Integrált gyártórendszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Integrált gyártórendszerek"

Átírás

1 IGYR-7 p. 1/4 Integrált gyártórendszerek Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel, dinamikus programozás Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék hangos.katalin@virt.uni-pannon.hu

2 A gyártásütemezés feladatai IGYR-7 p. 2/4

3 IGYR-7 p. 3/4 A gyártásütemezés elvi problémakitűzése Adott: a gyártóberendezések halmaza (erőforrások, korlátosak): típus, gyártókapacitás a lehetséges műveletek halmaza végrehajtási idővel vagy költséggel műveletekre vonatkozó korlátozások: sorrendi, milyen típusú berendezésen hajtható végre a végtermék(ek): rendelésállománnyal, ami dinamikusan is változhat (a lehetséges kiindulási anyagok): rendelkezésre állással, ami dinamikusan is változhat Kiszámítandó: egy ütemezés, ami előírja, hogy milyen műveletet melyik berendezésen mikor hajtsunk végre idő vagy költség optimálisan

4 IGYR-7 p. 4/4 Speciális gyártásütemezési feladatok 1. Változó erőforrás-korlátozású dinamikus feladat Jellemzői: a rendelésállomány és a nyersanyagok rendelkezésre állása időben változó időben változó berendezés kapacitás és rendelkezésre állás minden időlépésben lokálisan megvalósítható megoldást keresünk Megoldható cselekvés tervezéssel

5 IGYR-7 p. 5/4 Speciális gyártásütemezési feladatok 2. Erőforrás-korlátozás nélküli statikus feladat Jellemzői: a rendelésállomány és a nyersanyagok rendelkezésre állása statikus (időben állandó) korlátlan berendezés kapacitás és rendelkezésre állás legkisebb végrehajtási idejű megoldást keresünk Van egyszerű, polinomiális időben kiszámítható megoldás

6 IGYR-7 p. 6/4 Műveleti tervek végrehajtásának ellenőrzése szimulációval (időzített Petri hálók)

7 IGYR-7 p. 7/4 Kiterjesztett Petri háló modellek Hierarchikus Petri hálók Időzített Petri hálók: feliratokkal óra: beépített (vagy spec. "forrás" hely) átmenetekhez tüzelési ido (helyekhez várakozási ido) Színezett Petri hálók: feliratokkal jelzőpontok (token-ek) diszkrét értékkészletuek ("szín") helyekhez megengedett színhalmaz átmenetekhez és élekhez (diszkrét) függvények

8 IGYR-7 p. 8/4 Futópálya Petri háló modellje Időzített Peri háló modell! "

9 IGYR-7 p. 9/4 Galuskaszaggató gyártás modellje Galuska-szaggató gyártás műveletei (időzített Peri háló modell formájában) Nyel-lap Alap-lap Tpres1 (type Presgep1) Tpres2 (type Presgep1) Ido: 2 Ido: 4 Alap-tal Nyel Lyukfuras (type Furogep) Ido: 3 Lyukas-tal Szegecseles (type Szegecselo) Ido: 1 Lyukas-tal-nyellel Festes (type Festolakkozo) Ido: 5 Galuska-szaggato

10 IGYR-7 p. 10/4 Galuskaszaggató gyártás végrehajtása 1 Galuska-szaggató gyártás szimulációja (időzített Peri háló modell felhasználásával): t = 0, t = 2, t = 4 Nyel-lap Alap-lap Nyel-lap Alap-lap Nyel-lap Alap-lap Tpres1 (type Presgep1) Tpres2 (type Presgep1) Ido: 2 Ido: 4 Tpres1 (type Presgep1) Tpres2 (type Presgep1) Ido: 2 Ido: 4 Tpres1 (type Presgep1) Tpres2 (type Presgep1) Ido: 2 Ido: 4 Alap-tal Alap-tal Alap-tal Nyel Lyukfuras (type Furogep) Nyel Lyukfuras (type Furogep) Nyel Lyukfuras (type Furogep) Ido: 3 Ido: 3 Ido: 3 Lyukas-tal Lyukas-tal Lyukas-tal Szegecseles (type Szegecselo) Ido: 1 Szegecseles (type Szegecselo) Ido: 1 Szegecseles (type Szegecselo) Ido: 1 Lyukas-tal-nyellel Lyukas-tal-nyellel Lyukas-tal-nyellel Festes (type Festolakkozo) Festes (type Festolakkozo) Festes (type Festolakkozo) Ido: 5 Ido: 5 Ido: 5 Galuska-szaggato Galuska-szaggato Galuska-szaggato

