Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem"

Átírás

1 Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem

2 Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi alternatívával szemben győztesen kerül ki a párosösszahsonĺıtásból. Condorcet vesztes: Az az alternatíva, amely az összes többi alternatívával szemben vesztesen kerül ki a párosösszahsonĺıtásból. Condorcet rendezés: A 1, A 2,..., A n az alternatívák egy Condorcet rendezése, ha i 1,..., n igaz, hogy az A i bármely a sorrendben utána lévő A j (i < j n) alternatívával szemben győztesen kerül ki a párosösszehasonĺıtásból.

3 Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Növekvő sorozat-független rangsor: Az a rangsor, melyben az első p elem sorrendje (,ahol p {1,..., n}) nem változik, ha töröljük a rangsorból valamely A j, p < j n elemet. Csökkenő sorozat-független rangsor: Az a rangsor, melyben az utolsó p elem sorrendje (,ahol p {1,..., n}) nem változik, ha töröljük a rangsorból valamely A j, 1 j < p elemet. Ammenyiben a rangsorból egy elem törlése a többi elem sorrendjének változásához vezet rangsorfordulásról beszélünk.

4 Definíciók Példa rangsorfordulásra

5 Rangsor módszer Olyan egyéni döntést segítő eljárás, amikor a döntéshozó nem ad meg értékelő függvényt az egyes szempontok szerint, hanem csak az alternatívák sorrendjét. A módszerek csak a szempontok szerinti rangsort alapul véve döntenek az alternatívák rangsoráról. A szavazási eljárások módszereit alkalmazhatjuk, mint rangsormódszereket.

6 Példa A követlező rangsor táblázat áll rendelkezésre: C 1 C 2 C 3 C 4 C 5 C 6 C 7 A a B a C b D b E b a 4., 5. helyen holtverseny b 1., 2., 3. helyen holtverseny

7 alkalmazása, mint rangsormódszer A pontszámokat a szempontok szerint kiosztjuk a sorrendnek megfelelően, majd összeadjuk az alternatívák különböző szempontok szerint kapott pontszámait.

8 alkalmazása, mint rangsormódszer A pontszámokat a szempontok szerint kiosztjuk a sorrendnek megfelelően, majd összeadjuk az alternatívák különböző szempontok szerint kapott pontszámait. C 1 C 2 C 3 C 4 C 5 C 6 C 7 Ö: A B C D E

9 alkalmazása, mint rangsormódszer A pontszámokat a szempontok szerint kiosztjuk a sorrendnek megfelelően, majd összeadjuk az alternatívák különböző szempontok szerint kapott pontszámait. Sorrend: D; C; E; B; A C 1 C 2 C 3 C 4 C 5 C 6 C 7 Ö: A B C D E

10 alkalmazása, mint rangsormódszer Ellenzési szintek minimalizálása magyar módszerrel. A Cook-Seiford mátrix alakja: d ij := r ik j, ahol r ik : A i C k szerinti rangszáma. Azaz, d ij az k A i j. helyezéstől vett távolsága.

11 alkalmazása, mint rangsormódszer Ellenzési szintek minimalizálása magyar módszerrel. A Cook-Seiford mátrix alakja: d ij := r ik j, ahol r ik : A i C k szerinti rangszáma. Azaz, d ij az k A i j. helyezéstől vett távolsága A B C D E

12 alkalmazása, mint rangsormódszer Ellenzési szintek minimalizálása magyar módszerrel. A Cook-Seiford mátrix alakja: d ij := r ik j, ahol r ik : A i C k szerinti rangszáma. Azaz, d ij az k A i j. helyezéstől vett távolsága A B C D E A hozzárendelési feladatot megoldva a kapott sorrend: C; D; E; B; A

13 A egy másik felfogása, miszerint az elégedettséget szeretnénk maximalizálni. Bernardo mátrix felépítése: m ij := a szempontok darabszáma, amelyek szerin A i a j. pozícióra kerül. A feladatot, mint maximalizációs hozzárendelési feladatot oldjuk meg.

