Diszkrét, egészértékű és 0/1 LP feladatok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Diszkrét, egészértékű és 0/1 LP feladatok"

Átírás

1 Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming Dr. Bajalinov Erik, NyF MII 1

2 Diszkrét és egészértékű változókat tartalmazó feladatok Egymásba való átalakítás Naiv megoldás LINGO eszközök 0/1 és egészértékű változók kezeléséhez Módszerek 1. Branch & Bound (Korlátozás és szétválasztás) 2. Gomory módszer (eng. Cutting plane hu. Metsző sík módszer) 3. Branch & Cut (1.+2. keveréke) Dr. Bajalinov Erik, NyF MII 2

3 Szótár Diszkrét programozási feladatok Discrete programming problems Egészértékű feladatok Integer programming problems 0/1-értékű változók zero/one variables, boolean or logical variables Módszerek Korlátozás és szétválasztás Branch and Bound Gomory módszer vagy metszősík módszer Gomory method or cutting plane method Az első kettőnek keveréke (HU -?) Branch and Cut method Dr. Bajalinov Erik, NyF MII 3

4 Diszkrét programozási feladat Ebbe a feladatkörbe olyan matematikai programozási feladatok tartoznak, amelyeknél a változók egy része csak véges sok, vagy megszámlálhatóan végtelen sok értéket vehet fel. Pl.: Stocko Kft. három befektetési (értékpapír) lehetőséget vizsgál: az 1. fajta ÉP hozama 2%, a 2.-nak 3%, és a 3.-nak 2,3%. Az 1. befektetési lehetőség igényel 1,2 mft-t, vagy 2,8 mft-t a 2. - igényel 1,4 mft-t, vagy 3,8 mft-t a 3.- igényel 2,5 mft-t, vagy 3,8 mft-t vagy 4,2 mft-t, vagy 5,8 mft-t A cég jelenleg nem több, mint 15,3 mft-t tud befektetni. Mennyit mibe kell befektetni ahhoz, hogy várható hozam legyen maximális? Dr. Bajalinov Erik, NyF MII 4

5 Stocko Kft. befektetési modell Dr. Bajalinov Erik, NyF MII 5

6 Általános diszkrét programozási feladat Ha n 1 =n - tiszta (pure) diszkrét programozási feladat, egyébként vegyes (mixed) diszkrét programozási feladat Dr. Bajalinov Erik, NyF MII 6

7 Egészértékű programozási feladat Egy egészértékű programozási feladat (Integer Programming - IP) egy olyan LP feladat, amelyben néhány, vagy összes változó csak egész értéket vehet fel. Példa Stocko Kft. három befektetési (értékpapír alapú) lehetőséget vizsgál: az 1. fajta ÉP hozama 2mFt per 1 értékpapír, a 2.-nak 2.3mFt per 1 egység, és a 3.-nak 1,8mFt per 1 egység. Az 1. fajta értékpapírból max. 3 db. vásárolható, az ára 2.5 mft/1 a 2. fajta értékpapírból max. 4 db. vásárolható, az ára 3.5 mft/1 a 3. fajta értékpapírból max. 3 db. vásárolható, az ára 2.1 mft/1 A cég jelenleg nem több, mint 16 mft-t tud befektetni. Milyen fajta értékpapírból hány darabot kell venni ahhoz, hogy várható hozam legyen maximális? Dr. Bajalinov Erik, NyF MII 7

8 Stocko Kft. Befektetési modell Dr. Bajalinov Erik, NyF MII 8

9 Ali Baba feladat Egy feltétel Minden változó egészértékű Dr. Bajalinov Erik, NyF MII 9

10 Hátizsák feladat Knapsack problem Egy feltétel Minden változó 0/1 értékű Dr. Bajalinov Erik, NyF MII 10

11 Általános egészértékű programozási feladat m feltétel Legalább egy változó egészértékű Ha n 1 =n - tiszta (pure) egészértékű programozási feladat, egyébként vegyes (mixed) egészértékű programozási feladat Dr. Bajalinov Erik, NyF MII 11

