minden egyes j feladat esetében legyen C '' j min S j all k. lépés: Ellenőrizzük, hogy '' k és S j = C j - p j. t min{ S,...,S }. '' '' s n
22 Magyarázat A forward procedure megadja az S j megengedett legkorábbi indítási időpontját minden feladatnak. A backward procedure megadja az S j megengedett legkésőbbi indítási időpontját minden feladatnak. Ha ezek azonosak, akkor a feladat kritikus. Ha ezek különbözőek, akkor a feladatnak van időtartaléka (slack). Kritikus útvonal (critical path): kritikus feladatok láncolata, amely a t s kezdési időponttól a C max befejezési időpontig vezet. Kritikus útvonalból egyszerre több is lehet, ezek akár részben fedhetik is egymást.
23 CPM példa j p j
24 Előre haladó eljárás j p j = += +0= =4 5 4+=6 C 56 max 6+0= =5 5+5= = =4 4+7=50 4+7= 6+6= C max = A feladatok legkorábbi befejezési időpontjainak számítása
25 Visszafelé haladó eljárás j p j =6 4-= 4-0= =4 5-5=0 6-=4 6-0= =6 5-8=4 56-5= = =44 6-7=9 6-6=0 A feladatok legkésőbbi indítási időpontjainak számítása
26 Kritikus útvonal
27 CPM példa Feladat Műveleti idő Megelőző feladat(ok) Job p(j) Predecessors , 5, 6 4 Projekt befejezés (Sink) S 4 6 T Projekt indítás (Source) 5
28 Job p(j) Predecessors S' C'' , 7 5, CPM példa (folyt.) Kritikus feladat (Critical job): S + p = C = C = S + p Jelölés: p j S C S 4 6 T
29 Erőforrás-korlátos projektütemezési feladatok modellezése és heurisztikus megoldása
30 Erőforrás-korlátos projektütemezés Resource Constrained Project Scheduling (RCPSP)
31 Projektütemezés Erőforrás-korlátok nélkül viszonylag egyszerű. Erőforrás-korlátokkal nagyon bonyolult: amikor a korlátozottan rendelkezésre álló erőforrások miatt bizonyos munkák (jobs) nem hajthatók végre párhuzamosan diszjunktív élek jelennek meg a gráfban. Például: Jobs 4 5 p(j) R(,j) R(,j) Erőforrás R R Korlát
32 Diszjunktív élek Tegyük fel, hogy R =4. A következő munkák nem hajtók végre párhuzamosan: & & 6 4 & 5 5 & 6 4 Job p(j) Predecessors S' C'' R(,j) , 7 5, diszjunktív élek
33 RCPSP n munka (job) j=,,n N erőforrás i=,,n R k :a k erőforrás korlátja (rendelkezésre állás) p j : a j munka (job) végrehajtási ideje R kj : a j munka (job) igénye az k erőforrásból P j : a j munkát (job-ot) közvetlenül megelőző munkák halmaza (predecessors).