14 A egy másik felfogása, miszerint az elégedettséget szeretnénk maximalizálni. Bernardo mátrix felépítése: m ij := a szempontok darabszáma, amelyek szerin A i a j. pozícióra kerül. A feladatot, mint maximalizációs hozzárendelési feladatot oldjuk meg A B C D E

15 A egy másik felfogása, miszerint az elégedettséget szeretnénk maximalizálni. Bernardo mátrix felépítése: m ij := a szempontok darabszáma, amelyek szerin A i a j. pozícióra kerül. A feladatot, mint maximalizációs hozzárendelési feladatot oldjuk meg. A feladatot megoldva a sorrend: C; D; E; B; A A B C D E

16 A módszer outranking mátrixának felépítése: k ij := A i hány szempont szerint előzi meg A j -t. Köhler módszer Arrow & Raynaud módszer A helyezések kiosztása 1.-től A helyezések kiosztása n.-től Primal Dual Primal Dual max{min k ij } min{max k ij } min{max k ij } max{min k ij } i j j i i j j i

17 Köhler módszer Primal A B C D E Min A B C D E max: 3

18 Köhler módszer Primal 1. helyen: C; D. A B C D E Min A B C D E max: 3

19 Köhler módszer Primal A B E Min A B E max: 6

20 Köhler módszer Primal 2. helyen: E. A B E Min A B E max: 6

21 Köhler módszer Primal A B Min A B 5-5 max: 5

22 Köhler módszer Primal 3. helyen: B. 4. helyen: A. A B Min A B 5-5 max: 5

23 Köhler módszer Primal 3. helyen: B. 4. helyen: A. A B Min A B 5-5 max: 5 A sorrend: C;D;E;B;A vagy D;C;E;B;A

24 Köhler módszer Dual A B C D E A B C D E Min: Max:

25 Köhler módszer Dual 1. helyen: C; D. A B C D E A B C D E Min: Max:

26 Köhler módszer Dual A B E A B 5-1 E Min: Max:

27 Köhler módszer Dual 2. helyen: E. A B E A B 5-1 E Min: Max:

28 Köhler módszer Dual A B A - 1 B 5 - Min: Max: 5 1 1

29 Köhler módszer Dual A B A - 1 B 5 - Min: Max: helyen: B. 4. helyen: A.

30 Köhler módszer Dual 3. helyen: B. 4. helyen: A. A B A - 1 B 5 - Min: Max: A sorrend: C;D;E;B;A vagy D;C;E;B;A

31 Arrow & Raynaud módszer Primal A B C D E Max A B C D E min: 1

32 Arrow & Raynaud módszer Primal 5. helyen: A. A B C D E Max A B C D E min: 1

33 Arrow & Raynaud módszer Primal B C D E Max B C D E min: 1

34 Arrow & Raynaud módszer Primal 4. helyen: B. B C D E Max B C D E min: 1

35 Arrow & Raynaud módszer Primal C D E Max C D E min: 1

36 Arrow & Raynaud módszer Primal 3. helyen: E. C D E Max C D E min: 1

37 Arrow & Raynaud módszer Primal C D Max C D 3-3 min: 3

38 Arrow & Raynaud módszer Primal 1. helyen: C;D C D Max C D 3-3 min: 3

39 Arrow & Raynaud módszer Primal C D Max C D 3-3 min: 3 1. helyen: C;D A sorrend: C;D;E;B;A vagy D;C;E;B;A

40 Arrow & Raynaud módszer Dual A B C D E A B C D E Max: Min:

41 Arrow & Raynaud módszer Dual 5. helyen: A. A B C D E A B C D E Max: Min:

42 Arrow & Raynaud módszer Dual B C D E B C D E Max: Min:

43 Arrow & Raynaud módszer Dual 4. helyen: B. B C D E B C D E Max: Min:

44 Arrow & Raynaud módszer Dual C D E C D 3-6 E Max: Min:

45 Arrow & Raynaud módszer Dual 3. helyen: E. C D E C D 3-6 E Max: Min:

46 Arrow & Raynaud módszer Dual C D C - 3 D 3 - Max: Min: 3 3 3

47 Arrow & Raynaud módszer Dual 1. helyen: C;D C D C - 3 D 3 - Max: Min: 3 3 3

48 Arrow & Raynaud módszer Dual C D C - 3 D 3 - Max: Min: helyen: C;D A sorrend: C;D;E;B;A vagy D;C;E;B;A

Döntéselőkészítés. XII. előadás. Döntéselőkészítés

Döntéselőkészítés. XII. előadás. Döntéselőkészítés XII. előadás Többszempontú döntések elmélete MAUT (Multi Attribute Utility Theory ) A többszempontú döntési feladatok megoldásának lépései: A döntési feladat felépítése: a) a cél megfogalmazása, b) az