12 0/1 értékű változók Pl.:Stocko Kft. négy befektetési lehetőséget vizsgál: Az 1. befektetés igényel 5 mft-t, hozam 16 mft a 2. befektetés igényel 7 mft-t, hozam 22 mft a 3. befektetés igényel 4 mft-t, hozam 12 mft a 4. befektetés igényel 3 mft-t, hozam 8 mft A cég jelenleg nem több, mint 14 mft-t tud befektetni. Mibe kell befektetni pénzt ahhoz, hogy összes várható hozam legyen maximális? Dr. Bajalinov Erik, NyF MII 12

13 Átalakítás: Diszkrét Egészértékű Dr. Bajalinov Erik, NyF MII 13

14 Példa : Minden segédváltozó 0/1 értékű Dr. Bajalinov Erik, NyF MII 14

15 Naiv megoldás Dr. Bajalinov Erik, NyF MII 15

16 Fajlagos hozam Dr. Bajalinov Erik, NyF MII 16

17 Fajlagos mutató szerinti legjobb befektetési lehetőségre NINCSEN szükség! Dr. Bajalinov Erik, NyF MII 17

18 LINGO - General - BINary Dr. Bajalinov Erik, NyF MII 18

19 Módszerek Definíció LP - lazítás vagy relaxáció Az egészértékű programozási feladatból kapott olyan feladat, amelyben nem veszünk figyelembe az egészértékűségi feltételeket Példa : Egészértékűségi feltétel van Itt pedig nincsen Dr. Bajalinov Erik, NyF MII 19

20 Dr. Bajalinov Erik, NyF MII 20

21 Dr. Bajalinov Erik, NyF MII 21

22 Korlátozás és szétválasztás Branch and Bound Adott a következő tiszta egészértékű LP feladat (pure integer LP problem) (IP) Dr. Bajalinov Erik, NyF MII 22

23 Az (IP) feladat relaxációja (P 0 ) Dr. Bajalinov Erik, NyF MII 23

24 1. lépés: index k := 0, alsó korlát N := - Oldjuk meg az (IP) egészértékű programozási feladat (P 0 ) relaxációját. Ha (R)-nek nincs megoldása, akkor (IP)-nek sincs. Egyébként: x* jelölje az (R) feladat optimális megoldását. Ha x* vektor minden eleme egészértékű, akkor x* vektor optimális megoldása (IP) feladatnak. Vége. Egyébként: 2. lépés 2. lépés: Válasszuk ki az x* vektor egy nem egészértékű elemét, mondjuk x j *-t. Vezessünk be a következő két részfeladatot (ágaztatás - branching): Majd folytassuk a 3. lépésnél Dr. Bajalinov Erik, NyF MII 24

25 3. lépés: Válasszunk (P L ), vagy (P R ) feladatot és oldjuk meg. Majd 3.a.lépés 3.a. lépés Ha feladat nem megoldható (lehetséges halmaz üres), akkor feladatot nevezzük felderített feladatnak és folytassuk 4. lépésnél Ha kapott x* megoldás egészértékű, akkor 3.b. lépés Ha kapott x* megoldás nem egészértékű, akkor 3.c. lépés 3.b. lépés Ha P(x*)>N, akkor N:=P(x*) és 3.lépésben megoldott feladatot nevezzük megoldás-jelöltnek (korlátozás - bounding):. Egyébként 3.lépésben megoldott feladatot nevezzük felderített feladatnak. Majd folytassuk 4. lépésnél. 3.c. lépés Ha P(x*)>N, akkor k:=k+1 (ha 3.-P L ) vagy k:=k+2 (ha 3.-P R ) és a 3.lépésben megoldott feladattal folytassuk 2. lépésnél Egyébként 3.lépésben megoldott feladatot nevezzük felderített feladatnak, majd folytassuk 4. lépésnél Dr. Bajalinov Erik, NyF MII 25

26 4. lépés: Ha van meg nem oldott részfeladat, akkor oldjuk meg ezt a feladatot és folytassunk 3.a.lépésnél. Egyébként: Ha N = -, akkor eredeti (IP) feladat nem megoldható. Egyébként, az utolsó megoldás-jelölt feladat optimális megoldása az eredeti (IP) feladat optimális megoldása. Vége. A módszer kezelési struktúrája - Bináris fa Dr. Bajalinov Erik, NyF MII 26

27 Numerikus példa Stocko Kft. (IP) Relaxáció (R) Dr. Bajalinov Erik, NyF MII 27

28 Bound=- Megoldás Bound=38 Bound= Dr. Bajalinov Erik, NyF MII 28

29 Stocko Kft. Lingo modell Dr. Bajalinov Erik, NyF MII 29

30 Stocko Kft. Lingo report Dr. Bajalinov Erik, NyF MII 30

31 Még egy numerikus példa (IP) Relaxáció (R) Dr. Bajalinov Erik, NyF MII 31

32 Relaxációs feladat lehetséges halmaza Csomópontok IP feladat lehetséges megoldásai Relaxációs feladat optimális megoldása Dr. Bajalinov Erik, NyF MII 32

33 Bound=- Bound=39 Bound= Dr. Bajalinov Erik, NyF MII 33

34 X 1 =3 X 1 =4 1.Részfeladat lehetséges halmaza 2.Részfeladat lehetséges halmaza Dr. Bajalinov Erik, NyF MII 34

35 Dr. Bajalinov Erik, NyF MII 35

36 Érzékenységvizsgálat NEM működik! Duális változó NEM értelmezhető! Dr. Bajalinov Erik, NyF MII 36

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11. 11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során

Részletesebben

2017/ Szegedi Tudományegyetem Informatikai Intézet

2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű

Részletesebben

Nem-lineáris programozási feladatok

Nem-lineáris programozási feladatok Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens

Részletesebben

Totális Unimodularitás és LP dualitás. Tapolcai János

Totális Unimodularitás és LP dualitás. Tapolcai János Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz Gyártórendszerek modellezése MILP modell PNS feladatokhoz 1 Pannon Egyetem M szaki Informatikai Kar Számítástudomány Alkalmazása Tanszék Utolsó frissítés: 2008. november 16. 1 hegyhati@dcs.uni-pannon.hu

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév

Részletesebben

Korlátozás és szétválasztás módszere Holló Csaba 2

Korlátozás és szétválasztás módszere Holló Csaba 2 Korlátozás és szétválasztás módszere Holló Csaba 2 A módszert Imreh Balázs, Imreh Csanád: Kombinatorikus optimalizálás Novadat, Győr, 25 egyetemi tankönyve alapján, kisebb változtatásokkal fogjuk bemutatni.

Részletesebben

Módszer köztes tárolókat nem tartalmazó szakaszos működésű rendszerek ütemezésére

Módszer köztes tárolókat nem tartalmazó szakaszos működésű rendszerek ütemezésére Módszer köztes tárolókat nem tartalmazó szakaszos működésű rendszerek ütemezésére Doktori (PhD) értekezés tézisei Holczinger Tibor Témavezető: Dr. Friedler Ferenc Veszprémi Egyetem Műszaki Informatikai

Részletesebben

A Szállítási feladat megoldása

A Szállítási feladat megoldása A Szállítási feladat megoldása Virtuális vállalat 201-2014 1. félév 4. gyakorlat Dr. Kulcsár Gyula A Szállítási feladat Adott meghatározott számú beszállító (source) a szállítható mennyiségekkel (transportation

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Boros Endre. Rutgers University. XXXII. MOK Június 14.

Boros Endre. Rutgers University. XXXII. MOK Június 14. Diszkrét Momentum Problémák Boros Endre Rutgers University XXXII. MOK 2017. Június 14. Prékopa András (1929-2016) emlékére Valószínűségi korlátok (Boole 1854, 1868 (1850)) E 1 = (A B C) (A B C) (A B C)

Részletesebben

Egészértékű lineáris programozás

Egészértékű lineáris programozás p. Egészértékű lineáris programozás Integer Linear Programming (ILP) és Mixed Integer Linear Programming (MIP) nevezetes kombinatorikus optimizálási problémák megfogalmazása ILP formájában definíció, tulajdonságok,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Operációkutatás példatár

Operációkutatás példatár 1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészméröki és Iformatikai Kar Iformatikai Itézet Alkalmazott Iformatikai Itézeti Taszék 2017/18 2. félév 10. Előadás Dr. Kulcsár Gyula egyetemi doces Matematikai modellek a termelés

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Kényszerkielégítési problémák (Constraint Satisfaction Problem, CSP) http://mialmanach.mit.bme.hu/aima/ch05 Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki

Részletesebben

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26

Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26 1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

Mádi-Nagy Gergely * A feladat pontos leírása. Tekintsünk darab tetszõleges eseményt, jelöljük ezeket a következõképpen: ,...,

Mádi-Nagy Gergely * A feladat pontos leírása. Tekintsünk darab tetszõleges eseményt, jelöljük ezeket a következõképpen: ,..., Mádi-Nagy Gergely * AZ ESEMÉNYEK UNIÓJÁNAK VALÓSZÍNÛSÉGE BECSLÉS A TÖBBVÁLTOZÓS DISZKRÉT MOMENTUM PROBLÉMA SEGÍTSÉGÉVEL Az események uniója valószínûsége becslésére szolgáló elsõ fontos eredmények a Boole-

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Operációkutatás II. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar

Operációkutatás II. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar Operációkutatás II. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar Operációkutatás II. írta Bajalinov, Erik és Bekéné

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 3. Előadás Előadó: Hajnal Péter Jegyzetelő: Pék Máté 2009. szeptember 21. 1. Folyamok 1.1. Definíció. G = (V, E, K, B) irányított gráf, ha e! v : ekv

Részletesebben

Operációkutatás II. Tantárgyi útmutató

Operációkutatás II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2016/17 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot oldottuk meg korábban,

Részletesebben

Operációkutatás II. Tantárgyi útmutató

Operációkutatás II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens Miskolci Egyetem Gépészméröki és Iformatikai Kar Alkalmazott Iformatikai Taszék Dr. Kulcsár Gyula egyetemi doces Iformatikai ifrastruktúra felődése Decetralizált Cetralizált Lazá csatolt Klies/szerver

Részletesebben

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév

Részletesebben

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete)

Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) C költség mátrix költség Munkákat hozzá kell rendelni gépekhez: egy munka-egy gép c(i,j) mennyi be kerül i-dik munka j-dik

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

Korlátozás és szétválasztás elve. ADAGOLO adattípus

Korlátozás és szétválasztás elve. ADAGOLO adattípus Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}

Részletesebben

Matematikai programok

Matematikai programok Matematikai programok Mátrixalapú nyelvek MatLab Wettl Ferenc diái alapján Budapesti M szaki Egyetem Algebra Tanszék 2017.11.07 Borbély Gábor (BME Algebra Tanszék) Matematikai programok 2017.11.07 1 /

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Kétfázisú szimplex algoritmus és speciális esetei

Kétfázisú szimplex algoritmus és speciális esetei 5. gyakorlat Kétfázisú szimplex algoritmus és speciális esetei. Emlékeztető Standard alak, áttérés Standard alak Minden feltétel et tartalmaz csak. A célfüggvényünket maximalizáljuk. A b vektor (jobb oldalon

Részletesebben

Operációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar

Operációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar Operációkutatás I. Bajalinov, Erik, Nyíregyházi Főiskola, Matematika és Informatika Intézete Bekéné Rácz, Anett, Debreceni Egyetem, Informatikai Kar Operációkutatás I. írta Bajalinov, Erik és Bekéné Rácz,

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek III. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Döntési módszerek TÁVOKTATÁS Tanév 2014/2015 II- félév A KURZUS ALAPADATAI Tárgy megnevezése: Döntési módszerek Tanszék: Matematika-Statisztika Tantárgyfelelős

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

A digitális analóg és az analóg digitális átalakító áramkör

A digitális analóg és az analóg digitális átalakító áramkör A digitális analóg és az analóg digitális átalakító áramkör I. rész Bevezetésként tisztázzuk a címben szereplő két fogalmat. A számítástechnikai kislexikon a következőképpen fogalmaz: digitális jel: olyan

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

Jegyzet. az Operációkutatás II cím tantárgyhoz. Utolsó frissítés: május 20. Király Tamás el adásai alapján készítette Papp Olga

Jegyzet. az Operációkutatás II cím tantárgyhoz. Utolsó frissítés: május 20. Király Tamás el adásai alapján készítette Papp Olga Jegyzet az Operációkutatás II cím tantárgyhoz Király Tamás el adásai alapján készítette Papp Olga Utolsó frissítés: 2011. május 20. Tartalomjegyzék 1. TU mátrixok: kerekítés és színezés 3 1.1. Emlékeztet......................................

Részletesebben

Optimalizációs stratégiák 2.

Optimalizációs stratégiák 2. Optimalizációs stratégiák 2. Visszalépéses keresés, szétválasztás és korlátozás előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33

Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33 1/33 Logika és számításelmélet I. rész Logika Harmadik előadás Tartalom 2/33 Elsőrendű logika bevezetés Az elsőrendű logika szintaxisa 3/33 Nulladrendű állítás Az ítéletlogikában nem foglalkoztunk az álĺıtások

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

A lineáris programozás 1 A geometriai megoldás

A lineáris programozás 1 A geometriai megoldás A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Algoritmizálás, adatmodellezés tanítása 8. előadás

Algoritmizálás, adatmodellezés tanítása 8. előadás Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van

Részletesebben

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2. Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.

Részletesebben

BASH script programozás II. Vezérlési szerkezetek

BASH script programozás II. Vezérlési szerkezetek 06 BASH script programozás II. Vezérlési szerkezetek Emlékeztető Jelölésbeli különbség van parancs végrehajtása és a parancs kimenetére való hivatkozás között PARANCS $(PARANCS) Jelölésbeli különbség van

Részletesebben

Optimumkeresés számítógépen

Optimumkeresés számítógépen C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények

Részletesebben

Matematikai programok

Matematikai programok Matematikai programok Mátrixalapú nyelvek octave Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Wettl

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

A szimplex algoritmus

A szimplex algoritmus . gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Leképezések. Leképezések tulajdonságai. Számosságok.

Leképezések. Leképezések tulajdonságai. Számosságok. Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA

Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA Alapvető fogalmak: Függvény fogalma Függvény helyettesítési értéke (függvényérték) Függvény grafikonja A

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

Bevezetés a lineáris programozásba

Bevezetés a lineáris programozásba Bevezetés a lineáris programozásba 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Szimplex módszer p. 1/1 Az LP feladatok általános modellje A korlátozó feltételeket írjuk fel

Részletesebben

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens

Részletesebben

Segédanyagok. Formális nyelvek a gyakorlatban. Szintaktikai helyesség. Fordítóprogramok. Formális nyelvek, 1. gyakorlat

Segédanyagok. Formális nyelvek a gyakorlatban. Szintaktikai helyesség. Fordítóprogramok. Formális nyelvek, 1. gyakorlat Formális nyelvek a gyakorlatban Formális nyelvek, 1 gyakorlat Segédanyagok Célja: A programozási nyelvek szintaxisának leírására használatos eszközök, módszerek bemutatása Fogalmak: BNF, szabály, levezethető,

Részletesebben