Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:
|
|
- Domokos Németh
- 8 évvel ezelőtt
- Látták:
Átírás
1
2 Járattípusok Kapcsolatok szerit: Sugaras, igaárat: Voalárat: Körárat:
3
4
5 Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determiisztikus, a beszállítási és kiszállítási időpot em kötött a ϑ időszak alatt bármikor megtörtéhet, áratkapacitás álladó: C 0, útvoal választható, várakozási felrakásál ill. lerakásál ics t v =0, árműpark homogé, rakodási idő álladó: t R =álladó. Kiidulási adatok a áratkezeléshez: ayagáram mátrix Q = i q i : obektumok q i az i-edik állomásból -edik állomásba ϑ idő alatt elszállítadó egységrakomáy,
6 útmátrix: L = i i : obektumok l i az i-edik állomásból -edik obektumba a legrövidebb úthossz. Járatkapacitás: C 0 egy árat által elszállítadó meyiség.
7 Járattervezés célfüggvéye: Tp ( ) = t( p) + t( p) + t( p) + t( p) = Mi! h ü w R ahol: T( p ) a ϑ idő alatt elvégzedő szállítási feladatok összes időszükséglete, amelyek kompoesei: t ( ) h p tü( p) t ( ) w t ( ) R p p a haszos áratidők összege, az üresárati idők összege, p a rakodóhelyeke fellépő rakodási idők összege, a rakodóhelye a rakodási idők összege, a rakodóhelyek felkereséséek sorredére képzett változat ele. A haszos és üresárati idők: t t h ü = = Modell változatok az R mátrix alakulásától függek. L v L v h ü
8 a) Üresáratok élkül megvalósítható áratok. Feltétel: Kilépő áratok száma: R = i ri ri Beléptető áratok száma: 2. Feltétel: s = Iteger! i f i = ri = s = r i = i= f {, 2} {, 2 } {, 2 } i i {, 2 } {,2 } i i Ha a feltételek telesülek, akkor a áratok Euler gráfot alkotak
9 Járatokból képzett Euler gráf tuladoságai: csúcsok a rakodóhelyek, i r i =2 r i =3 élek a áratok vagyis ha i-ből -be pl.: 3 árat, a -ből az i-be 2 árat fut, akkor a gráfba i csúcsból a csúcsba 3 él, a csúcsból az i csúcsba 2 él fut, ha élek meté képezzük a áratokat vagyis mide éle egyszer és csakis egyszer haladuk át a gráfo maradhata mide állomásba az előírtak szerit árhatuk el. A célfüggvéy általáos alaka: Tp ( ) = t( p) + t( p) + t( p) + t( p) = Mi! h ü w R A fetiek alapá tehát az üres árat elkerülhető. Lü( p ) = 0 Mivel L h (p)=álladó vagy em függ a sorredtől, továbbá t R (p)=álladó, t w =0, így T( p) = álladó Vagyis a T(p) összidő em függvéye a áratváltozatak. Több féle áratváltozat vezet üresárat élküli megoldáshoz. (Lásd. példa)
10 b. Üresárat úthossz miimalizálással megoldadó targocás áratok s i ri = Iteger! f Θ 0 ahol Θ azo rakodóhelyek halmaza, ahol a befutó és kifutó áratok száma eltérő. befutó üresárat kifutó üresárat s i >f -él h = s i -f d i = 0 s i =f -él h = 0 d i = 0 s i <f -él h = 0 d i = f -s i Az üresáratok száma: i i= = Célfüggvéy általáos alaka: m = d = h = álladó Tp ( ) = t( p) + t( p) + t( p) + t( p) = Mi! h ü w R mivel T p = álladó T p = álladó Tw = amely visszavezethető: h ( ), r( ), 0 T( p) T ( p) = Mi! ü Lü ( p) Tü( p) = Lü( p) = Mi! v vagyis az üresárati úthossz miimalizálását kell elvégezi.