Részletesebben

Választási rendszerek axiomatikus elmélete

Választási rendszerek axiomatikus elmélete Választási rendszerek axiomatikus elmélete Boros Zoltán Debreceni Egyetem TTK Matematikai Intézet Analízis Tanszék Matematika Szakkör Megnyitó 2016. szeptember 12. Interaktív demonstráció: fagylalt preferenciák

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

A Borda-szavazás Nash-implementálható értelmezési tartományai

A Borda-szavazás Nash-implementálható értelmezési tartományai A Borda-szavazás Nash-implementálható értelmezési tartományai Tasnádi Attila 2007. június 8. Alapfogalmak Jelölések: X az alternatívák véges nem üres halmaza (q = X ). Alapfogalmak Jelölések: X az alternatívák

Részletesebben

Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor

Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék

Részletesebben

Szavazási protokollok - közös preferencia kialakítása

Szavazási protokollok - közös preferencia kialakítása Szavazási protokollok - közös preferencia kialakítása Szavazás: Társadalmi választás SCF social choice/ wellfare function: Minden ágensnek van saját preferencia listája Agi, ennek alapján el kell jutni

Részletesebben

Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete)

Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) C költség mátrix költség Munkákat hozzá kell rendelni gépekhez: egy munka-egy gép c(i,j) mennyi be kerül i-dik munka j-dik

Részletesebben

EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS

EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS A választások és a szavazások többszempontú döntési problémák a szavazók valamilyen módon döntenek a jelöltekről a választási bizottság a szavazás után megállapítja,

Részletesebben

Mikroökonómia elıadás

Mikroökonómia elıadás Mikroökonómia - 12. elıadás JÓLÉT ÉS TÁRSADALMI PREFERENCIÁK Bacsi, 12. ea. 1 Fogyasztói preferenciák A fogyasztó saját jószágkosarainak összehasonlítása pl: 1 narancs + 3 kg hús + 2 pár cipı kevésbé értékes,

Részletesebben

Többtényezős döntési problémák

Többtényezős döntési problémák KIPA módszer: Lépései: 1. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia

Részletesebben

Többszempontú döntési módszerek

Többszempontú döntési módszerek XI. előadás Többszempontú döntési módszerek Mindennapi tapasztalat: döntési helyzetbe kerülve több változat (alternatíva) között kell (lehet) választani, az alternatívákat kölönféle szempontok szerint

Részletesebben

Szavazási eljárások Fejezetek a döntéselméletből

Szavazási eljárások Fejezetek a döntéselméletből Szavazási eljárások Fejezetek a döntéselméletből Rebák Örs 2013. november 26. 1. Bevezetés A bevezetésben tárgyaltakat ismertnek teszem fel, közlésük csupán a teljesség kedvéért történik, illetve mert

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Többtényezős döntési problémák

Többtényezős döntési problémák KIPA módszer: Lépései:. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia

Részletesebben

Totális Unimodularitás és LP dualitás. Tapolcai János

Totális Unimodularitás és LP dualitás. Tapolcai János Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni

Részletesebben

Gépi tanulás a gyakorlatban SVM

Gépi tanulás a gyakorlatban SVM Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:

Részletesebben

Harmadikos vizsga Név: osztály:

Harmadikos vizsga Név: osztály: . a) b) c) Számítsd ki az alábbi kifejezések pontos értékét! log 6 log log 49 4 7 d) log log 6 log 8 feladat pontszáma: p. Döntsd el az alábbi öt állítás mindegyikéről, hogy igaz vagy hamis! A pontozott

Részletesebben

1. Egészségügy szakmacsoport Egészségügyi alapismeretek

1. Egészségügy szakmacsoport Egészségügyi alapismeretek 1. Egészségügy szakmacsoport Egészségügyi alapismeretek 1.1. A verseny részei Első forduló Második forduló Interaktív versenyrész Írásbeli versenyrész Szóbeli versenyrész 180 perc 180 perc 20 perc 100

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

Döntéselemzés, avagy operációkutatás a turizmus szak mesterképzésen. Első tapasztalatok a BGF KVI karon.

