Az érzékenységvizsgálat jelentősége

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az érzékenységvizsgálat jelentősége"

Átírás

1 Az érzékenységvizsgálat jelentősége (Tanulmány) Egyéb olyan fontos szempontok mellett, mint a stabilitás, rugalmasság, társadalmi elfogadottság, stb., az ipari menedzser fő célja, hogy növelje cége nyereségét. Ennek fő komponensei a kiadások csökkentése és a bevétel növelése. Most egy olyan egyszerű példát vizsgálunk, melynél a bevétel maximalizálása a cél. Kisméretű és lineárisan modellezhető probléma esetében viszonylag könnyű maximumot számítani. Használhatjuk a lineáris programozás jól bevált módszereit. De biztos, hogy az így kapott megoldás az igazi? Nem biztos. Nem elégedhetünk meg a kapott optimális megoldással, mert ezt a megoldást rögzített paraméterek mellett kaptuk. Egy termelési program legfontosabb paraméterei az anyagi korlátok és az egyes termékek eladási árai. Az árakat mi határozzuk meg bizonyos, a piac által diktált korlátok között, de nem csak tőlünk függ, hogy adott nyersanyagból adott időszakban mennyi áll rendelkezésre, vagy hogy milyen termelési kapacitást tudunk mozgósítani. Hogyan változik a nyereség, ha a paraméterek változnak? Változik-e az optimális termelési program is? A kettő nem ugyanaz. Jó esetben az árak vagy a korlátok csekély megváltozása mellett a nyereség értéke nő vagy csökken, de a kibocsátott termékek aránya vagy mennyisége változatlan maradhat: továbbra is optimális. De nem mindig van így. A termelést irányító vezető számára lényeges információ, hogy a kapott optimális termelési program mennyire stabil vagy instabil. Ha már kis paraméterváltozás hatására elveszíti optimalitását, akkor a program nagyon merev, instabil. Ha a paraméterek széles tartományban változhatnak anélkül, hogy az optimális termelési program megváltozna, akkor a döntéshozónak lesz ideje más problémákkal foglalkozni, és sikeresen végzi feladatát. E rövid tanulmányban egyszerű példán mutatjuk be a termelési program ilyen felfogású érzékenység-vizsgálatát. " Nem elégedhetünk meg az optimális megoldással. " " A paraméterekkel változik a termelési program is?" " Ha a paraméterek széles tartományban változhatnak anélkül, hogy az optimális termelési program megváltozna, akkor a döntéshozónak lesz ideje más problémákkal foglalkozni."

2 - 2 - Alapfeladat Egy gyárban öblítőszert csomagolnak 4-literes hígítandó, és 6- literes, rögtön használható kiszerelésben. A 4-literes flakonba 3 liter koncentrátum és 1 liter oldószer kerül, ennek eladási ára 600 Ft. A 6-literes flakonban 2 liter koncentrátumot és 4 liter oldószert kevernek össze, ennek eladási ára 900 Ft. Mindkét termékre bőven van fizetőképes kereslet, ellenben az alapanyag szállítása egyelőre akadozik. A kétféle (üres) flakonból bármennyi rendelkezésünkre áll a raktárból. Az e heti anyagszállítmánnyal 36 hektoliter koncentrátum és 32 hektoliter oldószer érkezett. Jelölje x1 a termelt 4-literes flakonok számát, és x2 a termelt 6- literes flakonok számát. Akkor az alábbi táblázat foglalja össze az adatokat és az összefüggéseket: " Melyikből mennyit gyártsunk, hogy a bevételünk maximális legyen?" Hígítandó (4-literes) Rögtön használható (6-literes) összesen Koncentrátum 3 liter 2 liter 3600 liter Oldószer 1 liter 4 liter 3200 liter Együtt 4 liter 6 liter 6800 liter Darabár 600 Ft 900 Ft Eladott darab x1 x2 Eladott liter 4 x1 4 x1 liter Eladott liter 6 x2 6 x2 liter Bevétel 600 x1 Ft 900 x2 Ft (600 x x2) Ft Melyikből mennyit gyártsunk, hogy a bevételünk maximális legyen?