11 IGYR-7 p. 11/4 Galuskaszaggató gyártás végrehajtása 2 Galuska-szaggató gyártás szimulációja (folytatás) (időzített Peri háló modell felhasználásával): t = 7, t = 8 Nyel-lap Alap-lap Nyel-lap Alap-lap Tpres1 (type Presgep1) Tpres2 (type Presgep1) Ido: 2 Ido: 4 Tpres1 (type Presgep1) Tpres2 (type Presgep1) Ido: 2 Ido: 4 Alap-tal Alap-tal Nyel Lyukfuras (type Furogep) Nyel Lyukfuras (type Furogep) Ido: 3 Ido: 3 Lyukas-tal Lyukas-tal Szegecseles (type Szegecselo) Szegecseles (type Szegecselo) Ido: 1 Ido: 1 Lyukas-tal-nyellel Lyukas-tal-nyellel Festes (type Festolakkozo) Festes (type Festolakkozo) Ido: 5 Ido: 5 Galuska-szaggato Galuska-szaggato

12 IGYR-7 p. 12/4 Egyszerű grafikus módszer a megjelenítésre és analízisre (Gantt chart)

13 IGYR-7 p. 13/4 Gantt táblázat - Gantt chart A leírás elemei: Feladatok: (kezdete, vége), előző feladat, erőforrás Erőforrások (személyek): feladathoz rendelhetők, lehet karbantartási (szabadság) idejük Nézetek: a leírás elemeiből Gantt táblázat PERT gráf Erőforrás-foglaltság táblázat

14 IGYR-7 p. 14/4 Gantt táblázat összeállításának menete az adott témának megfelelően meghatározzuk a tevékenységeket, meghatározzuk a folyamat teljes átfutási idejét (határidejét), meghatározzuk az egyes munkalépések időszükségletét, feltárjuk az egyes munkalépések logikai összefüggéseit (mely lépések végezhetők párhuzamosan, egymást megelőzve, követve) fentiek figyelembe vétele mellett a tevékenységek időszükségletét vonallal jelöljük

15 IGYR-7 p. 15/4 Egy egyszerű példa Galuska-szaggató gyártás műveletei (Petri háló formájában) Nyel-lap Alap-lap Tpres1 (type Presgep1) Tpres2 (type Presgep1) Alap-tal Nyel Lyukfuras (type Furogep) Lyukas-tal Szegecseles (type Szegecselo) Lyukas-tal-nyellel Festes (type Festolakkozo) Galuska-szaggato

16 IGYR-7 p. 16/4 Gantt táblázat - példa Feladatok elhelyezése az időtengelyen minden feladat külön sorban időtengely vizszintes sorrendiség nyilakkal (automatikus időeltolás)

17 Gantt táblázat - másik példa IGYR-7 p. 17/4

18 IGYR-7 p. 18/4 Mik a módszer erősségei és gyengeségei? Erősségek: szemléletes, könnyen áttekinthető formában ábrázolja az ütemtervet figyelembe vehető az összes tevékenység meghatározhatók a prioritások, függőségek, párhuzamosságok Gyengeségek: túl sok tevékenység vagy túl hosszú időtáv esetén bonyolulttá válhat az ábrázolás nem mindig képes ábrázolni a megfelelő öszefüggéseket

19 IGYR-7 p. 19/4 A program értékelő és átekintő módszer - PERT gráf A felírás lépései: a gyártásban szereplő összes tevékenység (feladat) meghatározása a tevékenységek sorrendjének meghatározása a függőségi kapcsolatok figyelembevételével a tevékenységek időtartamának becslése (optimista, legvalószínűbb, pesszimista becslés) az egyes tevékenységek várható idejének a kiszámítása a tevékenységi idők szórásnégyzetének a kiszámítása

20 IGYR-7 p. 20/4 PERT gráf - példa Feladatok egymásutánisági függéseinek leírása ok-okozati gráf formájában a feladatok a gráf csúcspontjai irányított él: előző feladatból az aktuális feladatba időbeliség: feliratokkal

21 IGYR-7 p. 21/4 Erőforrás foglaltsági táblázat - példa Erőforrás foglatságok elhelyezése az időtengelyen minden erőforrás külön sorban időtengely vízszintes konfliktus (több feladat igényelné ugyanazt az erőforrást) jelzése piros színnel

22 IGYR-7 p. 22/4 Erőforrás-korlátozás nélküli statikus ütemezés Kritikus út módszer

23 IGYR-7 p. 23/4 Kritikus út módszer - CPM CPM: Critical Path Method Adott az ütemezendő elemi műveletek halmaza (activity) minden elemi művelet előfeltételei (szintén elemi műveletek) parciális rendezés (egymásutániság) minden elemi művelet végrehajtási ideje Táblázatba rendezhető Grafikus leírás: CPM gráf élei megfelelnek az elemi műveleteknek (egy-egy értelmű megfeleltetés) csúcsok megfelelnek eseményeknek (rendszer-állapotok bekövetkezésének)