Döntéselemzés, avagy operációkutatás a turizmus szak mesterképzésen. Első tapasztalatok a BGF KVI karon. Döntéselemzés, avagy operációkutatás a turizmus szak mesterképzésen. Első tapasztalatok a BGF KVI karon. Lőrincz Sándor BGF KVIK MAFIOK 2010. Békéscsaba 1 2009/2010. tanév, 1. félév Levelező szak 4 x 2

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

5. Analytic Hierarchy Process (AHP)

5. Analytic Hierarchy Process (AHP) 5 Analytic Hierarchy Process (AHP) (ld Temesi J: A döntéselmélet alapjai, 120-128) (Rapcsák T: Többszempontú döntési problémák I ld http://wwwoplabsztakihu/tanszek/download/ ITobbsz-dont-modszpdf) 51 Bevezetés

Részletesebben

Páros összehasonlítás mátrixok empirikus vizsgálata p. 1/20

Páros összehasonlítás mátrixok empirikus vizsgálata p. 1/20 Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor 1,2, Dezső Linda 3,4, Poesz Attila 2, Temesi József 2 1 MTA SZTAKI; 2 Budapesti Corvinus Egyetem 3 Szegedi Tudományegyetem 4 Budapesti

Részletesebben

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39 5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

Tájékoztató. Használható segédeszköz: -

Tájékoztató. Használható segédeszköz: - A 35/2016. (VIII. 31.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 213 05 Szoftverfejlesztő Tájékoztató A vizsgázó az első lapra írja fel a nevét!

Részletesebben

INFORMATIKA javítókulcs 2016

INFORMATIKA javítókulcs 2016 INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.

Részletesebben

Mátrixok, mátrixműveletek

Mátrixok, mátrixműveletek Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap

Részletesebben

1. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd. ; 8. (7 pont) függvényt! (9 pont)

1. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd. ; 8. (7 pont) függvényt! (9 pont) I..negyedéves témazáró.évfolyam A csoport. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd rendezd növekvő sorrendbe: 9 ; 8 ; 8. (7 pont). Ábrázold és jellemezd az f ( )

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Algoritmusok és adatszerkezetek I. 1. előadás

Algoritmusok és adatszerkezetek I. 1. előadás Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:

Részletesebben

Budapest 2013-14. évi mini Felkészülési tornáinak keretében szervezett 3. leány kismini tornájának forgatókönyve

Budapest 2013-14. évi mini Felkészülési tornáinak keretében szervezett 3. leány kismini tornájának forgatókönyve Budapest 2013-14. évi mini Felkészülési tornáinak keretében szervezett 3. leány kismini tornájának forgatókönyve Időpont: Helyszín: Rendező: Elérhetőség: 2014. január 25. (szombat), 9 órától Dunakeszi,

Részletesebben

A logikai táblázat módszere III.

A logikai táblázat módszere III. A logikai táblázat módszere III. 1. feladat: Rifi, Röfi és Rufi, három kismalac, egy tortaevő versenyen vett részt. A nagymama előtte a következőket mondta: a) Rifi a második díjat szerzi meg b) Röfi nem

Részletesebben

Értékelési, kiválasztási módszerek

Értékelési, kiválasztási módszerek Értékelési, kiválasztási módszerek Értékelési módszerek csoportosítása: 1. Ordinális (kvalitatív) elárások 1.1 Többségi módszer 1.2 Rangsor összegzési szabály 1.3 Copeland módszer 1.4 Datum módszer 1.5

Részletesebben

FELHASZNÁLÓI KÉZIKÖNYV

FELHASZNÁLÓI KÉZIKÖNYV többszempontú csoportos döntéstámogató szoftver EGY A ÉS WINGDSS PÉLDAFELADAT A KIÉRTÉKELÉS FÜGGELÉK 4.1 RENDSZERBEN FELÉPÍTÉSE LÉPÉSEI FELHASZNÁLÓI KÉZIKÖNYV Operációkutatás MTA és Döntési SZTAKI Rendszerek