3 - 3 - Matematikai program A fenti feladathoz, az ott használt x1 és x2 jelöléseket használva az alábbi (lineáris) matematikai program állítható össze: max 900x x 2 (1) x + 3x 3600 (2) x + x 3200 (3) x, x 0 (4) Magyarázat: (1) A bevételt szeretnénk maximalizálni x1 és x2 alkalmas megválasztásával. A maximalizálandó 900x x 2 kifejezést célfüggvénynek nevezzük. (2) Nem használunk fel több koncentrátumot, mint amennyi rendelkezésre áll. (3) Nem használunk fel több oldószert, mint amennyi rendelkezésre áll. (4) A termelt flakonok száma nulla vagy pozitív (nem lehet negatív). Bár az eredeti feladatban csak természetes (nulla vagy pozitív egész) számú flakonokat lehet gyártani, a modellben folytonos számok szerepelnek, vagyis nem kötjük ki, hogy x1 és x2 egész számok legyenek.

4 - 4 - Az alapfeladat megoldása Tetszőleges x1 és x2 számpárokat a feladat megoldásának szokás nevezni. A (2)-(3)-(4) feltételrendszert kielégítő x1 és x2 számpárokat a feladat megengedett megoldásainak nevezzük. A megengedett megoldások összefüggő tartományt alkotnak az x1 és x2 rendszerben, ezt megengedett tartománynak hívjuk, és e tartományt a lineáris (2)-(3)-(4) korlátok egyenleteit ábrázoló egyenesek határolják. " Az ábrán párhuzamos piros egyenesek mutatják a célfüggvény szintvonalait." Az ábrán párhuzamos piros egyenesek mutatják a célfüggvény szintvonalait. (Vagyis egy-egy piros vonal mentén a célfüggvény értéke nem változik.) Minél messzebb van a piros vonal a tengelyek metszéspontjától, annál nagyobb a célfüggvény értéke. Mivel maximumot keresünk, a piros vonalat a lehető legmagasabbra kell helyezni úgy, hogy a kék tartománnyal még legyen közös pontja. Ezt jelöli a sárga egyenes. Az ábra szerint a feladat megoldása az, hogy a piros vonal a két kék vonal metszéspontjában érinti a kék tartományt. Eszerint x = 600 és x = (azaz a 6-literes kiszerelésből gyártsunk 600 flakont, a 4-literesből 800-at), a maximális bevétel pedig Ft.

5 - 5 - Érzékenység-vizsgálat Egy optimális megoldással kapcsolatban számtalan kérdés felmerülhet bennünk. A két legfontosabb kérdés talán a következő: " Változik a megoldás, ha változtatunk az eladási árakon?" (1) Hogyan változik a megoldás, ha változtatunk az eladási árakon? Azaz: mennyire stabil a termelési terv? (2) Hogyan változik a megoldás, ha a feltételek módosulnak (például: érkezik újabb szállítmány nyersanyag, vagy kilyukad az egyik tartály)? Ezekre ad választ az érzékenységvizsgálat. Az érzékenységvizsgálat sokféle kérdésre irányulhat, ezek közül most csak a két legfontosabbat mutatjuk be. " Változik a megoldás, ha újabb szállítmény nyersanyag érkezik?" Az ár-érzékenység vizsgálata során arra vagyunk kíváncsiak, hogy meddig változtathatjuk az egyes termékek árát, vagy azok arányát, hogy közben a termelési programot ne kelljen megváltoztatni. Milyen árak mellett lesz változatlanul az eredeti x 1 = 600 és x 2 = 800 az optimális megoldás? Miközben az optimális megoldás az eredeti x = és x = marad, a bevétel természetesen változhat. A korlát-érzékenység vizsgálata során arra vagyunk kíváncsiak, hogy a rendelkezésre álló erőforrások mennyisége milyen tartományban változhat meg úgy, hogy közben a termelési programot ne kelljen megváltoztatni. Ha több koncentrátum vagy kevesebb oldószer érkezik, akkor is az eredeti x = és x 2 = 800 az optimális megoldás? Mennyivel több vagy kevesebb nyersanyagnak kell érkeznie ahhoz, hogy az optimális megoldás más legyen?

6 - 6 - Ár-érzékenység A célfüggvény szintvonalának (a piros vonalnak) a meredekségét a két eladási ár aránya határozza meg, vagyis a meredekség ezekkel változtatható. Ha csak egy kicsit növeljük vagy csökkentjük az egyik termék árát, akkor a sárga vonal a két kék vonal metszéspontja körül csak kissé fordul el, és az optimum helye nem változik. Az optimális termékarány mindaddig változatlan, amíg a sárga vonal a két kék vonal metszéspontjában érinti a kék tartományt, vagyis amíg a szintvonal meredeksége a két kék vonal meredeksége között (a sárga tartományon belül) marad. " Az optimális termékarány mindaddig változatlan, amíg a sárga vonal a két kék vonal metszéspontjában érinti a kék tartományt " Ha a második termék árát (600 Ft/flakon) rögzítjük, akkor az elsőnek az árát 900Ft-ról legföljebb 1500 Ft-tal, azaz 2400 Ft-ra növelhetjük, mert ekkor lesz a célfüggvény meredeksége azonos a (2) feltétel vonalának meredekségével. Csökkenteni legföljebb 500 Ft-tal lehet (400 Ft-ra), mert ekkor lesz a célfüggvény meredeksége azonos a (3) feltétel vonalának meredekségével. Legalábbis eddig mehetünk el anélkül, hogy a termékarányokon változtatni kellene. Ezt szemlélteti a fenti ábra. A sárgával jelölt tartományba eső egyenesekre (mint érintő szintvonalakra) lesz az (x1=600, x2=800) termékarány optimális.

7 - 7 - A következő ábrán éppen azt láthatjuk, hogy ha a célfüggvény nem a sárga tartományba esik, akkor módosul a megoldás is, mert feljebb tudjuk tolni az egyenest úgy, hogy még legyen a kék tartománnyal közös pontja: " Ha a célfüggvény nem a sárga tartományba esik, akkor módosul a megoldás is, mert feljebb tudjuk tolni az egyenest úgy, hogy még legyen a kék tartománnyal közös pontja. " Ekkor már az optimális megoldás az, hogy csak a 4-literes terméket gyártjuk, még akkor is, ha így az oldószerből nem használjuk fel a teljes készletet. (A 3600 liter koncentrátumból 1200 flakon 4-literes terméket tudunk gyártani, de ehhez csak 1200 liter oldószerre van szükségünk, és így 2000 liter oldószer megmarad.) Az adott példában elég tág határok között változtathatjuk a termékárakat (az 1. termék esetében és -500 Ft/flakon eltérések között) anélkül, hogy a termékarányokon változtatni kellene. De ez nincs mindig így. Ha ez a két szám nagyon kicsi lenne, akkor a megoldás nagyon érzékeny lenne az áremelésre vagy az árengedményre.

8 - 8 - Korlát-érzékenység Nézzük meg, hogy mi történik a megoldással, ha időközben kiderül, hogy az előző heti termelésből maradt még 300 liter oldószer, amit szintén felhasználhatunk. Az ábra így módosul: " Ha az egyik korlát eltolódik, emiatt nő a megengedett tartomány (világoskék rész). A célfüggvény szintvonalát feljebb tolhatjuk, növelve ezzel a bevételt. " Látható, hogy az egyik korlát eltolódik, emiatt nő a megengedett tartomány (világoskék rész). Ennek következménye, hogy a célfüggvény szintvonalát feljebb tolhatjuk, növelve ezzel a bevételt. Az új megoldás x1=690 és x2=740, azaz 90 literrel többet gyártunk a 4-literes flakonból, és 60 literrel kevesebbet a 6-literesből. Ezzel a bevétel Ft-ra nő (a növekedés Ft). Árnyék-ár Minden korláthoz tartozik egy úgy nevezett árnyék-ár. Ez azt mutatja meg, hogy ha az adott korlát jobb oldala egységnyi értékkel nő, akkor mennyivel nagyobb a célfüggvény értéke az új optimális megoldásban. Ez esetünkben a (3) feltételre 150 Ft/liter. Mivel a korlát növekedése nem egységnyi (nem 1 liter), hanem 300 liter, a célfüggvény 300 liter * 150 Ft/liter = Ft-tal nőtt. " Az árnyék-ár azt mondja meg, hogy a feltételek egységnyi változásának hatására mennyire változik meg a célfüggvény optimális értéke."

9 - 9 - Az árnyék-ár tehát azt mondja meg, hogy a feltételek egységnyi változásának hatására mennyire változik meg a célfüggvény optimális értéke. Megengedhető növekedés és csökkenés Természetesen a korlátokat sem növelhetjük (vagy csökkenthetjük) akármeddig. Erre vonatkozik a megengedhető növekedés és csökkenés, ami azt mutatja meg, hogy a célfüggvény mekkora tartományban viselkedik az árnyékárnak megfelelően. Például ha az első korlát megengedhető növekedése 400 liter, és kapunk 600 liter koncentrátumot, akkor már nem igaz, hogy a bevételünk az új optimális termelésben = Fttal nő. Minél kisebb a megengedhető növekedés illetve csökkenés, annál kisebb tartományban lehet egyszerű arányossággal számítani a feltételek változásának hatását a bevételre. " Minél kisebb a megengedhető növekedés vagy csökkenés, annál kisebb tartományban lehet egyszerű arányossággal számítani a feltételek változásának hatását a bevételre."

10 Megjegyzések A lineáris programozást megvalósító szoftver-termékek általában olyan szolgáltatásokat nyújtanak, melyek tájékoztatják a felhasználót a marginális érzékenységekről, vagyis arról, hogyan változik meg a célfüggvény értéke, ha valamelyik paraméter egységnyi változást szenved. Közölni szokták azt is, hogy milyen korlát- vagy árváltozás mellett kerül be az optimális terméklistába egy onnan korábban kimaradt termék, avagy milyen változás mellett esik ki az optimális terméklistából egy eredetileg bentlevő. (Ezt úgy szokták megfogalmazni, hogy milyen körülmények között változik meg az optimális bázis".) Azonban a fenti vizsgálatok eredményeit e szoftver-termékek ritkán szolgáltatják közérthető módon. Ahhoz, hogy igazán használható eredményekhez jussunk, a matematikai programot célszerű procedurális modellező környezetbe ágyazni. Ilyen környezetet valósít meg például az AIMMS (Paragon Decision Technology, Haarlem, Hollandia), melynek mi vagyunk az egyik regionális szolgáltató partnere, két másik mellett Európában. " A matematikai programot procedurális modellező környezetbe kell ágyazni. Ilyen környezetet valósít meg például az AIMMS. " Matusik Ágnes 1 Dr. Rév Endre 2 Ha többet szeretne megtudni az optimalizáló módszerekről, eszközökről és szoftverekről, jelentkezzen legközelebbi tréningünkre a honlapon. 1 Matematikus, az OptaSoft Kft. operációkutatási szakértője 2 Vegyészmérnök, docens, MTA doktor, kutatási területe az optimális folyamattervezés. Az OptaSoft Kft. szakértője.

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

b) Írja fel a feladat duálisát és adja meg ennek optimális megoldását!

b) Írja fel a feladat duálisát és adja meg ennek optimális megoldását! 1. Három nemnegatív számot kell meghatározni úgy, hogy az elsőt héttel, a másodikat tizennéggyel, a harmadikat hattal szorozva és ezeket a szorzatokat összeadva az így keletkezett szám minél nagyobb legyen.

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Optimumkeresés számítógépen

Optimumkeresés számítógépen C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 1. Előadás Követelmények, teljesítés feltételei Vizsga anyaga Előadásokhoz tartozó diasor

Részletesebben

G Y A K O R L Ó F E L A D A T O K

G Y A K O R L Ó F E L A D A T O K Döntéselmélet G Y A K O R L Ó F E L A D A T O K Lineáris programozás I Egy vállalat kétféle terméket gyárt, az A és B termékeket. A következő adatok ismertek: A vállalat éves munkaóra-kapacitása 1440 óra,

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz

Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz 1. feladattípus a megadott adatok alapján lineáris keresleti, vagy kínálati függvény meghatározása 1.1. feladat

Részletesebben

A termelés technológiai feltételei rövid és hosszú távon

A termelés technológiai feltételei rövid és hosszú távon 1 /12 A termelés technológiai feltételei rövid és hosszú távon Varian 18. Rgisztrált gazdasági szervezetek száma 2009.12.31 (SH) Társas vállalkozás 579 821 Ebbıl: gazdasági társaság: 533 232 Egyéni vállalkozás

Részletesebben

Operációkutatás példatár

Operációkutatás példatár 1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen

Részletesebben

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő.

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő. 1. Minden olyan jószágkosarat, amely azonos szükségletkielégítési szintet (azonos hasznosságot) biztosít a fogyasztó számára,.. nevezzük a. költségvetési egyenesnek b. fogyasztói térnek c. közömbösségi

Részletesebben

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Vajon, hogyan működne vállalata, ha a lehető leghatékonyabban használná ki a gyártás, logisztika során erőforrásait

Vajon, hogyan működne vállalata, ha a lehető leghatékonyabban használná ki a gyártás, logisztika során erőforrásait Gondolt már arra, hogy még a legjobban szervezett folyamatok mellett is van tartalék cégében? Tudta, hogy a kihasználatlan erőforrásokban - melyek értéke akár 30% is lehet - mennyi pénz rejtőzik? Vajon,

Részletesebben

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI 1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián főiskolai docens

Mikroökonómia előadás. Dr. Kertész Krisztián főiskolai docens Mikroökonómia előadás Dr. Kertész Krisztián főiskolai docens k.krisztian@efp.hu Árrugalmasság A kereslet árrugalmassága = megmutatja, hogy ha egy százalékkal változik a termék ára, akkor a piacon hány

Részletesebben

1. A vállalat. 1.1 Termelés

1. A vállalat. 1.1 Termelés II. RÉSZ 69 1. A vállalat Korábbi fejezetekben már szóba került az, hogy különböző gazdasági szereplők tevékenykednek. Ezek közül az előző részben azt vizsgáltuk meg, hogy egy fogyasztó hogyan hozza meg

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

KÖZGAZDASÁGTAN II. Készítette: Lovics Gábor. Szakmai felelős: Lovics Gábor június

KÖZGAZDASÁGTAN II. Készítette: Lovics Gábor. Szakmai felelős: Lovics Gábor június KÖZGAZDASÁGTAN II. Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

Gazdasági informatika gyakorlat

Gazdasági informatika gyakorlat Gazdasági informatika gyakorlat P-Gráfokról röviden Mester Abigél P-Gráf: A P-Gráfok olyan speciális páros gráfok, ahol a csúcsok két halmazba oszthatók: ezek az anyag jellegű csúcsok, valamint a gépek.

Részletesebben

1. Halmazok, számhalmazok, alapműveletek

1. Halmazok, számhalmazok, alapműveletek 1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Egy egyszerű ütemezési probléma megoldásának tanulságai

Egy egyszerű ütemezési probléma megoldásának tanulságai Egy egyszerű ütemezési probléma megoldásának tanulságai (Tanulmány) Az élet gyakran másként alakul, mint ahogy tervezzük. Kifinomult sztochasztikus tervezéssel ezen lehet javítani, de még így is elıfordulnak

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak

Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak Gazdaság- és Társadalomtudományi Kar Menedzsment és Vállalatgazdaságtan Tanszék Gyakorló feladatok a Termelésszervezés tárgyhoz MBA mesterszak Készítette: dr. Koltai Tamás egyetemi tanár Budapest, 2012.

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 1111 ÉRETTSÉGI VIZSGA 2015. május 26. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A javítás

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

Makroökonómia. 8. szeminárium

Makroökonómia. 8. szeminárium Makroökonómia 8. szeminárium Jövő héten ZH avagy mi várható? Solow-modellből minden Konvergencia Állandósult állapot Egyensúlyi növekedési pálya Egy főre jutó Hatékonysági egységre jutó Növekedési ütemek

Részletesebben

Makroökonómia. 9. szeminárium

Makroökonómia. 9. szeminárium Makroökonómia 9. szeminárium Ezen a héten Árupiac Kiadási multiplikátor, adómultiplikátor IS görbe (Investment-saving) Árupiac Y = C + I + G Ikea-gazdaságot feltételezünk, extrém rövid táv A vállalati

Részletesebben

GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 1712 ÉRETTSÉGI VIZSGA 2017. május 25. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA I. TESZTFELADATOK 18

Részletesebben

MIKROÖKONÓMIA. Externális hatások: valamilyen külső gazdasági hatás következtében történik a változás.

MIKROÖKONÓMIA. Externális hatások: valamilyen külső gazdasági hatás következtében történik a változás. A közgazdaságtan társadalomtudomány, a társadalom tagjait vizsgálja. Közgazdaságtan főbb területei: 1. Mikroökonómia: egyéni viselkedéseket vizsgálja (1. féléves anyag) 2. Makroökonómia: a gazdasági szereplők

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALKALMAZÁSAI Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat

Részletesebben

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény 84-85.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 38. o. 16-17. (Javasolt változtatások: 16. feladat: I( r) 500

Részletesebben

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre

Részletesebben

1. szemináriumi. feladatok. Ricardói modell Bevezetés

1. szemináriumi. feladatok. Ricardói modell Bevezetés 1. szemináriumi feladatok Ricardói modell Bevezetés Termelési lehetőségek határa Relatív ár Helyettesítési határráta Optimális választás Fogyasztási pont Termelési pont Abszolút előny Komparatív előny

Részletesebben

Mikroökonómia. Vizsgafeladatok

Mikroökonómia. Vizsgafeladatok Mikroökonómia Vizsgafeladatok Bacsi, Mikro feladatok 1 1, Marshall- kereszt, piaci egyensúly Mennyi a savanyúcukorka egyensúlyi mennyisége, ha a cukorka iránti kereslet és kínálat függvénye a következı:

Részletesebben

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely február

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely február MIKROÖKONÓMIA II. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

3. Fékezett ingamozgás

3. Fékezett ingamozgás 3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,

Részletesebben

Esettanulmányok és modellek 2

Esettanulmányok és modellek 2 Esettanulmányok és modellek Kereskedelem Mezőgazdaság Készítette: Dr. Ábrahám István Kereskedelem. Kocsis Péter: Opt. döntések lin.pr. (. oldal) nyomán: Kiskereskedelmi cég négyféle üdítőt rendel, melyek

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 20. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK

GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK 1. Egy terméket rövid távon a függvény által leírt költséggel lehet előállítani. A termelés határköltségét az összefüggés adja meg. a) Írja fel a termelés

Részletesebben

Matematikai modellek megoldása számítógéppel Solver Lingo

Matematikai modellek megoldása számítógéppel Solver Lingo Matematikai modellek megoldása számítógéppel Solver Lingo Készítette: Dr. Ábrahám István A matematikai modellek számítógépes megoldásait példákkal mutatjuk be. Példa: Négy erőforrás felhasználásával négyféle

Részletesebben

Keynesi kereszt IS görbe. Rövid távú modell. Árupiac. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem.

Keynesi kereszt IS görbe. Rövid távú modell. Árupiac. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem. Árupiac Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Mit tudunk eddig? Ismerjük a gazdaság hosszú távú m ködését (klasszikus modell) Tudjuk, mit l függ a gazdasági növekedés (Solow-modell)

Részletesebben

Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet

Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet Közgazdaságtan alapjai Dr. Karajz Sándor Gazdaságelméleti 10. Előadás Makrogazdasági kínálat és egyensúly Az előadás célja A makrogazdasági kínálat levezetése a következő feladatunk. Ezt a munkapiaci összefüggések

Részletesebben

Előadó: Dr. Kertész Krisztián

Előadó: Dr. Kertész Krisztián Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők

Részletesebben

Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor

Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok Rétvári Gábor retvari@tmit.bme.hu Feladatok Szöveges feladatok. Egy acélgyárban négyfajta zártszelvényt gyártanak: kis,

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Költségvetési egyenes Költségvetési egyenes = költségvetési korlát: azon X és Y jószágkombinációk

Részletesebben

Képletek és összefüggések a 3. és 4. szemináriumra Hosszú távú modell

Képletek és összefüggések a 3. és 4. szemináriumra Hosszú távú modell Képletek és összefüggések a 3. és 4. szemináriumra Hosszú távú modell 1. Termelési függvény Y = f(k, L) konstans skálahozadék: n Y = f(n K, n L) Cobb-Douglas termelési függvény: Y = ak α L 1 α α és (1

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

Csoportmódszer Függvények I. (rövidített változat) Kiss Károly

Csoportmódszer Függvények I. (rövidített változat) Kiss Károly Ismétlés Adott szempontok szerint tárgyak, élőlények, számok vagy fizikai mennyiségek halmazokba rendezhetők. A halmazok kapcsolatát pedig hozzárendelésnek (relációnak, leképezésnek) nevezzük. A hozzárendelés

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 17. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

4. Kartell két vállalat esetén

4. Kartell két vállalat esetén 4. Kartell két vállalat esetén 34 4. Kartell két vállalat esetén Ebben a fejezetben azzal az esettel foglalkozunk, amikor a piacot két vállalat uralja és ezek összejátszanak. A vállalatok együttműködését

Részletesebben

Kereslet törvénye: ha az árak nőnek, a keresett mennyiség csökken. Az árak csökkenésével a keresett mennyiség növekszik.

Kereslet törvénye: ha az árak nőnek, a keresett mennyiség csökken. Az árak csökkenésével a keresett mennyiség növekszik. 2 Ha az ár nő a költségvetési egyenes meredekebb lesz: B A U2 U1 U3 I2 I1 I0 1 d = egyéni keresleti függvény Kereslet: az a termékmennyiség, amennyit a vevő vásárolni kíván adott áruból. d iaci kereslet:

Részletesebben

Piaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez

Piaci szerkezetek VK. Gyakorló feladatok a 4. anyagrészhez Piaci szerkezetek VK Gyakorló feladatok a 4. anyagrészhez Cournot-oligopólium Feladatgyűjtemény 259./1. teszt Egy oligopol piacon az egyensúlyban A. minden vállalat határköltsége ugyanakkora; B. a vállalatok

Részletesebben

FARFISA, FA/FC52 ELEKTRONIKUS KÓDZÁR

FARFISA, FA/FC52 ELEKTRONIKUS KÓDZÁR 1.oldal FARFISA, FA/FC52 ELEKTRONIKUS KÓDZÁR 2.oldal Az FC52 kódzárral két relét lehet működtetni a feltanított számkódok segítségével. Mindkét reléhez egyenként maximálisan 4 4 számkódot lehet felprogramozni.

Részletesebben

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete? 1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű

Részletesebben

Elektromechanikai rendszerek szimulációja

Elektromechanikai rendszerek szimulációja Kandó Polytechnic of Technology Institute of Informatics Kóré László Elektromechanikai rendszerek szimulációja I Budapest 1997 Tartalom 1.MINTAPÉLDÁK...2 1.1 IDEÁLIS EGYENÁRAMÚ MOTOR FESZÜLTSÉG-SZÖGSEBESSÉG

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

9. Gyakorlat - Optoelektronikai áramköri elemek

9. Gyakorlat - Optoelektronikai áramköri elemek 9. Gyakorlat - Optoelektronikai áramköri elemek (Componente optoelectronice) (Optoelectronic devices) 1. Fénydiódák (LED-ek) Elnevezésük az angol Light Emitting Diode rövidítéséből származik. Áramköri

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat szeptember 19. Termelés 1: Technológiai összefüggések modellezése

Műszaki folyamatok közgazdasági elemzése Előadásvázlat szeptember 19. Termelés 1: Technológiai összefüggések modellezése Műszaki folyamatok közgazdasági elemzése Előadásvázlat 3. szeptember 9. Termelés : Technológiai összefüggések modellezése I. Alapfogalmak A vállalkozások célja a profit maximalizálása, ezt a célt a termelésen

Részletesebben

A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása

A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.

Részletesebben

2017/ Szegedi Tudományegyetem Informatikai Intézet

2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián   Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián e-mail: k.krisztian@efp.hu Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Irodalom Tankönyv: Jack Hirshleifer Amihai Glazer David Hirshleifer:

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium

PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium PIACI SZERKEZETEK BMEGT30A104 8. hét, 1. óra: Differenciált termékes Bertrand-oligopólium PRN: 10. fejezet 2019.04.01. 10:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu) Emlékeztető Bertrand-modell: árverseny

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Közgazdaságtan - 6. elıadás

Közgazdaságtan - 6. elıadás Közgazdaságtan - 6. elıadás A kínálat alakulása, a piac jellege 1 A PIAC JELLEGE Fontossága a vállalat szempontjából: Milyenek a versenytársak? Mekkora a vállalat a piachoz képest? (piaci részesedés) Két

Részletesebben

Makroökonómia. 12. hét

Makroökonómia. 12. hét Makroökonómia 12. hét A félév végi zárthelyi dolgozatról Nincs összevont vizsga! Javító és utóvizsga van csak, amelyen az a hallgató vehet részt, aki a szemináriumi dolgozat + 40 pontos dolgozat kombinációból

Részletesebben

Próbaérettségi január 18.

Próbaérettségi január 18. Próbaérettségi MEGOLDÓKULCS KÖZÉPSZINT I. Választásos, egyszerű rövid választ igénylő feladatok Feleletválasztás (10 2 = 20 pont) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. C A C D B D A D C B Minden helyes válasz

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

FL-11R kézikönyv Viczai design 2010. FL-11R kézikönyv. (Útmutató az FL-11R jelű LED-es villogó modell-leszállófény áramkör használatához)

FL-11R kézikönyv Viczai design 2010. FL-11R kézikönyv. (Útmutató az FL-11R jelű LED-es villogó modell-leszállófény áramkör használatához) FL-11R kézikönyv (Útmutató az FL-11R jelű LED-es villogó modell-leszállófény áramkör használatához) 1. Figyelmeztetések Az eszköz a Philips LXK2 PD12 Q00, LXK2 PD12 R00, LXK2 PD12 S00 típusjelzésű LED-jeihez

Részletesebben

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely június

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

REGIONÁLIS GAZDASÁGTAN B

REGIONÁLIS GAZDASÁGTAN B REGIONÁLIS GAZDASÁGTAN B ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan B A MONOPOLISZTIKUS VERSENY ÉS A DIXITSTIGLITZ-MODELL Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s:

Részletesebben

Mikro- és makroökonómia. A termelés modellje Szalai László

Mikro- és makroökonómia. A termelés modellje Szalai László Mikro- és makroökonómia A termelés modellje Szalai László 2017.09.28. Termelés Termelési tényezők piaca Vállalat Értékesítés Inputok Technológia Kibocsátás S K L Termelési függvény Q = f K, L,... ( ) Fogyasztók

Részletesebben

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11. 11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS,

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. KERESLET, KÍNÁLAT, EGYENSÚLY Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat 1

Részletesebben

A szimplex algoritmus

A szimplex algoritmus . gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,

Részletesebben