24 IGYR-7 p. 24/4 Mik a módszer erősségei és gyengeségei? Erősségek: a projektet alkotó tevékenységekre összpontosít azonosítja a szükséges kapcsolatokat a tevékenységek között minden egyes tevékenység becsült időtartamát ábrázolja kiszámolja a leggazdaságosabb megvalósítási módot Gyengeségek: sok tevékenység esetén bonyolult az alkalmazása

25 IGYR-7 p. 25/4 Egy egyszerű példa D(2) (A,D) 5 I(2) (A,D,I) 8 A(3) (A) 2 E(3)!!D(0)!! I(2) (NIL) 1 B(4) 3 F(5) 6 J(1) 9 (B) (A,B,D,E,F) (A,B,C,D,E,F,G,H,I,J,K) C(5) (C) 4 G(4) K(5) H(6) 7 (B,C,G,H) Művelet Előfeltételek Idő (min) Művelet Előfeltételek Idő (min) A - 3 G B 4 B - 4 H C 6 C - 5 I D 2 D A 2 J D, E, F 1 E A 3 K G, H 5 F B 5 GOAL *

26 A kritikus út kiszámítása 1 Algoritmikusan, két menetben I. Előrefelé haladó számítás: legkorábbi bekövetkezési idők 1. A kezdő esemény kezdeti idejét nullára állítjuk 2. Minden műveletet akkor kezdünk, ha az előfeltételek teljesültek 3. Minden esemény legkorábbi bekövetkezési ideje (E i ) a beléje vezető műveletek befejeződési idejeinek maximuma II. Visszafelé haladó számítás: legkésőbbi bekövetkezési idők 1. A befejező esemény legkésőbbi bekövetkezési idejét a legkorábbira állítjuk 2. Minden művelet legkésőbbi bekövetkezési idejét a vég-esemény legkésőbbi bekövetkezési idejéből számítjuk, levonva belőle a művelet végrehajtási idejét 3. Minden esemény legkésőbbi bekövetkezési ideje (L i ) a belőle induló műveletek kezdő idejeinek minimuma IGYR-7 p. 26/4

27 IGYR-7 p. 27/4 Az egyszerű példa - előrefelé (A,D) 5 [5, ] I(2) (A,D,I) 8 [7, ] (A) [3, ] D(2) 2!!D(0)!! I(2) A(3) E(3) [0, ] [4, ] (NIL) 1 B(4) 3 F(5) 6 J(1) 9 (B) (A,B,D,E,F) (A,B,C,D,E,F,G,H,I,J,K) C(5) G(4) [9, ] max(5,6,9) [16, ] max(7,10,16) (C) 4 [5, ] H(6) K(5) 7 (B,C,G,H) [11, ] max(8,11)

28 IGYR-7 p. 28/4 Az egyszerű példa - visszafelé [0, 0] min(8,3,0) (NIL) 1 A(3) B(4) [3, 11 ] min(11,12) (A) 2 [4, 7 ] min(9,7) 3 D(2) E(3) F(5) (A,D) [5,14 ] I(2) 5!!D(0)!! I(2) 6 J(1) (A,D,I) 8 9 [7, ] C(5) (C) (B) 4 [5, 5 ] H(6) G(4) (A,B,D,E,F) K(5) (A,B,C,D,E,F,G,H,I,J,K) [9,14 ] min(15,14) [16,16 ] 7 (B,C,G,H) [11, 11 ]

29 IGYR-7 p. 29/4 A kritikus út kiszámítása 2 Csúszási idők 1. Eseményekre: a legkésőbbi és a legkorábbi bekövetkezési idő különbsége, S i = L i E i 2. Az i-edik eseményből a j-edikbe vezető műveletre: S ij = L j E i t ij ahol t ij a művelet végrehajtási ideje Kritikus út: azon műveletekből (élekből) áll, amelyek csúszási ideje nulla

30 IGYR-7 p. 30/4 Az egyszerű példa - kritikus út [0, 0] min(8,3,0) (NIL) 1 A(3) B(4) [3, 11 ] min(11,12) (A) 2 [4, 7 ] min(9,7) 3 D(2) E(3) F(5) (A,D) [5,14 ] I(2) 5!!D(0)!! I(2) 6 J(1) (A,D,I) 8 9 [7, ] C(5) (C) (B) 4 [5, 5 ] H(6) G(4) (A,B,D,E,F) K(5) (A,B,C,D,E,F,G,H,I,J,K) [9,14 ] min(15,14) [16,16 ] 7 (B,C,G,H) [11, 11 ]

31 IGYR-7 p. 31/4 Gyakorlat statikus ütemezési feladatra Füles edény gyártás

32 IGYR-7 p. 32/4 A füles edény gyártás feladata Füles edényt szeretnénk gyártáni az alábbi műveletekkel Azonosító Művelet Idő (min) SZ1 szállítás a lap-tárolóból 3 SZ3 szállítás a fül-tárolóból 1 SZ2 lap-szállítás összeszereléshez 2 SZ4 fül-szállítás összeszereléshez 2 SZ5 késztermék szállítás tárolóba 4 G1 lap préselés 3 G2 fül préselés 1 G3 összeszerelés 1 1. Tervezzük meg a műveleti sorrend Petri hálóját! 2. Határozzuk meg a kritikus utat! 3. Ábrázoljunk egy optimális ütemezést Gantt táblázattal és erőforrás foglaltsági táblázattal!

33 Dinamikus programozás - Gyártásütemezés IGYR-7 p. 33/4

34 IGYR-7 p. 34/4 Speciális gyártásütemezési feladatok 3. Erőforrás-korlátozás nélküli statikus feladat több művelet végrehajtási lehetőséggel Jellemzői: a rendelésállomány és a nyersanyagok rendelkezésre állása statikus (időben állandó) korlátlan berendezés kapacitás és rendelkezésre állás alternatív (egymást helyettesítő) berendezések legkisebb végrehajtási idejű megoldást keresünk Megoldás: dinamikus programozással

35 IGYR-7 p. 35/4 Dinamikus programozás Egy dinamikus programozási algoritmus kifejlesztése 4 lépésre bontható fel: 1. Jellemezzük az optimális megoldás szerkezetét. 2. Rekurzív módon definiáljuk az optimális megoldás értékét. 3. Kiszámítjuk az optimális megoldás értékét alulról felfelé történő módon. 4. A kiszámított információk alapján megszerkesztünk egy optimális megoldást. A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal elkerüli az ismételt számítást, ha a részfeladat megint felmerül.

36 IGYR-7 p. 36/4 Szerelőszalag ütemezése Mindegyik szalagnak n állomása van, melyek indexei j = 1,...,n. S ij jelöli az i-edik (i = 1 vagy 2) szalag j-edik állomását. Az első szalag j-edik állomása (S 1j ) ugyanazt a funkciót látja el, mint a második szalag j-edik állomása (S 2j ). Az S ij állomáson a műveleti időt a ij jelöli.

37 IGYR-7 p. 37/4 Szerelőszalag ütemezése -Példa Autógyártás alvázra történő alkatrész-rászereléssel A teljes leszámlálás számítási ideje Ω(2 n ). Ez nagy n mellett elfogadhatatlan.

38 IGYR-7 p. 38/4 1. lépés: a legrövidebb gyártási út szerkezete Tekintsük a lehetséges legrövidebb utat, ahogy egy alváz a kiindulási helyzetből túljut az S 1j állomáson. Ha j = 1, akkor csak egy lehetőség van, és így könnyű meghatározni a szükséges időt. j = 2,...,n esetén két lehetőség van: Az alváz érkezhet közvetlenül az S 1,j 1 állomásról, amikor ugyanannak a szalagnak a (j 1)-edik állomásáról a j-edik állomására való átszállítás ideje elhanyagolható. Az alváz S 2,j 1 felől érkezik, az átszállítás ideje t 2,j 1. Tegyük fel, hogy az S 1 j állomáson való túljutás leggyorsabb módja az, hogy oda az S 1,j 1 felől érkezünk. Az alváznak a legrövidebb módon kell túljutnia az S 1,j 1 állomáson, mert ha volna egy gyorsabb mód, hogy az alváz túljusson a S 1,j 1 állomáson, akkor ezt használva magán S 1,j -n is hamarabb jutna túl, ami ellentmondás.

39 IGYR-7 p. 39/4 1. lépés: a legrövidebb gyártási út szerkezete Általánosabban fogalmazva azt mondhatjuk, hogy a szerelőszalag ütemezésének (hogy megtaláljuk a legrövidebb módot az S ij állomáson való túljutásra) optimális megoldása tartalmazza egy részfeladat (vagy az S 1,j 1 vagy az S 2,j 1 állomáson való leggyorsabb áthaladás) optimális megoldását. Erre a tulajdonságra optimális részstruktúraként fogunk hivatkozni. Azaz részfeladatok optimális megoldásaiból megszerkeszthető a feladat optimális megoldása.

40 IGYR-7 p. 40/4 2. lépés: a rekurzív megoldás Az optimális megoldás értékét a részfeladatok optimális értékeiből rekurzívan fejezzük ki. A részfeladatok legyenek mindkét szalag j-edik állomásán való leggyorsabb áthaladás megkeresésének a feladatai j = 1,...,n mellett. Jelölje f i [j] azt a legrövidebb időt, ami alatt az alváz túl tud jutni az S ij állomáson. Célunk annak a legrövidebb időnek a meghatározása, ami alatt az alváz az egész üzemen keresztül tud haladni. Ezt az időt f jelöli. f = min{f 1 [n] + x 1,f 2 [n] + x 2 } f 1 [1] = e 1 + a 11 f 2 [1] = e 2 + a 21

41 IGYR-7 p. 41/4 2. lépés: a rekurzív megoldás Hogyan kell kiszámolni az f i [j]-t j = 2,...,n és i = 1,2 esetén? f 1 [j] = min{f 1 [j 1]+a 1j,f 2 [j 1]+t 2,j 1 +a 1j }, ha j = 2,...,n. f 2 [j] = min{f 2 [j 1]+a 2j,f 1 [j 1]+t 1,j 1 +a 2j }, ha j = 2,...,n. A következő rekurzív egyenletet kapjuk: f 1 [j] = f 2 [j] = { { e 1 + a 11, ha j = 1, min{f 1 [j 1] + a 1j,f 2 [j 1] + t 2,j 1 + a 1j }, ha j 2 e 2 + a 21, ha j = 1, min{f 2 [j 1] + a 2j,f 1 [j 1] + t 1,j 1 + a 2j }, ha j 2

42 IGYR-7 p. 42/4 2. lépés: a rekurzív megoldás Az f i [j] mennyiségek a részfeladatok optimális érékei. Annak érdekében, hogy vissza tudjuk keresni a legrövidebb utat, definiáljuk l i [j]-t mint azt a szerelőszalagot, amelyiknek a j 1-edik állomását használtuk az S ij -n való leggyorsabb keresztülhaladáskor. Itt i = 1,2 és j = 2,...,n. (Nem definiáljuk l i [1]-et, mert S i1 -t egyik szalagon sem előzi meg másik állomás.) Az l szalag definíció szerint az, amelyiknek az utolsó állomását használjuk az egész üzemen való áthaladáskor. Az l i [j] értékek segítségével lehet nyomon követni a legrövidebb utat.

43 IGYR-7 p. 43/4 3. lépés: a legrövidebb átfutási idő kiszámítása Sokkal jobban járunk, ha az f i [j] értékeket más sorrend szerint számoljuk, mint az a rekurzív módszerből adódik. Vegyük észre, hogy j... 2 esetén f i [j] csak f 1 [j 1] -től és f 2 [j 1] -től függ. Ha az f i [j] értékeket az állomások j indexének növekvő sorrendjében számoljuk, akkor a legrövidebb átfutási idő meghatározása Θ(n) ideig tart.

44 IGYR-7 p. 44/4 3. lépés: a legrövidebb átfutási idő kiszámítása ALGORITMUS1(a,t,e,x,n) 1. f 1 [1] := e 1 + a 11 f 2 [1] := e 2 + a for j := 2 to n 3. do if f 1 [j 1] + a 1j f 2 [j 1] + t 2,j 1 + a 1j 4. then f 1 [j] := f 1 [j 1] + a 1j l 1 [j] := 1 5. else f 1 [j] := f 2 [j 1] + t 2,j 1 + a 1j l 1 [j] := 2 6. if f 2 [j 1] + a 2j f 1 [j 1] + t 1,j 1 + a 2j 7. then f 2 [j] := f 2 [j 1] + a 2j l 2 [j] := 2 8. else f 2 [j] := f 1 [j 1] + t 1,j 1 + a 2j l 2 [j] := 1 9. if f 1 [n] + x 1 f 2 [n] + x then f = f 1 [n] + x 1 l = else f = f 2 [n] + x 2 l = 2

45 IGYR-7 p. 45/4 4. lépés: a legrövidebb átfutási idejű út f i [j], f, l i [j] és l kiszámítását követően meg kell szerkeszteni az üzemen való legrövidebb áthaladást biztosító utat. Az eljárás az út állomásait az indexek csökkenő sorrendjében nyomtatja ki. ALGORITMUS2(l,n) 1. i := l 2. print i"-edik szalag" n"-edik állomás" 3. for j := n downto 2 4. do i := l i [j] 5. print i"-edik szalag (" j 1")-edik állomás"

46 IGYR-7 p. 46/4 Gyakorlat dinamikus programozásra Szerelőszalag ütemezési példa

47 IGYR-7 p. 47/4 Feladat Kövessük végig a dinamikus programozással meghatározott optimális ütemezés lépéseit az egyszerű, 5 állomást tartalmazó szerelőszalag példán:

Gyártórendszerek dinamikája

Gyártórendszerek dinamikája GYRD-7 p. 1/17 Gyártórendszerek dinamikája Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel Werner Ágnes

Részletesebben

Dinamikus programozás - Szerelőszalag ütemezése

Dinamikus programozás - Szerelőszalag ütemezése Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal

Részletesebben

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Gyártórendszerek dinamikája

Gyártórendszerek dinamikája GYRD-8-9 p. 1/31 Gyártórendszerek dinamikája Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel Werner

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

Dr. Kulcsár Gyula. Virtuális vállalat félév. Projektütemezés. Virtuális vállalat félév 5. gyakorlat Dr.

Dr. Kulcsár Gyula. Virtuális vállalat félév. Projektütemezés. Virtuális vállalat félév 5. gyakorlat Dr. Projektütemezés Virtuális vállalat 06-07. félév 5. gyakorlat Dr. Kulcsár Gyula Projektütemezési feladat megoldása Projekt: Projektütemezés Egy nagy, összetett, általában egyedi igény alapján előállítandó

Részletesebben

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07

Részletesebben

folyamatrendszerek modellezése

folyamatrendszerek modellezése Diszkrét eseményű folyamatrendszerek modellezése Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/36 Tartalom Diszkrét

Részletesebben

Üzemszervezés. Projekt tervezés. Dr. Juhász János

Üzemszervezés. Projekt tervezés. Dr. Juhász János Üzemszervezés Projekt tervezés Dr. Juhász János Projekt tervezés - Definíció Egy komplex tevékenység feladatainak, meghatározott célok elérése érdekében, előre megtervezett módon, az erőforrások sajátosságainak

Részletesebben

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok GyRDin-02 p. 1/20 Gyártórendszerek Dinamikája Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék

Részletesebben

Példa. Job shop ütemezés

Példa. Job shop ütemezés Példa Job shop ütemezés Egy üzemben négy gép működik, és ezeken 3 feladatot kell elvégezni. Az egyes feladatok sorra a következő gépeken haladnak végig (F jelöli a feladatokat, G a gépeket): Az ütemezési

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 06/7. félév 7. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom. A projektütemezés alapjai..

Részletesebben

Üzemszervezés A BMEKOKUA180

Üzemszervezés A BMEKOKUA180 Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Közlekedésmérnöki Szak Üzemszervezés A BMEKOKUA180 Projekt tervezés Dr. Juhász János egyetemi docens Projekt tervezés

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Az optimális megoldást adó algoritmusok

Az optimális megoldást adó algoritmusok Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 5. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom 1. Párhuzamosan

Részletesebben

Ütemezés gyakorlat. Termelésszervezés

Ütemezés gyakorlat. Termelésszervezés Ütemezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Általános ütemezés Egygépes ütemezési problémák Párhuzamos erőforrások ütemezése Flow-shop és job-shop ütemezés

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Diagnosztika Petri háló modellek felhasználásával

Diagnosztika Petri háló modellek felhasználásával Diagnosztika - Ea9. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Diagnosztika Petri háló modellek felhasználásával Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika

Részletesebben

A projekt idő-, erőforrás és költségterve 1. rész

A projekt idő-, erőforrás és költségterve 1. rész A projekt idő-, erőforrás és költségterve 1. rész A TERVEZÉS FOLYAMATA a projekttevékenységek meghatározása a tevékenységek közötti logikai függőségi kapcsolatok meghatározása erőforrás-allokáció és a

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

Ütemezés tervezése A leghátrányosabb helyzet kistérségek fejlesztési és együttm ködési kapacitásainak meger

Ütemezés tervezése A leghátrányosabb helyzet kistérségek fejlesztési és együttm ködési kapacitásainak meger Ütemezés tervezése A leghátrányosabb helyzetű kistérségek fejlesztési és együttműködési kapacitásainak megerősítése ÁROP-1.1.5/C A Tokajii Kistérség Fejlesztési és Együttműködési Kapacitásának Megerősítése

Részletesebben

ELŐADÁS ÁTTEKINTÉSE. Tevékenységek tervezése Gantt diagramm

ELŐADÁS ÁTTEKINTÉSE. Tevékenységek tervezése Gantt diagramm ELŐADÁS ÁTTEKINTÉSE Tevékenységek tervezése Gantt diagramm TEVÉKENYSÉGEK TERVEZÉSE Fel kell vázolni egy lehetséges tevékenység sorozatot, egyfajta megoldást, illetve elvárt eredményt, amit a célrendszerrel

Részletesebben

2. Előadás Projekt ütemezés. Solver használata. Salamon Júlia

2. Előadás Projekt ütemezés. Solver használata. Salamon Júlia 2. Előadás Projekt ütemezés. Solver használata. Salamon Júlia Projekt ütemezés Számos nagy projekt tervezésekor használják a CMP (Critical Path Method - Kritikus út módszere) és a PERT (Program Evaluation

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa: Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)

Részletesebben

Fibonacci számok. Dinamikus programozással

Fibonacci számok. Dinamikus programozással Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

Algoritmizálás és adatmodellezés tanítása 1. előadás

Algoritmizálás és adatmodellezés tanítása 1. előadás Algoritmizálás és adatmodellezés tanítása 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az

Részletesebben

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

ELŐADÁS ÁTTEKINTÉSE 6. ea.: Projekttervezés III.

ELŐADÁS ÁTTEKINTÉSE 6. ea.: Projekttervezés III. ELŐADÁS ÁTTEKINTÉSE 6. ea.: Projekttervezés III. Tevékenységek tervezése Időtervezés: Gantt diagramm Hálótervezés: Kritikus út Tartalék idő Példa ismertetése TEVÉKENYSÉGEK TERVEZÉSE Fel kell vázolni egy

Részletesebben

Mohó algoritmusok. Példa:

Mohó algoritmusok. Példa: Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer

Programozási módszertan. Függvények rekurzív megadása Oszd meg és uralkodj elv, helyettesítő módszer, rekurziós fa módszer, mester módszer PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

A szemantikus elemzés elmélete. Szemantikus elemzés (attribútum fordítási grammatikák) A szemantikus elemzés elmélete. A szemantikus elemzés elmélete

A szemantikus elemzés elmélete. Szemantikus elemzés (attribútum fordítási grammatikák) A szemantikus elemzés elmélete. A szemantikus elemzés elmélete A szemantikus elemzés elmélete Szemantikus elemzés (attribútum fordítási grammatikák) a nyelvtan szabályait kiegészítjük a szemantikus elemzés tevékenységeivel fordítási grammatikák Fordítóprogramok előadás

Részletesebben

Termelésirányítás. Gyártási erőforrások rugalmas kezelése. Gyártási folyamatábra optimalizálása

Termelésirányítás. Gyártási erőforrások rugalmas kezelése. Gyártási folyamatábra optimalizálása Termelésirányítás ELŐNYÖK: Átfutási idő lerövidítése és az ügyféligények kielégítése rugalmas ütemezési lehetőségekkel Termelési erőforrások ellenőrzése az optimális teljesítmény érdekében Termelési folyamat

Részletesebben

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan

Részletesebben

Gyártórendszerek irányítási struktúrái

Gyártórendszerek irányítási struktúrái GyRDin-10 p. 1/2 Gyártórendszerek Dinamikája Gyártórendszerek irányítási struktúrái Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos@scl.sztaki.hu GyRDin-10 p. 2/2 Tartalom

Részletesebben

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Zárthelyi mintapéldák. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Zárthelyi mintapéldák Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Elméleti kérdések Indokolja meg, hogy az A (X Stop F Start) kifejezés szintaktikailag helyes kifejezés-e CTL illetve

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Hálótervezés. Vállalati Információs Rendszerek

Hálótervezés. Vállalati Információs Rendszerek Hálótervezés Vállalati Információs Rendszerek Hálótervezés fogalma Egy munkaterv, projekt időbeli lefolyásának optimális ütemezése, elemzése, az egyes tevékeny- ségek időbeli összehangolása, az egymás

Részletesebben

MICROSOFT DYNAMICS AX TERMELÉSIRÁNYÍTÁS III.

MICROSOFT DYNAMICS AX TERMELÉSIRÁNYÍTÁS III. MICROSOFT DYNAMICS AX TERMELÉSIRÁNYÍTÁS III. A Microsoft Dynamics AX rendszer Termelésirányítás III. modulja hatékonyabbá teszi a gyártási ciklus szervezését. A Microsoft Dynamics AX rendszer termelésirányítási

Részletesebben

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él. Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb

Részletesebben

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Logisztikai szimulációs módszerek

Logisztikai szimulációs módszerek Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t.. A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6

Részletesebben

Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő 1

Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő 1 Építési projektek ütemtervi bizonytalanságainak, kockázatainak figyelembe vétele a pénzügyi tervezésnél Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő, MVM Paks

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Idő-ütemterv hálók - I. t 5 4

Idő-ütemterv hálók - I. t 5 4 Építésikivitelezés-Vállalkozás / : Hálós ütemtervek - I lőadás:folia.doc Idő-ütemterv hálók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelő és Áttekintő Technika

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Algoritmizálás, adatmodellezés tanítása 8. előadás

Algoritmizálás, adatmodellezés tanítása 8. előadás Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van

Részletesebben

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben

2012.03.12. TEVÉKENYSÉGEK TERVEZÉSE TEVÉKENYSÉGEK TERVEZÉSE TEVÉKENYSÉGEK TERVEZÉSE IDŐTERVEZÉS. IDŐTERVEZÉS (Gantt diagramm)

2012.03.12. TEVÉKENYSÉGEK TERVEZÉSE TEVÉKENYSÉGEK TERVEZÉSE TEVÉKENYSÉGEK TERVEZÉSE IDŐTERVEZÉS. IDŐTERVEZÉS (Gantt diagramm) ELŐADÁS ÁTTEKINTÉSE. ea.: Projekttervezés III. Tevékenységek tervezése Időtervezés: Gantt diagramm Hálótervezés: Kritikus út Tartalék idő Példa ismertetése TEVÉKENYSÉGEK TERVEZÉSE Fel kell vázolni egy

Részletesebben

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes.

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes. 1. Feladat Adott egy parkoló, ahol egy professzor a kocsiját tartja. A parkolóhelyeket egy n és n közötti szám azonosítja, az azonosító szerint helyezkednek el balról jobbra. A professzor kijön az egyetemr

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Formális modellek használata és értelmezése Formális modellek

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.

Részletesebben

Vállalatirányítás HÁLÓTERVEZÉS. Tevékenység Jel Kódjel megelőző követő tevékenység jele. A - C 6 Munkaerő-szükséglet 2. B - F 8 műszaki tervezése 3.

Vállalatirányítás HÁLÓTERVEZÉS. Tevékenység Jel Kódjel megelőző követő tevékenység jele. A - C 6 Munkaerő-szükséglet 2. B - F 8 műszaki tervezése 3. HÁLÓTERVEZÉS 1. Egy hálótervről az alábbi adatok ismertek: Közvetlenül Tevékenység Jel Kódjel megelőző követő tevékenység jele 1. Generálterv kidolgozása A - C 6 Munkaerő-szükséglet. meghatározása és gyári

Részletesebben

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák

Részletesebben

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

Beszállítás AR Gyártási folyamat KR

Beszállítás AR Gyártási folyamat KR 3. ELŐADÁS TERMELÉSI FOLYAMATOK STRUKTURÁLÓDÁSA 1. Megszakítás nélküli folyamatos gyártás A folyamatos gyártás lényege, hogy a termelési folyamat az első művelettől az utolsóig közvetlenül összekapcsolt,

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj. Nagy

Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj. Nagy Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj Divide & Conquer (,,Oszd meg és uralkodj ) paradigma Divide: Osszuk fel az adott problémát kisebb problémákra. Conquer: Oldjuk meg a kisebb

Részletesebben

Idõ-ütemterv há lók - I. t 5 4

Idõ-ütemterv há lók - I. t 5 4 lõadás:folia.doc Idõ-ütemterv há lók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelõ és Áttekintõ Technika ) semény-csomópontú, valószínûségi változókkal dolgozó

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

Ütemezési modellek. Az ütemezési problémák osztályozása

Ütemezési modellek. Az ütemezési problémák osztályozása Ütemezési modellek Az ütemezési problémák osztályozása Az ütemezési problémákban adott m darab gép és n számú munka, amelyeket az 1,..., n számokkal fogunk sorszámozni. A feladat az, hogy ütemezzük az

Részletesebben

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 3. Előadás Előadó: Hajnal Péter Jegyzetelő: Pék Máté 2009. szeptember 21. 1. Folyamok 1.1. Definíció. G = (V, E, K, B) irányított gráf, ha e! v : ekv

Részletesebben

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. INFORMATIKA II. (programozás) kategória

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 217/218 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai 1. feladat: Csatornák (24 pont) INFORMATIKA II. (programozás) kategória Egy város csomópontjait csatornahálózat

Részletesebben

2. Visszalépéses keresés

2. Visszalépéses keresés 2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

PROJEKTMENEDZSMENT TEMATIKA, KÖVETELMÉNYEK

PROJEKTMENEDZSMENT TEMATIKA, KÖVETELMÉNYEK PROJEKTMENEDZSMENT TEMATIKA, KÖVETELMÉNYEK Daiki Tennó 2011 1. Általános információk a tantárgyról a. Előadás + gyakorlat + otthoni munka b. gyakorlati jegyhez egyeztetett témából, önállóan készített projekt:

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

MUNKAANYAG. Faicsiné Adorján Edit. Időtervek: III./1. Hálóterv (CPM) szerkesztése. A követelménymodul megnevezése: Építőipari kivitelezés tervezése

MUNKAANYAG. Faicsiné Adorján Edit. Időtervek: III./1. Hálóterv (CPM) szerkesztése. A követelménymodul megnevezése: Építőipari kivitelezés tervezése Faicsiné Adorján Edit Időtervek: III./1. Hálóterv (CPM) szerkesztése A követelménymodul megnevezése: Építőipari kivitelezés tervezése A követelménymodul száma: 0688-06 A tartalomelem azonosító száma és

Részletesebben

Algoritmuselmélet 1. előadás

Algoritmuselmélet 1. előadás Algoritmuselmélet 1. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 11. ALGORITMUSELMÉLET 1. ELŐADÁS 1 Források

Részletesebben

HÁLÓZAT Maximális folyam, minimális vágás

HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT informálisan Hálózat Irányított gráf Mindegyik élnek adott a (nemnegatív) kapacitása Spec csúcsok: Forrás (Source): a kiindulási pont csak ki élek Nyelő

Részletesebben

A programozás alapjai 1 Rekurzió

A programozás alapjai 1 Rekurzió A programozás alapjai Rekurzió. előadás Híradástechnikai Tanszék - preorder (gyökér bal gyerek jobb gyerek) mentés - visszaállítás - inorder (bal gyerek gyökér jobb gyerek) rendezés 4 5 6 4 6 7 5 7 - posztorder

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 02. 19. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve az annak

Részletesebben