Részletesebben

1. ábra ábra

1. ábra ábra A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,

Részletesebben

Megjegyzés: A programnak tartalmaznia kell legalább egy felhasználói alprogramot. Példa:

Megjegyzés: A programnak tartalmaznia kell legalább egy felhasználói alprogramot. Példa: 1. Tétel Az állomány két sort tartalmaz. Az első sorában egy nem nulla természetes szám van, n-el jelöljük (5

Részletesebben

Operációkutatás példatár

Operációkutatás példatár 1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen

Részletesebben

1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1. x 1 0, x 2 0

1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1. x 1 0, x 2 0 Gyakorló feladatok Operációkutatás vizsgára 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! a, b, c, d, x 1 + x 2 2 2x 1 + x 2 6 x 1 + x 2 1 x 1 2, 5 z 1 = 4x 1 3x 2 max; z

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

kategóriák Az év kisvállalkozása díj Az év vállalkozása díj Az év környezetvédelmi díja Az év középvállalkozása díj Üzleti innovációs díj

kategóriák Az év kisvállalkozása díj Az év vállalkozása díj Az év környezetvédelmi díja Az év középvállalkozása díj Üzleti innovációs díj kategóriák Az év vállalkozása díj Sikerkritérium, hogy a vállalkozás mennyire növelte piaci potenciálját és nyereségességét az elmúlt év során, illetve hogy tevékenysége milyen pozitív hatást gyakorolt

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

Értékelési szempontok

Értékelési szempontok Értékelési szempontok Településképet meghatározó épületek külső rekonstrukciója, többfunkciós közösségi tér létrehozása, fejlesztése, energetikai korszerűsítés A felhívás kódszáma: VP6-7..1.1-1 Kiválasztási

Részletesebben

Dinamikus programozás - Szerelőszalag ütemezése

Dinamikus programozás - Szerelőszalag ütemezése Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal

Részletesebben

SPORT ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

SPORT ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA SPORT ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei Középszint Emelet szint 120 perc 15 perc 180 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható segédeszközök

Részletesebben

2017. ÉVI VETERÁN TRIPLETT ORSZÁGOS BAJNOKSÁG ÉS VÁLOGATÓ VERSENYKIÍRÁSA

2017. ÉVI VETERÁN TRIPLETT ORSZÁGOS BAJNOKSÁG ÉS VÁLOGATÓ VERSENYKIÍRÁSA Magyar Pétanque Szövetség Fédération Hongroise de Pétanque Hungarian Federation of Pétanque H-7396 Magyarszék, Kossuth Lajos u. 33. Tel: +36 70 933 0215 Fax: +36 72 521-006 E-mail: info@petanque.hu 2017.

Részletesebben

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x Matematika érettségi emelt 8 október ( ) lg( 8) 8 8 nem megoldás lg( 8) 8 9 ] ; [ ] ; [, M {;} Matematika érettségi emelt 8 október 6 I. eset II. eset ;[ ] 5 5 6 ;[ ], [ [; 5 5 6 [ [; 4, {;} M Matematika

Részletesebben

Miben új az új Kbt.? Szakmai nap és konzultáció. 2015. október 21. Értékelési szempontok változásai Erdei Gábor

Miben új az új Kbt.? Szakmai nap és konzultáció. 2015. október 21. Értékelési szempontok változásai Erdei Gábor Szakmai nap és konzultáció 2015. október 21. Értékelési szempontok változásai Erdei Gábor Uniós politikák a közbeszerzésben Szerződések odaítélése Az eljárási szakaszok (alkalmasság vizsgálata-értékelés)

Részletesebben

Bozóki Sándor február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18

Bozóki Sándor február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18 Érzékenységvizsgálat a Promethee módszertanban Bozóki Sándor 2011. február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18 Vázlat PROMETHEE Parciális érzékenységvizsgálat egy szempontsúly változhat

Részletesebben

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Csoportmódszer Függvények I. (rövidített változat) Kiss Károly

Csoportmódszer Függvények I. (rövidített változat) Kiss Károly Ismétlés Adott szempontok szerint tárgyak, élőlények, számok vagy fizikai mennyiségek halmazokba rendezhetők. A halmazok kapcsolatát pedig hozzárendelésnek (relációnak, leképezésnek) nevezzük. A hozzárendelés