11 Miimális üresárati úthossz: ' l i Lü k m ' ( p) = lixi = Mi! i= = ' a redukált útmátrix, töröli kell az eredeti l i útmátrix azo sorát, ahová ics befutó üresárat, ill. azo oszlopot, ahoa ics kifutó üresárat. K eressük: x i mátrixot, ahol x i az i-edik állomásból a -edi k rakodóhelyre meő üresáratok száma. Feltét lek: e i x =Iteger! k i= m = x = h ( =... m) i i i ( i=... k) A redukált útmátrix képzése: x = d ' l i = 0 ha h = 0 vagy d = 0 l ' i i ellekező esetbe = l ha h > 0 vagy d > 0 Az optimalizálás a lieáris programozás egy speciális feladatára a szállítás i feladatra vezethető visza, amely az u. magyar módszerrel megoldható. (Lásd 2. példa)
12 c. Köráratok tervezése (gyűtő- és elosztóárat) R mátrix degeerálódik: a) elosztóárat: oszlopvektor r r = r i r b) gyűt őárat: sorvektor T r rr r Egy árattal megoldható: = r = r ; r = r 0 i 0 i= = p árattal oldható meg: Szükséges áratszám: r = r > ; r = r > 0 i 0 i= = p Etier r 0 +
13 T( p) = t ( p) + t ( p) + t ( p) + t ( p) t t h ü w R w ü ( p) = 0 ( p) = 0 t ( p) = álladó R L K körút hossza T( p) = t ( p) = Mi! h LK ( p) T( p) = = Mi! v L ( p) = Mi! k Célfüggvéy: L ( p ) = x = Mi! K i i = i= Feltétel: x i i= = x i x i 0 = =
14 Egy árattal megoldható gyűtő vagy elosztó áratok: START Képezzük az útmátrix oszlopösszegeit Vesszük a legagyobb oszlopösszegeket adó 3 rakodóhelyet ige A Az oszlopösszegek csökkeése sorredébe körutat képezük és meghatározzuk a körút hosszát Va-e még bevoadó rakodóhely? em B Kiíratás STOP
15 (Lásd 3. példa)
16 . Példa: R = Képezhetők a sor és az oszlopok összegek: s Euler gráf: T = ill. f = 5; 4; 3; [ ] Egy lehetséges üresárat élküli megoldás:
Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:
JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött
Újrahasznosítási logisztika. 7. Gyűjtőrendszerek számítógépes tervezése
Újrahasznosítási logisztika 7. Gyűjtőrendszerek számítógépes tervezése A tervezési módszer elemei gyűjtési régiók számának, lehatárolásának a meghatározása, régiónként az 1. fokozatú gyűjtőhelyek elhelyezésének
Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1
Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.
= λ valós megoldása van.
Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt
Sorozatok A.: Sorozatok általában
200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,
Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék. 1. fólia
Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék 1. fólia Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék 2. fólia 3. fólia Külső anyagmozgatás elemei Szállítás. közúti, vasúti, vízi, légi,
8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.
8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),
Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.
Anyagmozgatás és gépei tantárgy 1. témakör Egyetemi szintű gépészmérnöki szak 2006-07. II. félév MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék
Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k)
Defiíci ció. Legye S=F q. Ekkor S az F q test feletti vektortér. r. K lieáris kód, k ha K az S k-dimeziós s altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor. W
Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai
közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet
Integrált Intetnzív Matematika Érettségi
tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f
Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.
Anyagmozgatás és gépei tantárgy 1. témakör Egyetemi szintű gépészmérnöki szak 2004-05. II. félév MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék
KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn
A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója
VI.Kombinatorika. Permutációk, variációk, kombinációk
VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti
ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
RUGALMAS GYÁRTÓRENDSZER ÉS LOGISZTIKAI (ANYAG- ÉS INFORMÁCIÓÁRAMLÁSI) RENDSZER. 1. Rugalmas gyártó- és anyagáramlási rendszerek sajátosságai
UGALAS GYÁTÓENDSZE ÉS LOGISZTIKAI (ANYAG- ÉS INFOÁCIÓÁALÁSI) ENDSZE. ugalmas gyártó- és ayagáramlási redszerek sajátosságai 2. ugalmas ayagáramlási redszer általáos modellje 3. Gyártóredszerek rugalmassági
f(n) n x g(n), n x π 2 6 n, σ(n) n x
Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy
Szerszámgépek 5. előadás 2007. Március 13. Szerszámg. 5. előad. Miskolc - Egyetemváros 2006/2007 2.félév
Sersámgépe 5. előadás. Márcis. Sersámg mgépe 5. előad adás Misolc - Egyetemváros /.félév Sersámgépe 5. előadás. Márcis. A sabályohatósági tartomáy övelésée módserei Előetes megfotoláso: S mi mi M S φ,
5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?
5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Sorbanállási modellek
VIII. előadás Sorbaállási modellek Sorbaállás: A sorbaállás, a várakozás általáos probléma közlekedés, vásárlás, takolás, étterem, javításra várás, stb. Eze feladatok elmélete és gyakorlata a matematikai
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3
Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)
Metrikus terek. továbbra is.
Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d
LINEÁRIS TRANSZFORMÁCIÓ
16..8. LINEÁRIS TRANSZFORMÁCIÓ (MÁTRIX) SAJÁTÉRTÉKE, SAJÁTVEKTORA BSc. Maemaika II. BGRMAHNND, BGRMAHNNC LINEÁRIS TRANSZFORMÁCIÓ Egy A: R R függvéy lieáris raszformációak evezük, ha eljesülek az alábbi
EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z
Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése
Villamos gépek tantárgy tételei
Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot
GLOBÁLIZÁLT BESZERZÉS ÉS ELOSZTÁS A LOGISZTIKÁBAN
3. EŐADÁS GOÁIZÁT ESZZÉS ÉS EOSZTÁS A OGISZTIKÁAN A termelés globalizációjának, a késleltetett termelés következménye, hogy két kapcsolódó láncszem a beszerzés és elosztás is globalizálódik. A globalizált
A feladatok. Csökkentsük a teljes költséget úgy, hogy minimalizáljuk: K V. vásárlási költséget, K S. szállítási költséget, K T. tárolási költséget.
A feladatok Csökkentsük a teljes költséget úgy, hogy minimalizáljuk: vásárlási költséget, S szállítási költséget, T tárolási költséget. 1 A rendszer felépítése B1... Bj... Bm S1 L Sg Sα F1... Fi... Fn
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 9. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 6. Bogya Norbert Lineáris algebra gyakorlat (9. gyakorlat Bázistranszformáció és alkalmazásai (folytatás Tartalom Bázistranszformáció
Matematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)
Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek
A kommutáció elve. Gyűrűs tekercselésű forgórész. Gyűrűs tekercselésű kommutátoros forgórész
Egyeáramú gépek 008 É É É + Φp + Φp + Φp - - - D D D A kommutáció elve Gyűrűs tekercselésű forgórész Gyűrűs tekercselésű kommutátoros forgórész 1 Egyeáramú gép forgórésze a) b) A feszültség időbeli változása
Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév
SOROK Feladatok és megoldások 1. Numerikus sorok
SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......
Anyagmozgatás fejlődésének története
Anyagmozgatás fejlődésének története 1. fólia súlyerő legyőzése, teher felemelése (emelőgépek); nagy mennyiségű anyagok szállítása (szállítóberendezések); nehéz fizikai munka megkönnyítése (gépesített
Integrálás sokaságokon
Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,
Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK
Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.
Beszállítás AR Gyártási folyamat KR
3. ELŐADÁS TERMELÉSI FOLYAMATOK STRUKTURÁLÓDÁSA 1. Megszakítás nélküli folyamatos gyártás A folyamatos gyártás lényege, hogy a termelési folyamat az első művelettől az utolsóig közvetlenül összekapcsolt,
1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása
hagyományos beszállítás JIT-elvû beszállítás az utolsó technikai mûvelet a beszállítás minõségellenõrzés F E L H A S Z N Á L Ó B E S Z Á L L Í T Ó K csomagolás raktározás szállítás árubeérkezés minõségellenõrzés
EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova
Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok
Termelési folyamat logisztikai elemei
BESZERZÉSI LOGISZTIKA Termelési logisztika Beszállítás a technológiai folyamat tárolójába Termelés ütemezés Kiszállítás a technológiai sorhoz vagy géphez Technológiai berendezés kiválasztása Technológiai
Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a
Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,
7. Dinamikus programozás
7. Diamikus rogramozás 7.1. Rekurzió memorizálással. Láttuk, hogy a artíció robléma rekurzív algoritmusa Ω(2 ) eljáráshívást végez. edig a lehetséges részroblémák száma csak 2 (vagy ( + 1)/2, ha csak az
III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK
Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar
A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab
öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Idősorok elemzése. 5. előadás. Döntéselőkészítés módszertana
Idősorok elemzése 5. előadás Dötéselőkészítés módszertaa Az idősorok elemzéséek egyszerűbb Számtai átlag eszközei: Kroológikus átlag Diamikus viszoyszám Átlagos abszolút eltérés Átlagos relatív eltérés
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
V. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészméröki és Iformatikai Kar Iformatikai Itézet Alkalmazott Iformatikai Itézeti Taszék 2017/18 2. félév 10. Előadás Dr. Kulcsár Gyula egyetemi doces Matematikai modellek a termelés
Ó Ó ü ú ú
ü Ü ű Ó Ó ü ú Ó Ó ü ú ú Ó Ó ü ú ú ü Ü ü Ó Ó ú ü ű ü Ó Ó ü ú Ü Ü ü ü Ű Ű ú Ó ü ú ú Ó Ó ú Ö Ó Ó ú Ó Ó ú ü ü ü ü ü Ü Ó Ó ü ü ü ü ü ü Ó Ó ü Ü ú ü Ó Ó Ó Ü ű Ü ü ű Ü Ő Ő ü Ő ú ú ú ü Ó Ó ú Ó Ó Ó ű Ő Ő Ő Ő Ü ú
9. HAMILTON-FÉLE MECHANIKA
9. HAMILTON-FÉLE MECHANIKA 9.. Legedre-éle traszormáció x x h x, p= p x x Milye x-él maximális? pl.= x alulról kovex h x =0: d p= dx x=x p a példába: p=x ; h= p x x Mekkora a maximuma? g p= p x p x p g=
BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika
BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,
FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu
FANTASZTIKUS KOMBINATORIKA Adva va külöböző elem Kiválasztuk k darabot Vesszük az összes elemet és sorba rakjuk A kiválasztás sorredje számít A kiválasztás sorredje em számít PERMUTÁCIÓ P matekig.hu Ha
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Ó
Ó Ó Ú Ú Ü Ü Ü Ü Ű Ü ű Ü Ü Ö Ü Ü Ú Ü Ö Ő Ü Ú Ő Ö ű ű ű Ú Ú Ü Ü Ú Ú Ü ű Ü Ő ű Ö Ü Ü ű ű Ü Ü ű Ő ű Ú Ú Ö Ö Ő Ü ű Ü ű ű ű Ü ű Ő Ü Ú ű Ő Ó Ú Ö Ü Ú Ú ű Ü Ü Ü ű Ü ű ű ű Ú Ó ű Ü Ö Ú Ö Ö Ü Ú ű Ú ű Ü Ü Ü Ő ű Ú Ü
Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011
1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }
ű ű Ó
ű ű ű Ó Ü Ü Ú Ö Ö ű Ó ű ű ű ű Ú Ú Ó ű Ó ű ű ű ű Ó ű Ú Ü Ü ű Ú ű ű Ó Ú Ö ű Ó Ü Ú Ó ű ű ű ű Ú Ó ű ű Ö Ú ű ű Ó ű Ó Ü Ö Ú Ö Ö ű ű Ü Ó Ó Ú Ó Ü Ó Ü Ő ű ű Ú ű ű ű ű ű Ó Ó ű ű ű ű Ú ű ű ű Ó Ú ű Ö ű Ó Ö Ú ű Ó Ú
Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű
Ü Ü ű ű ű Ü ű Ú ű Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű Ö ű ű Ú ű ű ű ű Ö Ú Ü ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ú ű Ü Ú Ú ű Ü ű ű Ö ű ű ű ű ű ű ű ű ű ű Ü ű ű Ű
ű ű ű Ú ű ű Ó ű Ó Ö
Ö Ú ű ű Ü ű ű Ú ű ű ű Ú ű ű Ó ű Ó Ö ű Ú Ü ű Ú ű ű ű Ú ű ű Ú Ú Ó Ü ű ű Ú Ú Ú Ú ű Ű ű Ó ű Ó Ó ű Ú Ó Ú Ü Ú Ó Ú Ú Ű ű Ö ű ű Ú Ö Ú ű Ö Ú Ö Ú ű ű Ó ű Ú ű ű ű Ö ű ű ű Ó ű ű Ú ű ű Ö ű Ú ű Ó ű Ü Ú Ó ű ű ű Ú Ú Ó
ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű
Ú ű ű ú ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ö Ó ú Ü Ü Ó Ő ű ú ú Ö Ö ú ű ú ú ú ű ű ű Ú ú ű ú ű Ö Ő ú ú ú Ü ú ű ű ű ű ű ű Ü ú ű Ú ú ű ú ű ú ú ű ú ú ű ű ú Ö ú ű Ó ú ú ú Ü ű ú ú ú ű Ü ű
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: 1 0 0 0 0 1 0 0 E n = 0 0 1 0 0 0 0 1 n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha
. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Eseményalgebra, kombinatorika
Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek
Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8.
. feladat: Eg 5 fős osztálba va fiú és 4 lá. z iskolai bálo (fiú-lá) pár fog tácoli. Háféleképpe tehetik ezt meg? párok sorredje em számít, viszot az, hog ki kivel tácol, az már ige. (0 pot) Válasszuk
A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és
Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
1. Komplex szám rendje
1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,
Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.
ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli
Ingatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudomáyegyetem Természettudomáyi és Iformatikai Kar horvath@if.u-szeged.hu. Mohó algoritmusok A mohó stratégia elemi 1. Fogalmazzuk meg az optimalizációs feladatot
MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA
1 MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA Tuzso Zoltá Akár a régebbi, akár az alteratív XI. osztályos algebra taköyveket lapozva, akár példatárakba vagy matematikai verseyeke gyakra találkozuk egyél magasabb
7. Dinamikus programozás
7. Diamikus rogramozás 7.1. Rekurzió memorizálással. Láttuk, hogy a artíció robléma rekurzív algoritmusa Ω(2 ) eljáráshívást végez, edig a lehetséges részroblémák száma csak 2 (vagy ( + 1)/2, ha csak az
3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát
A 10/2007 (II. 27.) 1/2006 (II. 17.) OM
A 0/2007 (II. 27.) SzMM redelettel módosított /2006 (II. 7.) OM redelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe törtéő felvétel és törlés eljárási redjéről alapjá. Szakképesítés, szakképesítés-elágazás,
MintaFeladatok 2.ZH Megoldások
1. feladat Kérem e-mail-ben jelezze, ha hibát talál: (veanna@inf.elte.hu, vagy veanna@elte.hu ) P={ } S A B C AB SC AC a c BC b CS SS c S a kezdőjel Mivel a piramis tetején lévő kocka a mondatkezdő szimbólumot
Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...
Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8
Hálózati transzformátorok méretezése
KÁLMÁN Telefogyár ISTVÁN Hálózati traszformátorok méretezése ETO 62.34.2.00.2 dolgozat célja olya számítási eljárás megadása, amelyek segítségével gyorsa és a gyakorlat igéyeit kielégítő potossággal lehet
Mat. A2 3. gyakorlat 2016/17, második félév
Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0