34 RCPSP Cél: a projekt befejezési Cmax max C j időpontjának (C max ) minimalizálása: Korlátozások: a T=0 időpont előtt egyetlen munka sem indíthtó a precedencia korlátozásokat be kell tartani az erőforrások kapacitása véges ' j 4
35 RCPSP (példa) A munkák erőforrást igényelnek: Job p(j) Predecessors S' C'' R(,j) , 7 5, Erőforrás-igény
36 RCPSP (példa folyt.) Tételezzük fel, hogy R = 4, ekkor: C max nő időegységgel! 6
37 RCPSP (Példa ) 4 Job p(j) P(j) S' C'' R(,j) R(,j) , 7 5, R R
38 Prioritási szabály alapú ütemezés (Priority-rule-based scheduling) Generálási sémák (Generation scheme) Soros (serial) Párhuzamos (parallel) Prioritási szabályok (Priority rule) Legkésőbbi befejezési időpont (latest finish time) Minimális időtartalék (minimum slack) 8
39 Soros ütemezési módszer (Serial scheduling method) Minden feladat egy munkát jelent n munka (job) a kész munkák halmaza: a beütemezett munkák a döntési halmaz: azok a munkák, amelyek indíthatók (az előfeltételeik be vannak ütemezve) a fennmaradó munkák halmaza: a többi munka Az eljárás:. Készítsünk egy üres ütemtervet.. Válasszuk ki a legnagyobb prioritású munkát a döntési halmazból, és ütemezzük a lehető legkorábbi kezdéssel.. Ha a döntési halmaz nem üres, akkor folytassuk a. lépéssel, egyébként vége. 9
40 Soros ütemezési módszer Példa (#) Job p(j) P(j) R(,j) v(j) (priority) - - Döntési halmaz R
41 Soros ütemezési módszer Példa (#) Job p(j) P(j) R(,j) v(j) (priority) - - Döntési halmaz R
42 Soros ütemezési módszer Példa (#) Job p(j) P(j) R(,j) v(j) (priority) - - Döntési halmaz R
43 Soros ütemezési módszer Példa (#4) Job p(j) P(j) R(,j) v(j) (priority) - - R
44 Párhuzamos ütemezési módszer (Parallel scheduling method). Készítsünk egy üres ütemtervet.. Legyen T az a legkorábbi időpont, amikor egy ütemezetlen munka indítható (az előfeltételei teljesültek). Válogassuk ki azokat a munkákat, melyek a T időpontban indíthatók. Jelölje ezen munkák halmazát D.. Ha a D halmaz nem üres, akkor válasszuk ki belőle a legnagyobb prioritású munkát. Ütemezzük a kiválasztott munkát a T indítási időpontra. Folytassuk a. lépéssel. 4. Ha a D halmaz üres, akkor vége. 44
45 Párhuzamos ütemezési módszer Példa (#) Job p(j) P(j) R(,j) v(j) (priority) - - D T 0 R
46 Párhuzamos ütemezési módszer Példa (#) Job p(j) P(j) R(,j) v(j) (priority) - - D T 0 R
47 Párhuzamos ütemezési módszer Példa (#) Job p(j) P(j) R(,j) v(j) (priority) - - D T R
48 Párhuzamos ütemezési módszer Példa (#4) Job p(j) P(j) R(,j) v(j) (priority) - - R
49 Prioritási szabály alapú ütemezés (Priority-rule-based scheduling) Generálási sémák (Generation scheme) Soros (serial) Párhuzamos (parallel) Prioritási szabályok (Priority rule) Legkésőbbi befejezési időpont (latest finish time) Minimális időtartalék (minimum slack) 49
50 Prioritási szabályok Legkésőbbi befejezési időpont Latest finish time (LFT): v j = - C j Minimális időtartalék Minimum slack (MS): v j = - (C j - p j t*) az aktuális legkorábbi indítási időpont 50
51 MS prioritási szabály soros ütemezési sémával (#) Job p(j) P(j) R(,j) S'(j) C''(j) v(j) (priority) R
52 MS prioritási szabály soros ütemezési sémával (#) Job p(j) P(j) R(,j) S'(j) C''(j) v(j) (priority) v j = - (C j - p j t*) R
53 MS prioritási szabály soros ütemezési sémával (#) Job p(j) P(j) R(,j) S'(j) C''(j) v(j) (priority) v j = - (C j - p j t*) R
54 Összefoglalás A projektütemezés alapjai Erőforrás korlát nélküli probléma CPM módszer RCPS problema Generálási sémák és prioritási szabályok Keresési algoritmusok (következő előadás) 54
55 Köszönöm a figyelmet! Az előadásvázlat elérhető az alábbi webcímen:
Dr. Kulcsár Gyula. Virtuális vállalat félév. Projektütemezés. Virtuális vállalat félév 5. gyakorlat Dr.
Projektütemezés Virtuális vállalat 06-07. félév 5. gyakorlat Dr. Kulcsár Gyula Projektütemezési feladat megoldása Projekt: Projektütemezés Egy nagy, összetett, általában egyedi igény alapján előállítandó
Dr. Kulcsár Gyula. Virtuális vállalat 2013-2014 1. félév. Projektütemezés. Virtuális vállalat 2013-2014 1. félév 5. gyakorlat Dr.
Projektütemezés Virtuális vállalat 03-04. félév 5. gyakorlat Dr. Kulcsár Gyula Projektütemezési feladat megoldása Projekt: Projektütemezés Egy nagy, összetett, általában egyedi igény alapján előállítandó
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 5. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom 1. Párhuzamosan
Gyártórendszerek dinamikája
GYRD-7 p. 1/17 Gyártórendszerek dinamikája Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel Werner Ágnes
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2017/18 2. félév 3. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 1-2. Előadás Dr. Kulcsár Gyula egyetemi docens A tantárgy tematikája 1.
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Üzemszervezés. Projekt tervezés. Dr. Juhász János
Üzemszervezés Projekt tervezés Dr. Juhász János Projekt tervezés - Definíció Egy komplex tevékenység feladatainak, meghatározott célok elérése érdekében, előre megtervezett módon, az erőforrások sajátosságainak
Üzemszervezés A BMEKOKUA180
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Közlekedésmérnöki Szak Üzemszervezés A BMEKOKUA180 Projekt tervezés Dr. Juhász János egyetemi docens Projekt tervezés
Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék
Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm
Optimalizálási feladatok a termelés tervezésében és irányításában
3. KK 3. TM 4. K+F Optimalizálási feladatok a termelés tervezésében és irányításában Oktatási segédlet 2012 Dr. Kulcsár Gyula egyetemi docens Miskolci Egyetem, Alkalmazott Informatikai Tanszék Tartalomjegyzék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék 2012/13 2. félév 4. Előadás Dr. Kulcsár Gyula egyetemi docens Gyártórendszerek egyszerűsített irányítási modellje Zavaró
Példa. Job shop ütemezés
Példa Job shop ütemezés Egy üzemben négy gép működik, és ezeken 3 feladatot kell elvégezni. Az egyes feladatok sorra a következő gépeken haladnak végig (F jelöli a feladatokat, G a gépeket): Az ütemezési
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 1. félév 4. Előadás Dr. Kulcsár Gyula egyetemi docens A termelésinformatika alapjai
A Szállítási feladat megoldása
A Szállítási feladat megoldása Virtuális vállalat 201-2014 1. félév 4. gyakorlat Dr. Kulcsár Gyula A Szállítási feladat Adott meghatározott számú beszállító (source) a szállítható mennyiségekkel (transportation
Diszkrét termelési folyamatok ütemezési feladatainak modellezése és számítógépi megoldása
HATVANY JÓZSEF INFORMATIKAI TUDOMÁNYOK DOKTORI ISKOLA ÖSSZEVONT TUDOMÁNYOS SZEMINÁRIUMA 2013 Diszkrét termelési folyamatok ütemezési feladatainak modellezése és számítógépi megoldása Dr. Kulcsárné Forrai
Idő-ütemterv hálók - I. t 5 4
Építésikivitelezés-Vállalkozás / : Hálós ütemtervek - I lőadás:folia.doc Idő-ütemterv hálók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelő és Áttekintő Technika
Idõ-ütemterv há lók - I. t 5 4
lõadás:folia.doc Idõ-ütemterv há lók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelõ és Áttekintõ Technika ) semény-csomópontú, valószínûségi változókkal dolgozó
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 1. félév 3. Előadás Dr. Kulcsár Gyula egyetemi docens A termelésinformatika alapjai
Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék
Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Maximális folyam 7 7 9 3 2 7 source 8 4 7 sink 7 2 9 7 5 7 6 Maximális folyam feladat Adott [N, A] digráf (irányított
Vállalati modellek. Előadásvázlat. dr. Kovács László
Vállalati modellek Előadásvázlat dr. Kovács László Vállalati modell fogalom értelmezés Strukturált szervezet gazdasági tevékenység elvégzésére, nyereség optimalizálási céllal Jellemzői: gazdasági egység
Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék
Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Alsó felső korlátos maximális folyam 3,9 3 4,2 4,8 4 3,7 2 Transzformáljuk több forrást, több nyelőt tartalmazó
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Dr. Kulcsár Gyula egyetemi docens Megoldásjavító szabályzókör A Kybernos egyszerűsített modellje Klasszikus termelésirányítási
Folyamatoptimalizálás: a felhőalapú modernizáció kiindulópontja. Bertók Botond Pannon Egyetem, Műszaki Informatikai Kar
Folyamatoptimalizálás: a felhőalapú modernizáció kiindulópontja Bertók Botond Pannon Egyetem, Műszaki Informatikai Kar Tartalom Felhőalapú szolgáltatások Kihívások Módszertan Kutatás Projektek 2 Felső
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék 2013/14 2. félév 5. Előadás Dr. Kulcsár Gyula egyetemi docens Ismétlés, összefoglalás (TIA) Termeléstervezés
Rugalmas gyártórendszerek (FMS) termelésprogramozása (ismétlés DTFSZTIR)
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Rugalmas gyártórendszerek (FMS) termelésprogramozása (ismétlés DTFSZTIR) 2013/14 1. félév 1. Előadás Dr. Kulcsár Gyula
EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA
infokommunikációs technológiák EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA Témavezető: Tarczali Tünde Témavezetői beszámoló 2015. január 7. TÉMAKÖR Felhő technológián
Ütemezés tervezése A leghátrányosabb helyzet kistérségek fejlesztési és együttm ködési kapacitásainak meger
Ütemezés tervezése A leghátrányosabb helyzetű kistérségek fejlesztési és együttműködési kapacitásainak megerősítése ÁROP-1.1.5/C A Tokajii Kistérség Fejlesztési és Együttműködési Kapacitásának Megerősítése
A projekt idő-, erőforrás és költségterve 1. rész
A projekt idő-, erőforrás és költségterve 1. rész A TERVEZÉS FOLYAMATA a projekttevékenységek meghatározása a tevékenységek közötti logikai függőségi kapcsolatok meghatározása erőforrás-allokáció és a
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 1. félév 5. Előadás Dr. Kulcsár Gyula egyetemi docens A termelésinformatika alapjai
Idotervezés I. A CPM háló. BME Építéskivitelezési Tanszék Dr. Mályusz Levente 1
Idotervezés I. A CPM háló BME Építéskivitelezési Tanszék Dr. Mályusz Levente 1 Hagyományos eszközök Sávos ütemterv, Gannt diagram (pont szeru építkezéseken) földkiemelés tükörkészítés alapozás aszfalt
Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K. 4. A meghirdetés ideje (mintatanterv szerint vagy keresztfélében):
Követelményrendszer 1. Tantárgynév, kód, kredit, választhatóság: Vállalati információs rendszerek I, MIN5B6IN, 5 kredit, K 2. Felelős tanszék: Informatika Szakcsoport 3. Szak, szakirány, tagozat: Műszaki
Integrált gyártórendszerek
IGYR-7 p. 1/4 Integrált gyártórendszerek Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel, dinamikus
Hálózati réteg. WSN topológia. Útvonalválasztás.
Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék 2013/14 2. félév 5. Gyakorlat Dr. Kulcsár Gyula egyetemi docens Tartalomjegyzék Klasszikus termelésirányítási
2012.03.12. TEVÉKENYSÉGEK TERVEZÉSE TEVÉKENYSÉGEK TERVEZÉSE TEVÉKENYSÉGEK TERVEZÉSE IDŐTERVEZÉS. IDŐTERVEZÉS (Gantt diagramm)
ELŐADÁS ÁTTEKINTÉSE. ea.: Projekttervezés III. Tevékenységek tervezése Időtervezés: Gantt diagramm Hálótervezés: Kritikus út Tartalék idő Példa ismertetése TEVÉKENYSÉGEK TERVEZÉSE Fel kell vázolni egy
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Dr. Kulcsár Gyula egyetemi docens Rugalmas gyártórendszerek Milyen gyártóberendezés-csoport tekinthető rugalmas gyártórendszernek?
Teljesítmény Mérés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés / 20
Teljesítmény Mérés Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés 2013 1 / 20 Tartalomjegyzék 1 Bevezetés 2 Visual Studio Kód metrikák Performance Explorer Tóth Zsolt
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási
Ütemezési modellek. Az ütemezési problémák osztályozása
Ütemezési modellek Az ütemezési problémák osztályozása Az ütemezési problémákban adott m darab gép és n számú munka, amelyeket az 1,..., n számokkal fogunk sorszámozni. A feladat az, hogy ütemezzük az
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
ELŐADÁS ÁTTEKINTÉSE 6. ea.: Projekttervezés III.
ELŐADÁS ÁTTEKINTÉSE 6. ea.: Projekttervezés III. Tevékenységek tervezése Időtervezés: Gantt diagramm Hálótervezés: Kritikus út Tartalék idő Példa ismertetése TEVÉKENYSÉGEK TERVEZÉSE Fel kell vázolni egy
Virtuális vállalat JÁRMŰIPARI ALKATRÉSZGYÁRTÁS TERMELÉSPROGRAMOZÁSI FELADATAINAK MODELLEZÉSE ÉS MEGOLDÁSA
Virtuális vállalat JÁRMŰIPARI ALKATRÉSZGYÁRTÁS TERMELÉSPROGRAMOZÁSI FELADATAINAK MODELLEZÉSE ÉS MEGOLDÁSA Dr. Kulcsár Gyula, Dr. Kulcsárné Forrai Mónika Miskolci Egyetem Alkalmazott Informatikai Intézeti
2. Előadás Projekt ütemezés. Solver használata. Salamon Júlia
2. Előadás Projekt ütemezés. Solver használata. Salamon Júlia Projekt ütemezés Számos nagy projekt tervezésekor használják a CMP (Critical Path Method - Kritikus út módszere) és a PERT (Program Evaluation
Az ellátási láncok algoritmikus szintézise
Az ellátási láncok algoritmikus szintézise Bertók Botond, Adonyi Róbert, Kovács Zoltán, Friedler Ferenc Pannon Egyetem Műszaki Informatikai Kar XXVII. Magyar Operációkutatási Konferencia 2007. június 7.
Civilek és az Önkéntesség. - Projektmenedzsment -
Civilek és az Önkéntesség - Projektmenedzsment - I. Projektmenedzsment az erőforrások szervezésével és azok irányításával foglalkozó szakterület, célja: erőforrások által végzett munka eredményeként egy
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok
Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés
Elõadás:Folia201.doc VÁLLALKOZÁS ( tervezés - bonyolítás - változásmenedzsment ) ideiglenes földút monolit vb.támfal javított háttöltés új földtöltés régi töltés humusz teherbíró talaj Tevékenység Sz Megnevezés
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Hatvany József Informatikai Tudományok Doktori Iskola
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Hatvany József Informatikai Tudományok Doktori Iskola ÜTEMEZÉSI MODELL ÉS HEURISZTIKUS MÓDSZEREK AZ IGÉNYSZERINTI TÖMEGGYÁRTÁS FINOMPROGRAMOZÁSÁNAK TÁMOGATÁSÁRA
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 1. félév 1.-2. Előadás Dr. Kulcsár Gyula egyetemi docens A termelésinformatika
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék 2013/14 2. félév 6.-7. Előadás Dr. Kulcsár Gyula egyetemi docens A termelésinformatika alapjai 6.-7.
I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND. Témavezetői beszámoló
infokommunikációs technológiák infokommunikációs technológiák I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND Témavezetői beszámoló Pannon Egyetem 2015. január 7. A KUTATÁSI TERÜLET RÖVID MEGFOGALMAZÁSA
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészméröki és Iformatikai Kar Iformatikai Itézet Alkalmazott Iformatikai Itézeti Taszék 2017/18 2. félév 10. Előadás Dr. Kulcsár Gyula egyetemi doces Matematikai modellek a termelés
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
ELŐADÁS ÁTTEKINTÉSE. Tevékenységek tervezése Gantt diagramm
ELŐADÁS ÁTTEKINTÉSE Tevékenységek tervezése Gantt diagramm TEVÉKENYSÉGEK TERVEZÉSE Fel kell vázolni egy lehetséges tevékenység sorozatot, egyfajta megoldást, illetve elvárt eredményt, amit a célrendszerrel
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
MICROSOFT DYNAMICS AX TERMELÉSIRÁNYÍTÁS III.
MICROSOFT DYNAMICS AX TERMELÉSIRÁNYÍTÁS III. A Microsoft Dynamics AX rendszer Termelésirányítás III. modulja hatékonyabbá teszi a gyártási ciklus szervezését. A Microsoft Dynamics AX rendszer termelésirányítási
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
ITIL alapú folyamat optimalizációs tapasztalatok
ITIL alapú folyamat optimalizációs tapasztalatok Berky Szabolcs vezető tanácsadó szabolcs.berky@stratis.hu A Stratisról dióhéjban 1998 2008: 10 éve vagyunk a tanácsadási piacon Független, tisztán magyar
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN
infokommunikációs technológiák MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN Készítette: Árgilán Viktor, Dr. Balogh János, Dr. Békési József, Dávid Balázs, Hajdu László, Dr. Galambos Gábor, Dr. Krész
A Jövő Internete - általános tervezési ajánlások
HTE INFOKOM 2014 konferencia és kiállítás Kecskemét, 2014. okt. 8-10. A Jövő Internete - általános tervezési ajánlások Dr. Abos Imre egyetemi docens abos@tmit.bme.hu BME Távközlési és Médiainformatikai
Informatikai alkalmazásfejlesztő alkalmazásfejlesztő 54 481 02 0010 54 02 Információrendszer-elemző és - Informatikai alkalmazásfejlesztő
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E
5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus
Informatikai alkalmazásfejlesztő alkalmazásfejlesztő 54 481 02 0010 54 02 Információrendszer-elemző és - Informatikai alkalmazásfejlesztő
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
TSIMMIS egy lekérdezés centrikus megközelítés. TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek
TSIMMIS egy lekérdezés centrikus megközelítés TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek 1 Információk heterogén információs forrásokban érhetk el WWW Társalgás Jegyzet papírok
A digitális korszak kihívásai és módszerei az egyetemi oktatásban
Csapó Benő http://www.staff.u-szeged.hu/~csapo A digitális korszak kihívásai és módszerei az egyetemi oktatásban Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a természettudományi
Hálózatok II. A hálózati réteg torlódás vezérlése
Hálózatok II. A hálózati réteg torlódás vezérlése 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111
Ütemezés gyakorlat. Termelésszervezés
Ütemezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Általános ütemezés Egygépes ütemezési problémák Párhuzamos erőforrások ütemezése Flow-shop és job-shop ütemezés
SAP EAM MRS és LAM megoldásainak gyakorlati bevezetési tapasztalatai
SAP EAM MRS és LAM megoldásainak gyakorlati bevezetési tapasztalatai Nikolaidisz Kosztasz, ERP Consulting Zrt. 2018. Szeptember 10. Témák TIGÁZ DSO MRS bevezetés Magyar Közút LAM bevezetés 2 TIGÁZ - Visszatekintés
Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben
Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben Tantárgy Tárgykód I. félév ősz II. félév tavasz Algoritmusok
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Operációkutatás vizsga
Operációkutatás vizsga B csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
Hagyományos termelésirányítási módszerek:
Hagyományos termelésirányítási módszerek: - A termelésirányítás határozza meg, hogy az adott termék egyes technológiai műveletei - melyik gépeken vagy gépcsoportokon készüljenek el, - mikor kezdődjenek
Előzetes követelmény(ek): Feltételezett tudásanyag, előképzettségi szint: Szervezés 1. Oktató tanszék(ek) 6 :
TANTÁRGY ADATLAP és tantárgykövetelmények Cím: SZERVEZÉS 2. Tárgykód: PMKEKNE139 Heti óraszám 1 : 2 ea / 2 gyak Kreditpont: 5 Szak(ok)/ típus 2 : építőmérnök Tagozat 3 : nappali Követelmény 4 : vizsga
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite
Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények
EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
A hálózattervezés alapvető ismeretei
A hálózattervezés alapvető ismeretei Infokommunikációs hálózatok tervezése és üzemeltetése 2011 2011 Sipos Attila ügyvivő szakértő BME Híradástechnikai Tanszék siposa@hit.bme.hu A terv általános meghatározásai
A projekttervezés folyamata, tevékenységek tervezése, erőforrások fajtái és tervezése. Munkaszervezés elmélet Szász Péter
A projekttervezés folyamata, tevékenységek tervezése, erőforrások fajtái és tervezése. Munkaszervezés elmélet Szász Péter A projekt életciklusa Nagyvonalú tervezési fázis A rendszer célkitűzéseinek és
A FOLYAMATMENEDZSMENT ALAPJAI
A FOLYAMATMENEDZSMENT ALAPJAI 1 Az Értékteremtő Folyamat Menedzsment stratégia A vállalat küldetése Környezet Vállalati stratégia Vállalati adottságok Kompetitív prioritások Lényegi képességek ÉFM stratégia
Lukovich Gábor Logisztikai rendszerfejlesztő
Lukovich Gábor Logisztikai rendszerfejlesztő Intra-logisztikai rendszerek Lay-out tervezése/fejlesztése Logisztikai informatikai rendszerek tervezése Egymással kölcsönhatásban lévő részfeladatok rendszere
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Gráfelméleti modell alkalmazása épít ipari kivitelezés ütemezésére
Tamaga István Gráfelméleti modell alkalmazása épít ipari kivitelezés ütemezésére modell Készítsük el egy épít ipari kivitelezés gráfelméleti modelljét! Ekkor a kivitelezést megfeleltetjük egy gráfnak,
Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak
Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Dr. Koltai Tamás egyetemi tanár Menedzsment és Vállalatgazdaságtan Tanszék Tematika Kvantitatív eszközök használata Esettanulmányok
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő 1
Építési projektek ütemtervi bizonytalanságainak, kockázatainak figyelembe vétele a pénzügyi tervezésnél Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő, MVM Paks
Anyagszükséglet-tervezés gyakorlat. Termelésszervezés
Anyagszükséglet-tervezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Egyszerű tételnagyság-képzési szabályok, heurisztikák, kapacitáskorlátos esetek (3 komponens,
Informatikai alkalmazásfejlesztő alkalmazásfejlesztő 54 481 02 0010 54 02 Információrendszer-elemző és - Informatikai alkalmazásfejlesztő
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Tőkekihelyezés és projektkövetés informatikája
Berlin Boston Budapest Düsseldorf Munich Prague Stuttgart Vienna Zurich www.ifua.hu dr. Kupás Tibor Budapest, 2007. március 19. Hálótervezés gyakorlat 1/2 Tőkekihelyezés és projektkövetés informatikája
1964 IBM 360 1965 DEC PDP-8
VIIR Vállalatirányítási Integrált Információs rendszerek I. (Történeti áttekintés - TEI) Szent István Egyetem Információgazdálkodási Tanszék 2006. 1 Ki mikor kapcsolódott be az információs társadalomba?
Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
Projektmenedzsment projektmenedzsment alapjai logikai kapcsolatban hálótervezés
Projektmenedzsment A projektmenedzsment alapjai Hálótervezés A könyvtári rendszerfejlesztési projekt A projektmenedzsment alapjai alaptevékenységek a szervezet (rendszerint hosszú távú, a küldetésben és
A technológiai berendezés (M) bemenő (BT) és kimenő (KT) munkahelyi tárolói
9., ELŐADÁS LOGISZTIKA A TERMELÉSIRÁNYÍTÁSBAN Hagyományos termelésirányítási módszerek A termelésirányítás feladata az egyes gyártási műveletek sorrendjének és eszközökhöz történő hozzárendelésének meghatározása.
Programfejlesztési Modellek
Programfejlesztési Modellek Programfejlesztési fázisok: Követelmények leírása (megvalósíthatósági tanulmány, funkcionális specifikáció) Specifikáció elkészítése Tervezés (vázlatos és finom) Implementáció
Diszkrét, egészértékű és 0/1 LP feladatok
Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok
SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.
SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai
Termelésirányítás. Gyártási erőforrások rugalmas kezelése. Gyártási folyamatábra optimalizálása
Termelésirányítás ELŐNYÖK: Átfutási idő lerövidítése és az ügyféligények kielégítése rugalmas ütemezési lehetőségekkel Termelési erőforrások ellenőrzése az optimális teljesítmény érdekében Termelési folyamat