Részletesebben

II. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK

II. Mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK Mérési Utasítás Linux/Unix jogosultságok és fájlok kezelése Linux fájlrendszerek és jogosultságok Linux alatt, az egyes fájlokhoz való hozzáférések szabályozása érdekében a fájlokhoz tulajdonost, csoportot

Részletesebben

Programozás I. zárthelyi dolgozat

Programozás I. zárthelyi dolgozat Programozás I. zárthelyi dolgozat 2013. november 11. 2-es szint: Laptopot szeretnénk vásárolni, ezért írunk egy programot, amelynek megadjuk a lehetséges laptopok adatait. A laptopok árát, memória méretét

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat)

Döntéselőkészítés. VII. előadás. Döntéselőkészítés. Egyszerű Kőnig-feladat (házasság feladat) VII. előadás Legyenek adottak Egyszerű Kőnig-feladat (házasság feladat) I, I 2,, I i,, I m személyek és a J, J 2,, J j,, J n munkák. Azt, hogy melyik személy melyik munkához ért ( melyik munkára van kvalifikálva)

Részletesebben

A feladatok. Csökkentsük a teljes költséget úgy, hogy minimalizáljuk: K V. vásárlási költséget, K S. szállítási költséget, K T. tárolási költséget.

A feladatok. Csökkentsük a teljes költséget úgy, hogy minimalizáljuk: K V. vásárlási költséget, K S. szállítási költséget, K T. tárolási költséget. A feladatok Csökkentsük a teljes költséget úgy, hogy minimalizáljuk: vásárlási költséget, S szállítási költséget, T tárolási költséget. 1 A rendszer felépítése B1... Bj... Bm S1 L Sg Sα F1... Fi... Fn

Részletesebben

II. A VIZSGA LEÍRÁSA

II. A VIZSGA LEÍRÁSA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Definíció, illetve tétel kimondása I. II. Egy téma összefüggő kifejtése Definíció közvetlen alkalmazása I. II. 45 perc 135 perc megadott

Részletesebben

Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén!

Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További. 1. Oldja meg grafikusan az alábbi feladatokat mindhárom célfüggvény esetén! Gyakorló feladatok Alkalmazott Operációkutatás vizsgára. További példák találhatók az fk.sze.hu oldalon a letöltések részben a közlekedési operációkutatásban 1. Oldja meg grafikusan az alábbi feladatokat

Részletesebben

Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása

Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása Bozóki Sándor 1,2, Fülöp János 1,3 1 MTA SZTAKI; 2 Budapesti Corvinus Egyetem 3 Óbudai Egyetem XXXI. Magyar Operációkutatási Konferencia

Részletesebben

MATEMATIKA II. A VIZSGA LEÍRÁSA

MATEMATIKA II. A VIZSGA LEÍRÁSA MATEMATIKA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Egy téma összefüggő II. I. II. kifejtése megadott 135 perc szempontok szerint I. 45 perc Definíció, ill. tétel kimondása

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval

Részletesebben

VI. Rábaköz MKSZ Kupa Lány Kézilabda Torna

VI. Rábaköz MKSZ Kupa Lány Kézilabda Torna 2017. évi versenykiírás 1. A Kupa célja A kézilabdázás megismertetése, megszerettetése és széles körben történő elterjesztése. Rábaköz és környéke lány kézilabda utánpótlás sportélet felpezsdítése. A Kupa

Részletesebben

Descartes-féle, derékszögű koordináta-rendszer

Descartes-féle, derékszögű koordináta-rendszer Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses kiválogatás TÁMOP-4.2.3.-12/1/KON isszalépéses kiválogatás 1. Az összes lehetséges sorrend Sokszor előfordul feladatként,

Részletesebben

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Az alábbiakban részletezzük, hogy a Modulo Átlag módosítási kérvényén belül található adatok pontosan mit jelentenek.

Részletesebben

Magyarország Nyílt Nemzeti Gyorsasági Motoros Bajnokság Alapkiírás

Magyarország Nyílt Nemzeti Gyorsasági Motoros Bajnokság Alapkiírás Magyarország Nyílt Nemzeti Gyorsasági Motoros Bajnokság Alapkiírás 2018 Készítette: Jóváhagyta: Kiadja: A MAMS Gyorsasági Szakág A MAMS Elnöksége A MAMS Ttitkársága További szakági információk: www.mams.hu

Részletesebben

Ütemezés gyakorlat. Termelésszervezés

Ütemezés gyakorlat. Termelésszervezés Ütemezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Általános ütemezés Egygépes ütemezési problémák Párhuzamos erőforrások ütemezése Flow-shop és job-shop ütemezés

Részletesebben

11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás

11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év).

2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év). 1. fejezet AWK 1.1. Szűrési feladatok 1. Készítsen awk szkriptet, ami kiírja egy állomány leghosszabb szavát. 2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét,

Részletesebben

A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

Résztvevő csapatok: 1/5

Résztvevő csapatok: 1/5 Budapest 2013/2014. évi Mini felkészülési tornáinak első szakaszának keretében szervezett verseny 2. leány kismini torna Időpont: 2013. november 30. (szombat), 11:00-tól Helyszín: Rendező: Elérhetőség:

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Kereső függvények és használatuk a Microsoft Excel programban. dr. Nyári Tibor

Kereső függvények és használatuk a Microsoft Excel programban. dr. Nyári Tibor Kereső függvények és használatuk a Microsoft Excel programban dr. Nyári Tibor FKERES, VKERES melyik táblában kell keresni az értéket a tábla azon oszlopának táblán belüli sorszáma, amelyből az eredményt

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 5. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom 1. Párhuzamosan

Részletesebben

Operációkutatás II. Tantárgyi útmutató

Operációkutatás II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2016/17 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

Ütemezési feladatok. Az ütemezési feladatok vizsgálata az 50-es évek elején kezdődött, majd

Ütemezési feladatok. Az ütemezési feladatok vizsgálata az 50-es évek elején kezdődött, majd 1 Ütemezési feladatok Az ütemezési feladatok vizsgálata az 50-es évek elején kezdődött, majd tekintettel a feladat gyakorlati fontosságára sok különböző modell tanulmányozására került sor, és a témakör

Részletesebben

2. modul - Operációs rendszerek

2. modul - Operációs rendszerek 2. modul - Operációs rendszerek Érvényes: 2009. február 1-jétől Az alábbiakban ismertetjük a 2. modul (Operációs rendszerek) syllabusát, amely az elméleti és gyakorlati modulvizsga követelményrendszere.

Részletesebben

KERTÉSZETI ÉS PARKÉPÍTÉSI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

KERTÉSZETI ÉS PARKÉPÍTÉSI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KERTÉSZETI ÉS PARKÉPÍTÉSI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei Középszint Emelt szint Szóbeli vizsga Szóbeli vizsga 180 perc 15 perc 240 perc 20 perc 100 pont

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg

Részletesebben

Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE

Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel Ábele-Nagy Kristóf BCE, ELTE Bozóki Sándor BCE, MTA SZTAKI 2010. november 4. Nem teljesen kitöltött páros

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Ranglista és Minősítési Szabályzat

Ranglista és Minősítési Szabályzat MAGYAR TOLLASLABDA SZÖVETSÉG Hatályos: 2013.január 1-től Az MTLSZ Elnöksége által elfogadva 2013.január 7-én Készítette: Bakó László és Borka György 1 1 Egyéni ranglista 1.1 Az MTLSZ minden Ranglista verseny

Részletesebben

EGÉSZSÉGÜGY ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA A VIZSGA LEÍRÁSA KÖZÉPSZINTEN. 180 perc 15 perc 100 pont 50 pont

EGÉSZSÉGÜGY ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA A VIZSGA LEÍRÁSA KÖZÉPSZINTEN. 180 perc 15 perc 100 pont 50 pont EGÉSZSÉGÜGY ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA A VIZSGA LEÍRÁSA KÖZÉPSZINTEN A vizsga részei Középszint 180 perc 15 perc A vizsgán használható segédeszközök: A vizsgázó biztosítja A vizsgabizottságot

Részletesebben

Döntéselméleti modellek

Döntéselméleti modellek Döntéselméleti modellek gyakorlat Berta Árpád Követelmények A félév során 40 pont szerezhető 0-19 pont : elégtelen (1) 20-24 pont : elégséges (2) 25-29 pont : közepes (3) 30-34 pont : jó (4) 35-40 pont

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben