Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens"

Átírás

1 Miskolci Egyetem Gépészméröki és Iformatikai Kar Alkalmazott Iformatikai Taszék Dr. Kulcsár Gyula egyetemi doces

2 Iformatikai ifrastruktúra felődése Decetralizált Cetralizált Lazá csatolt Klies/szerver Háromrétegű klies/szerver Többrétegű klies/szerver

3 Klies/szerver ifrastruktúra Vékoy (gyege) klies modell Klies Bemeet, kimeet Adatfeldolgozás Adattárolás Szerver Vastag (erős) klies modell Bemeet, Klies Adattárolás Szerver kimeet Adatfeldolgozás

4 Tipikus klies/szerver architektúrák Web Browser Web Server HTML DB Applicatio DB Server DATA

5 Háromrétegű klies/szerver ifrastruktúra Megeleítés Feldolgozás Adatkezelés DB Megeleítési réteg Alkalmazás réteg Adatréteg

6 Tipikus háromrétegű Web-DB alkalmazás DB Server DATA Web Browser Server Etesio Web Server HTML

7 Többrétegű klies/szerver ifrastruktúra Megeleítés Feldolgozás Feldolgozás Adatkezelés DB Megeleítési réteg Alkalmazás réteg Alkalmazás réteg Adatréteg

8 Tipikus többrétegű architektúra DB Server DATA Applicatio Server Web Browser Web Server

9

10 Matematikai modellek a termelés tervezésébe és iráyításába Néháy fotosabb modell és módszer: lieáris programozás diszkrét programozás hátizsák feladat az utazó ügyök feladata hozzáredelési feladat termelésprogramozási módszerek (gyakorlato ismertetett algoritmusok)

11 Lieáris programozás Alkalmazási példák: 1. Egy gyár bizoyos időszakra szóló termelési feladatáak meghatározása gyártott meyiségek meghatározása terméktípusokét erőforráskorlátok és egyéb korlátozások betartása elérhető profit maimalizálása 2. Techológiai folyamat-alteratívák kiválasztása techológiai folyamat-alteratívák kielölése feladatokét kapacitáskorlátok és egyéb korlátozások betartása összköltség miimalizálása

12 Lieáris programozás Matematikai alapmodell: változók (valós számok), c, b i, a i kostasok (valós számok),, m kostasok (természetes számok) 1 1 c a i ma b (i 1,2,..., m) 0( 1,2,..., ) i

13 Lieáris programozás 1. Egy gyár bizoyos időszakra szóló termelési feladatáak meghatározása Matematikai alapmodell értelmezése: c i a i b i m a terméktípus azoosítóa a. terméktípusból gyártadó meyiség a terméktípusok száma a. terméktípus egységyi gyártott meyiségé keletkező haszo az erőforrástípus azoosítóa a. terméktípus egységyi gyártásához szükséges erőforrásigéy az i. erőforrástípus eseté az i. erőforrástípus kapacitáskorláta az erőforrástípusok száma További feltételek is figyelembe vehetők, a feladat léyege em változik.

14 Lieáris programozási feladatok megoldása Matlab segítségével Modell: f,, b, beq, lb, ub vektorok A, Aeq mátriok. Megoldás: = liprog(f,a,b) = liprog(f,a,b,aeq,beq) = liprog(f,a,b,aeq,beq,lb,ub) [,fval] = liprog(...)

15 Nemfolytoos modellek Nemfolytoos modell: a feladatba az ismeretleek egy része, vagy az összes ismeretle csak diszkrét értékeket vehet fel. Megkülöböztethető tiszta diszkrét típusú, vegyes diszkrét típusú modell. Alkalmazásuk idokai: Bizoyos változók esetébe a folytoos érték em értelmezhető (pl.: em osztható termékek gyártási meyisége, sorozatagysága stb.). A folytoos optimum kerekítésével kapott érték távol eshet a diszkrét optimumtól. Miőségi és meyiségi dötések szétválasztása.

16 Diszkrét programozás Tipikus példa az ú. Hátizsák feladat: csődarabolás szűkkeresztmetszet vizsgálata (gyártás, logisztika stb.) A Hátizsák feladat matematikai alapmodelle: változók (biáris számok), c, a,, b kostasok (természetes számok) 1 1 c a b ma {0,1}( 1,2,..., )

17 Diszkrét programozás (folyt.) Továbbfelesztett modell: változók c, a i, b i,, m kostasok, c, b vektorok A mátri B -elemű biáris vektorok halmaza 1 1 c a i ma b i (i 1,2,..., m) {0,1}( 1,2,..., ) c T ma A b B

18 Vegyes diszkrét programozás Általáosított modell:, m kostasok, y, c, d, b vektorok A, B mátriok c T i d y B T A By b y ma 0(i 1,2,..., )

19 Az utazó ügyök feladata Tipikus példa: Termelésütemezés (gépátállítási idők) Ayagmozgatás (szállítási idők) P (i 1,i 2,...,i,i 1 i 1 ) mi P 1 c i i 1

20 Az utazó ügyök módosított feladata Tipikus példa: Termelésütemezés (gépátállítási idők és műveleti idők) Ayagmozgatás (szállítási idők és szállítási korlátok) P, P k1 P (P 1 m P l 2 k,...,p mi 1 P k q P m,...,p k1 i G mi de(k ) k m m 1,..., 0 D k ésl k 1,2,...,m)

21 Hozzáredelési feladat mi 1 i1 i i i1 1 c i i 1mi de(i 1,2,..., ) 1mi de( 1,2,..., )

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészméröki és Iformatikai Kar Iformatikai Itézet Alkalmazott Iformatikai Itézeti Taszék 2017/18 2. félév 10. Előadás Dr. Kulcsár Gyula egyetemi doces Matematikai modellek a termelés

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Mskol Egyetem Gépészmérök és Iformatka Kar Alkalmazott Iformatka Taszék 2012/13 2. félév 9. Előadás Dr. Kulsár Gyula egyetem does Matematka modellek a termelés tervezésébe és ráyításába Néháy fotosabb

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Tanszék 2013/14 2. félév 5. Gyakorlat Dr. Kulcsár Gyula egyetemi docens Tartalomjegyzék Klasszikus termelésirányítási

Részletesebben

Diszkrét, egészértékű és 0/1 LP feladatok

Diszkrét, egészértékű és 0/1 LP feladatok Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Lineáris programozási feladatok típusai és grafikus megoldása

Lineáris programozási feladatok típusai és grafikus megoldása Lineáris programozási feladatok típusai és grafikus megoldása Alkalmazott operáiókutatás. elıadás 8/9. tanév 8. szeptemer 9. Maimumfeladat grafikus megoldása lehetséges megoldások + 4 + () 8 + Optimális

Részletesebben

A logisztikai optimumtól az ellátási lánc optimumig Az időalapú verseny követelményei

A logisztikai optimumtól az ellátási lánc optimumig Az időalapú verseny követelményei Mottó: A jövő az ellátási lácok verseyéről szól (és em a vállalatokéról) A logisztikai optimumtól az ellátási lác optimumig Az időalapú versey követelméyei OPTASOFT koferecia Griff Hotel, Budapest, 2008.

Részletesebben

Döntéselmélet, döntéshozatal lehetséges útjai

Döntéselmélet, döntéshozatal lehetséges útjai Dötéselmélet, dötéshoztl lehetséges útji AOK - Rezides képzés Király Gyul Az operációkuttás rövid Mérföldkövek törtéete II. világháború ltt strtégii és tktiki ktoi műveletek (operációk) tudomáyos kuttási

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Dr. Kulcsár Gyula egyetemi docens Tartalomjegyzék Bevezetés Termelési paradigma fogalma Paradigma váltások A CIM fogalmának

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

Nyilvántartási Rendszer

Nyilvántartási Rendszer Nyilvántartási Rendszer Veszprém Megyei Levéltár 2011.04.14. Készítette: Juszt Miklós Honnan indultunk? Rövid történeti áttekintés 2003 2007 2008-2011 Access alapú raktári topográfia Adatbázis optimalizálás,

Részletesebben

operációkutatás példatár

operációkutatás példatár operációkutatás példatár . MŰVELETEK MÁTIXOKKAL. (Megoldás a.-es gyakorló ideóban.) Itt annak ezek a mátriok illete ektorok: A c B d * E f * Végezzük el a köetkező műeleteket: A B B E B c B A A E B d..

Részletesebben

Lineáris egyenlet. Lineáris egyenletrendszer. algebrai egyenlet konstansok és első fokú ismeretlenek pl.: egyenes egyenlete

Lineáris egyenlet. Lineáris egyenletrendszer. algebrai egyenlet konstansok és első fokú ismeretlenek pl.: egyenes egyenlete Lieáris egyelet algebrai egyelet kostasok és első fokú ismeretleek pl.: egyees egyelete Lieáris egyeletredser y a b lieáris egyeletek csoportja ugya ao a váltoó halmao Lieáris egyeletredser B b B b B b

Részletesebben

COMPANY PROFILE SZOFI ALGORITHMIC RESEARCH KFT

COMPANY PROFILE SZOFI ALGORITHMIC RESEARCH KFT COMPANY PROFILE SZOFI ALGORITHMIC RESEARCH KFT WWW.SZOFIUSA.COM CÉGTÖRTÉNET 1990 Alapítás 1990 Informatikai fejlesztések kezdete 1992 Felsőfokú informatikai képzési rendszer kidolgozása a kormányzat részére

Részletesebben

Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus

Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus LOGO Kvatum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus Gyögyösi László BME Villamosméröki és Iormatikai Kar Bevezető Kvatum párhuzamosság Bármilye biáris üggvéyre, ahol { } { } : 0, 0,,

Részletesebben

MATLAB OKTATÁS 5. ELŐADÁS FELTÉTEL NÉLKÜLI ÉS FELTÉTELES OPTIMALIZÁLÁS. Dr. Bécsi Tamás Hegedüs Ferenc

MATLAB OKTATÁS 5. ELŐADÁS FELTÉTEL NÉLKÜLI ÉS FELTÉTELES OPTIMALIZÁLÁS. Dr. Bécsi Tamás Hegedüs Ferenc MATLAB OKTATÁS 5. ELŐADÁS FELTÉTEL NÉLKÜLI ÉS FELTÉTELES OPTIMALIZÁLÁS Dr. Bécsi Tamás Hegedüs Ferenc FELTÉTEL NÉLKÜLI OPTIMALIZÁLÁS (FMINSEARCH) Feltétel nélküli optimalizálásra a MATLAB az fminsearch

Részletesebben

2017/ Szegedi Tudományegyetem Informatikai Intézet

2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék. Dr. Kulcsár Gyula egyetemi docens Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Dr. Kulcsár Gyula egyetemi docens Rugalmas gyártórendszerek Milyen gyártóberendezés-csoport tekinthető rugalmas gyártórendszernek?

Részletesebben

Témakörök. Egyed-kapcsolat modell. Alapfogalmak

Témakörök. Egyed-kapcsolat modell. Alapfogalmak Témakörök Alapkocepciók Szoftvertechológia előadás Egyed-kapcsolat modellek Osztálydiagramok Iterakciódiagramok Vezérlési struktúrák Dötési táblák és fák Állapotautomaták Petri hálók Egyed-kapcsolat modell

Részletesebben

Szolgáltatás Orientált Architektúra és több felhasználós adatbázis használata OKF keretein belül. Beke Dániel

Szolgáltatás Orientált Architektúra és több felhasználós adatbázis használata OKF keretein belül. Beke Dániel Szolgáltatás Orientált Architektúra és több felhasználós adatbázis használata OKF keretein belül Beke Dániel Alap Architektúrák ESRI építőelemek Gazdag (vastag) Kliens Alkalmazások Web Alkalmazások Szolgáltatások

Részletesebben

Vállalatgazdaságtan. Minden, amit a Vállalatról tudni kell

Vállalatgazdaságtan. Minden, amit a Vállalatról tudni kell Vállalatgazdaságtan Minden, amit a Vállalatról tudni kell 1 Termelési rendszer vizsgálata 2 képzeljük el az alábbi helyzetet örököltünk egy gyárat mit csináljunk vele? működtessük de hogyan? Hogyan működik

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Fülöp Csaba, Kovács László, Micsik András

Fülöp Csaba, Kovács László, Micsik András Rendszerek Osztály Metaadatsémák nyilvántartása szemantikus web alapon Fülöp Csaba, Kovács László, Micsik András MTA SZTAKI Bemutatás A CORES az európai közösség projektje a Szemantikus Web témakörben

Részletesebben

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time)

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) (A képzés közös része, szakirányválasztás a 3. félév végén) Tárgykód Félév Tárgynév Tárgy

Részletesebben

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854):  ' #$ * $ ( ' $*  ' #µ Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből

Részletesebben

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11. 11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során

Részletesebben

Számítógép architektúra

Számítógép architektúra Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Számítógép architektúra Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Irodalmi források Cserny L.: Számítógépek

Részletesebben

Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem

Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem A Java EE 5 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2008. 04. 17. A Java EE 5 platform A Java EE 5 plattform A J2EE 1.4 után következő verzió. Alapvető továbbfejlesztési

Részletesebben

Multimédiás adatbázisok

Multimédiás adatbázisok Multimédiás adatbázisok Multimédiás adatbázis kezelő Olyan adatbázis kezelő, mely támogatja multimédiás adatok (dokumentum, kép, hang, videó) tárolását, módosítását és visszakeresését Minimális elvárás

Részletesebben

A Java EE 5 plattform

A Java EE 5 plattform A Java EE 5 platform Ficsor Lajos Általános Informatikai Tanszék Miskolci Egyetem Utolsó módosítás: 2007. 11. 13. A Java EE 5 platform A Java EE 5 plattform A J2EE 1.4 után következő verzió. Alapvető továbbfejlesztési

Részletesebben

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:. MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 1. félév 3. Előadás Dr. Kulcsár Gyula egyetemi docens A termelésinformatika alapjai

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Infor PM10 Üzleti intelligencia megoldás

Infor PM10 Üzleti intelligencia megoldás Infor PM10 Üzleti intelligencia megoldás Infor Üzleti intelligencia (Teljesítmény menedzsment) Web Scorecard & Műszerfal Excel Email riasztás Riportok Irányít Összehangol Ellenőriz Stratégia Stratégia

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát

Részletesebben

Számítógép-hálózatok, az Internet és szolgáltatásai. Virtuális vállalat 6. előadás Dr. Kulcsár Gyula

Számítógép-hálózatok, az Internet és szolgáltatásai. Virtuális vállalat 6. előadás Dr. Kulcsár Gyula Számítógép-hálózatok, az Internet és szolgáltatásai Virtuális vállalat 6. előadás Dr. Kulcsár Gyula Célok Számítógép-hálózat: az egymással kapcsolatban lévő önálló számítógépek rendszere Erőforrás megosztás:

Részletesebben

Virtuális vállalat JÁRMŰIPARI ALKATRÉSZGYÁRTÁS TERMELÉSPROGRAMOZÁSI FELADATAINAK MODELLEZÉSE ÉS MEGOLDÁSA

Virtuális vállalat JÁRMŰIPARI ALKATRÉSZGYÁRTÁS TERMELÉSPROGRAMOZÁSI FELADATAINAK MODELLEZÉSE ÉS MEGOLDÁSA Virtuális vállalat JÁRMŰIPARI ALKATRÉSZGYÁRTÁS TERMELÉSPROGRAMOZÁSI FELADATAINAK MODELLEZÉSE ÉS MEGOLDÁSA Dr. Kulcsár Gyula, Dr. Kulcsárné Forrai Mónika Miskolci Egyetem Alkalmazott Informatikai Intézeti

Részletesebben

A vállalti gazdálkodás változásai

A vállalti gazdálkodás változásai LOGISZTIKA A logisztika területei Szakálosné Dr. Mátyás Katalin A vállalti gazdálkodás változásai A vállalati (mikro)logisztika fő területei Logisztika célrendszere Készletközpontú szemlélet: Anyagok mozgatásának

Részletesebben

Fejlesztési tapasztalatok multifunkciós tananyagok előállításával kapcsolatban Nagy Sándor

Fejlesztési tapasztalatok multifunkciós tananyagok előállításával kapcsolatban Nagy Sándor Fejlesztési tapasztalatok multifunkciós tananyagok előállításával kapcsolatban Nagy Sándor VE GMK Statisztika és Informatika Tanszék nagy-s@georgikon.hu Összefoglaló Világszerte tanúi lehettünk a mobilkommunikációs

Részletesebben

Matematikai modellezés

Matematikai modellezés Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe

Részletesebben

Cloud Computing - avagy mi hol van és miért? Dr. Kulcsár Zoltán

Cloud Computing - avagy mi hol van és miért? Dr. Kulcsár Zoltán Cloud Computing - avagy mi hol van és miért? Dr. Kulcsár Zoltán Mi is az a cloud computing? Számítási felhő Kis teljesítményű felhasználói eszköz Nagy teljesítményű szolgáltatói szerver 2 Felhasználási

Részletesebben

Adatbányászat és Perszonalizáció architektúra

Adatbányászat és Perszonalizáció architektúra Adatbányászat és Perszonalizáció architektúra Oracle9i Teljes e-üzleti intelligencia infrastruktúra Oracle9i Database Integrált üzleti intelligencia szerver Data Warehouse ETL OLAP Data Mining M e t a

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Gyakorló feladatok a Management számvitel elemzés tárgyhoz Témakör: Tevékenység alapú költségszámítás

Gyakorló feladatok a Management számvitel elemzés tárgyhoz Témakör: Tevékenység alapú költségszámítás 1. példa Egy vállalat négy féle terméket gyárt. A gyártott termékeket jelezzük T1, T2, T3, T4. A T1 és T2 termékek kisméretûek a T3 és a T4 termékek nagyméretûek. A T1 és T3 termékeket kisvolumenben, a

Részletesebben

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)

Részletesebben

Témakörök. Alapkoncepciók. Alapfogalmak. Egyed-kapcsolat modell. Alapfogalmak. Egyed-kapcsolat diagram

Témakörök. Alapkoncepciók. Alapfogalmak. Egyed-kapcsolat modell. Alapfogalmak. Egyed-kapcsolat diagram Témakörök Alapkocepciók Szoftvertechológia elıadás Egyed-kapcsolat modellek Osztálydiagramok Iterakciódiagramok Vezérlési struktúrák Dötési táblák és fák Állapotautomaták Petri hálók Egyed-kapcsolat modell

Részletesebben

A Jövő Internet Nemzeti Kutatási Program bemutatása

A Jövő Internet Nemzeti Kutatási Program bemutatása A Jövő Internet Nemzeti Kutatási Program bemutatása Dr. Bakonyi Péter és Dr. Sallai Gyula Jövő Internet Kutatáskoordinációs Központ Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2013. június

Részletesebben

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar Algoritmizálás Horváth Gyula Szegedi Tudomáyegyetem Természettudomáyi és Iformatikai Kar horvath@if.u-szeged.hu. Mohó algoritmusok A mohó stratégia elemi 1. Fogalmazzuk meg az optimalizációs feladatot

Részletesebben

Logisztika A. 2. témakör

Logisztika A. 2. témakör Logisztika A tantárgy 2. témakör Beszerzési-, termelési-, elosztási-, újrahasznosítási logisztika feladata MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék Beszerzési logisztika Beszállító Vevõ Áruátvétel

Részletesebben

Neurális hálózatok bemutató

Neurális hálózatok bemutató Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:

Részletesebben

Melyek az újdonságok a Microsoft Dynamics AX 2012-ben? Sasfi Imre 2012. 11. 27.

Melyek az újdonságok a Microsoft Dynamics AX 2012-ben? Sasfi Imre 2012. 11. 27. Melyek az újdonságok a Microsoft Dynamics AX 2012-ben? Sasfi Imre 2012. 11. 27. * Planned to be released in Q1 CY2012 Microsoft Dynamics AX2012 Solution Overview Ágazat specifikus megoldások Gyártás Nagykereskedelem

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Alkalmazások teljesítmény problémáinak megszűntetése

Alkalmazások teljesítmény problémáinak megszűntetése Alkalmazások teljesítmény problémáinak megszűntetése tapasztalatok a Compuware dynatrace APM szoftverrel RAIFFEISEN BANK ZRT. Melegh Csanád Alkalmazás üzemeltetési osztályvezető Előzmények Performancia

Részletesebben

Valós és funkcionálanalízis

Valós és funkcionálanalízis Matematika taozatok. Kedd 13:3 Marx-terem 1. Baják Szabolcs (DE TTK). Baloh Ferec (SZTE TTK) 3. Glavosits Tamás (DE TTK) 4. Mészáros Fruzsia (DE TTK) 5. Mező Istvá (DE TTK) 6. Naszódi Gerely (ELTE TTK)

Részletesebben

Autóipari klaszter m;ködésének alapelvei Operating Principles of an Automotive Cluster

Autóipari klaszter m;ködésének alapelvei Operating Principles of an Automotive Cluster Autóipari klaszter m;ködéséek alapelvei Operatig Priciples of a Automotive Cluster ÉSZÁROS Ferec, Dr. CSELÉNYI József iskolci Egyetem Gépészméröki Kar Abstract The paper itroduces the strucure ad tasks

Részletesebben

SZOFI ALGORITHMIC RESEARCH KFT WWW.SZOFIUSA.COM

SZOFI ALGORITHMIC RESEARCH KFT WWW.SZOFIUSA.COM SZOFI ALGORITHMIC RESEARCH KFT WWW.SZOFIUSA.COM CÉGTÖRTÉNET 1990 Alapítás 1990 Informatikai fejlesztések kezdete 1992 Felsőfokú informatikai képzési rendszer kidolgozása a kormányzat részére a rendszerprogramozó

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,

Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását, Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

A Szállítási feladat megoldása

A Szállítási feladat megoldása A Szállítási feladat megoldása Virtuális vállalat 201-2014 1. félév 4. gyakorlat Dr. Kulcsár Gyula A Szállítási feladat Adott meghatározott számú beszállító (source) a szállítható mennyiségekkel (transportation

Részletesebben

Internetes térkép publikálási technikák, szabványok, trendek, nyílt forráskódú megoldások

Internetes térkép publikálási technikák, szabványok, trendek, nyílt forráskódú megoldások Internetes térkép publikálási technikák, szabványok, trendek, nyílt forráskódú megoldások dr. Siki Zoltán Áttekintés OGC, OSGeo szervezetek Szabványosítási irányok Nem szabványos megoldások (Google) OGC

Részletesebben

Ó Ó ü ú ú

Ó Ó ü ú ú ü Ü ű Ó Ó ü ú Ó Ó ü ú ú Ó Ó ü ú ú ü Ü ü Ó Ó ú ü ű ü Ó Ó ü ú Ü Ü ü ü Ű Ű ú Ó ü ú ú Ó Ó ú Ö Ó Ó ú Ó Ó ú ü ü ü ü ü Ü Ó Ó ü ü ü ü ü ü Ó Ó ü Ü ú ü Ó Ó Ó Ü ű Ü ü ű Ü Ő Ő ü Ő ú ú ú ü Ó Ó ú Ó Ó Ó ű Ő Ő Ő Ő Ü ú

Részletesebben

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu

ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu ADATBÁZIS-KEZELÉS - BEVEZETŐ - Tarcsi Ádám, ade@inf.elte.hu Számonkérés 2 Papíros (90 perces) zh az utolsó gyakorlaton. Segédanyag nem használható Tematika 1. félév 3 Óra Dátum Gyakorlat 1. 2010.09.28.

Részletesebben

3. Az energiatermelés költségei Gazdasági elemzések 1.

3. Az energiatermelés költségei Gazdasági elemzések 1. 3. Az eergiatermelés ei Gazdasági elemzések. Cél Vállalati Országos Globális yereségesség yereséges gazdálkodás piacralépés, piaci kivoulás gazdaságosság legkisebb társadalmi (fizetési mérleg, járulékos

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Ó

Ó Ó Ó Ú Ú Ü Ü Ü Ü Ű Ü ű Ü Ü Ö Ü Ü Ú Ü Ö Ő Ü Ú Ő Ö ű ű ű Ú Ú Ü Ü Ú Ú Ü ű Ü Ő ű Ö Ü Ü ű ű Ü Ü ű Ő ű Ú Ú Ö Ö Ő Ü ű Ü ű ű ű Ü ű Ő Ü Ú ű Ő Ó Ú Ö Ü Ú Ú ű Ü Ü Ü ű Ü ű ű ű Ú Ó ű Ü Ö Ú Ö Ö Ü Ú ű Ú ű Ü Ü Ü Ő ű Ú Ü

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: Járattípusok Kapcsolatok szerit: Sugaras, igaárat: Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determiisztikus, a beszállítási és kiszállítási időpot em kötött a

Részletesebben

ű ű Ó

ű ű Ó ű ű ű Ó Ü Ü Ú Ö Ö ű Ó ű ű ű ű Ú Ú Ó ű Ó ű ű ű ű Ó ű Ú Ü Ü ű Ú ű ű Ó Ú Ö ű Ó Ü Ú Ó ű ű ű ű Ú Ó ű ű Ö Ú ű ű Ó ű Ó Ü Ö Ú Ö Ö ű ű Ü Ó Ó Ú Ó Ü Ó Ü Ő ű ű Ú ű ű ű ű ű Ó Ó ű ű ű ű Ú ű ű ű Ó Ú ű Ö ű Ó Ö Ú ű Ó Ú

Részletesebben

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű Ü Ü ű ű ű Ü ű Ú ű Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű Ö ű ű Ú ű ű ű ű Ö Ú Ü ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ú ű Ü Ú Ú ű Ü ű ű Ö ű ű ű ű ű ű ű ű ű ű Ü ű ű Ű

Részletesebben

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok egyetemi docens Menedzsment és Vállalatgazdaságtan Tanszék kallo@mvt.bme.hu Tudnivalók Segédanyagok Jegyzet, előadásvázlatok, munkafüzet Példatár, konzultáció, képletgyűjtemény Elméleti kérdések kidolgozása

Részletesebben

ű ű ű Ú ű ű Ó ű Ó Ö

ű ű ű Ú ű ű Ó ű Ó Ö Ö Ú ű ű Ü ű ű Ú ű ű ű Ú ű ű Ó ű Ó Ö ű Ú Ü ű Ú ű ű ű Ú ű ű Ú Ú Ó Ü ű ű Ú Ú Ú Ú ű Ű ű Ó ű Ó Ó ű Ú Ó Ú Ü Ú Ó Ú Ú Ű ű Ö ű ű Ú Ö Ú ű Ö Ú Ö Ú ű ű Ó ű Ú ű ű ű Ö ű ű ű Ó ű ű Ú ű ű Ö ű Ú ű Ó ű Ü Ú Ó ű ű ű Ú Ú Ó

Részletesebben

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ú ű ű ú ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ö Ó ú Ü Ü Ó Ő ű ú ú Ö Ö ú ű ú ú ú ű ű ű Ú ú ű ú ű Ö Ő ú ú ú Ü ú ű ű ű ű ű ű Ü ú ű Ú ú ű ú ű ú ú ű ú ú ű ű ú Ö ú ű Ó ú ú ú Ü ű ú ú ú ű Ü ű

Részletesebben

Logisztikai fejlesztési feladatok a Technopolis Miskolc Város Versenyképességi Pólus keretei között

Logisztikai fejlesztési feladatok a Technopolis Miskolc Város Versenyképességi Pólus keretei között Logisztikai fejlesztési feladatok a Technopolis Miskolc Város Versenyképességi Pólus keretei között Dr. Prof. Emeritus Dr. hc. mult. Cselényi József egyetemi tanár Dr. habil Illés Béla Ph.D. tanszékvezető

Részletesebben

Big Data technológiai megoldások fejlesztése közvetlen mezőgazdasági tevékenységekhez

Big Data technológiai megoldások fejlesztése közvetlen mezőgazdasági tevékenységekhez Big Data technológiai megoldások fejlesztése közvetlen mezőgazdasági tevékenységekhez Szármes Péter doktorandusz hallgató Széchenyi István Egyetem, MMTDI Dr. Élő Gábor egyetemi docens, Széchenyi István

Részletesebben

A számítógépes termeléstervezés alapjai. Fundamentals of Production Information Engineering. Felsőfokú műszaki végzettség

A számítógépes termeléstervezés alapjai. Fundamentals of Production Information Engineering. Felsőfokú műszaki végzettség Kurzus neve: A számítógépes termeléstervezés alapjai Rövid név: Termeléstervezés Kód: HEFOP 3.3.1-ME-IAK 4.1 Angol név: Intézmény: Tanszék: Kurzusfelelős: Szükséges előképzettség: Előtanulmányként javasolt

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

Statisztikai programcsomagok

Statisztikai programcsomagok Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés

Részletesebben

Többfelhasználós és internetes térkép kezelés, megjelenítés

Többfelhasználós és internetes térkép kezelés, megjelenítés Többfelhasználós és internetes térkép kezelés, megjelenítés Többfelhasználós környezetek Egyszerű fájlszerveres megoldás, LAN (Novel, Windows hálózat) Egy fájl egyidejű módosítása több helyről nem lehetséges

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

legkésőbb október végéig véleményezze. (50 igen, O ellenszavazat, 1 tartózkodás)

legkésőbb október végéig véleményezze. (50 igen, O ellenszavazat, 1 tartózkodás) Melléklet 1. 695/2003(1V. 24.) 696/2003(1V.24.) Egyetért azzal, hogy a Fővárosi Helyi Adófeldolgozás l nformációs Rendszerének 2005-201 O közötti fejlesztési és üzemeltetési feladatai "outsourcing" konstrukció

Részletesebben

Oracle adatkezelési megoldások helye az EA világában. Előadó: Tar Zoltán

Oracle adatkezelési megoldások helye az EA világában. Előadó: Tar Zoltán Oracle adatkezelési megoldások helye az EA világában Előadó: Tar Zoltán Témák Bemutatkozás Enterprise Architecture bemutatása Mi az az EA? TOGAF bemutatása OEAF bemutatása Oracle megoldások Oracle termékek

Részletesebben

Autodesk Topobase gyakorlati alkalmazások Magyarországon

Autodesk Topobase gyakorlati alkalmazások Magyarországon Autodesk Topobase gyakorlati alkalmazások Magyarországon Állami Autópálya kezelő Zrt - Digitális Törzskönyv Előadó: Cservenák Róbert HungaroCAD Kft. Térinformatikai csoportvezető Marjai György - ÁAK Zrt.

Részletesebben

Jövő Internet - kutatások az elmélettől az alkalmazásig. Eredménykommunikációs kiadvány

Jövő Internet - kutatások az elmélettől az alkalmazásig. Eredménykommunikációs kiadvány Jövő Internet - kutatások az elmélettől az alkalmazásig Eredménykommunikációs kiadvány Jövő Internet kutatások az elmélettől az alkalmazásig Szerkesztő: Dr. Adamkó Attila, Dr. Almási Béla, Dr. Aszalós

Részletesebben

Folytonos idejű rendszerek stabilitása

Folytonos idejű rendszerek stabilitása Folytoos idejű redszerek stabilitása Összeállította: dr. Gerzso Miklós egyetemi doces PTE MIK Műszaki Iformatika Taszék 205.2.06. Itelliges redszerek I. PTE MIK Mérök iformatikus BSc szak Stabilitás egyszerűsített

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben