Insperger T., Stépán G., Marási folyamatok dinamikai stabilitása, Gépgyártás, XLI(7-8) (2011), pp Marási folyamatok dinamikai stabilitása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Insperger T., Stépán G., Marási folyamatok dinamikai stabilitása, Gépgyártás, XLI(7-8) (2011), pp Marási folyamatok dinamikai stabilitása"

Átírás

1 Isperger T., Stépá G., Marás folyamatok damka stabltása, Gépgyártás, XLI(7-8) (2), pp Bevezetés Marás folyamatok damka stabltása Isperger Tamás Stépá Gábor Forgácsolás folyamatok tervezésekor gyakra fgyelme kívül hagyják a folyamat damkájából adódó stabltás kérdéseket. Eek elsődleges oka az, hogy a megmukálás paraméterek optmalzálása sorá haszált módszerekkel a stabltás krtérumot ehéz fgyelembe ve az optmálás feladat em kovex, emleárs, a damka paraméterek eheze becsülhetőek, ylvátartásuk boyolult feladat. Előfordulhat azoba, hogy a forgácsolás folyamat elveszít stabltását, a szerszám és a mukadarab egymáshoz képest rezeg kezd. Eek elkerülése agyo fotos a potos mukadarab legyártása érdekébe. Ha jól smerjük a redszer damkáját, akkor a potosság követelméyek betartása mellett a megmukálás hatékoysága s övelhető. A forgácsolás folyamatokál fellépő úgyevezett regeeratív hatás gyakra ögerjesztett rezgésekhez vezet. A köryezet lletve egyéb zavaró körülméyek hatására rezgések keletkezek, melyek következtébe a mukadarab felszíe hullámos lesz. Eek megfelelőe a forgácsvastagság függ a szerszám jeleleg, lletve egy korább állapotától (ld.. ábra). Ezek alapjá a szerszám x ráyú mozgását leíró egyelet a következő autoóm késleltetett dfferecálegyelet lesz x F 2 bk h ( + 2ζ ω ( + ω = ( t τ ) ), () m ahol m a szerszám tömege, ζ a relatív csllapítás téyező, ω a csllapítatla sajátkörfrekveca. Ezek az adatok modáls aalízssel meghatározhatók, feltéve, hogy a szerszámgépek va egy alsó, jól elhatárolható legésképe. Tovább techológa paraméterek: b a forgácsszélesség, K a mukadarab ayagára jellemző álladó, h az elmélet forgácsvastagság, x F a forgácsvastagság ktevője a forgácsoló erő képletébe. Az egyelet bal oldala a szerszámot modellező egy dmezós legőredszert írja le, a jobb oldalo a forgácsolás erő változásából adódó tagok láthatók. Mvel a forgácsolás erő függ az éppe levágadó forgács vastagságától, az egyelet jobb oldalá a szerszám pllaaty lletve késleltetett t τ) helyzetéek külöbsége jelek meg. Eek a kfejezések az együtthatója a forgácsoló erőek a h elmélet forgácsvastagságál meghatározott derváltja lesz, am dokolja az x F ktevőt. Az dőkésés kfejezhető τ = 6/ [s] alakba, ahol [/m] a mukadarab szögsebessége. Az () egyelet x ( trváls megoldásáak (azaz a rezgésmetes forgácsolásak) a stabltása függ az egyeletbe szereplő paraméterektől. A szakrodalomak megfelelőe a redszer stabltását a b techológa paraméterek síkjá szokás ábrázol. Aak elleére, hogy a redszer matematka értelembe végtele dmezós, a stabltás határok zárt alakba megadhatók [] [3]. Marás eseté a marószerszám forgása következtébe az egyes élekre ható forgácsoló erő x ráyú kompoese perodkusa változk [4]. Ez, és az egyszerre működő aktív élek számáak változása a redszerbe paraméteres gerjesztéskét jeletkezk, amt a szerszám mozgásegyeletébe egy dőbe τ peródussal változó együttható fejez k PhD hallgató, BME, Műszak Mechaka Taszék Egyetem taár, BME, Műszak Mechaka Taszék

2 Isperger T., Stépá G., Marás folyamatok damka stabltása, Gépgyártás, XLI(7-8) (2), pp ábra: Esztergálás folyamat dmezós mechaka modellje x F 2 bk h ( + 2ζ ω ( + ω = p( ( t τ ) ), p ( t +τ ) = p(. (2) m Ebbe az esetbe az dőkésés függ a marószerszám z fogszámától s: τ = 6/(z). A p( függvéy a forgácsolás erő x ráyú kompoeséek változásával aráyos dmezótla meység, esztergálás eseté p (. A (2) egyelet egy perodkus együtthatójú késleltetett dfferecálegyelet. Az x ( trváls megoldásak a stabltása em végezhető el az autoóm késleltetett dfferecálegyeletekre haszált módszerekkel, eek megfelelőe em várható, hogy a stabltás krtérum a techológa paraméterek függvéyébe zárt alakba megadható. Nagy fogszám és alacsoy megmukálás sebességek eseté a szerszámgéprezgések klasszkus elméletébe belátták [5], [6], hogy az dőbe kátlagolt p átlag együtthatóval s kelégítőe potos stabltás térképeket kapuk. Az utóbb évtzedbe az 5D megmukáló közpotoko elterjedő agysebességű, ks fogszámú ujj marókat alkalmazó techológák eseté azoba ez már em gaz. Ezekbe az esetekbe a stabltás térképek közelítő meghatározása törtéhet számítógépes szmulácóval [7], [8], lletve egyéb aaltkus közelítő módszerekkel [9] [3]. A jele ckkbe a (2) egyelet stabltás térképét határozzuk meg a b paraméter síko külöböző a/d aráyal jellemezhető radáls fogásmélységek esetére (ld. 2. ábra). A stabltás vzsgálathoz az ú. szem-dszkretzácós módszert alkalmazzuk [4]. 2

3 Isperger T., Stépá G., Marás folyamatok damka stabltása, Gépgyártás, XLI(7-8) (2), pp Szem-dszkretzácó 2. ábra: Marás folyamat dmezós mechaka modellje Tektsük a következő általáos alakú késleltetett perodkus együtthatójú dfferecálegyeletet: + b ( + c ( = c ( t ), (3) ( τ ahol c ( és c ( t ) τ - perodkus függvéyek. Vegyük fel az ú. dszkretzácós tervallumokat t, ), =,, úgy, hogy [ t + t+ t = t = τ /( M + / 2), ahol M egy alkalmasa választott (agy) egész szám. A szemdszkretzácós módszer léyege az, hogy a késleltetett tagokat mde egyes dszkretzácós tervallumba álladó értékkel közelítjük. Ezzel az álladó τ dőkésést egy dőbe t peródusdővel változó ~ τ ( t ) dőkéséssel közelítjük (ld. 3. ábra). Így a (3) egyeletet mde egyes tervallumba közelíthetjük a következő autoóm közöséges dfferecálegyelettel ( x, t t, t ) (4) + b + c = c M [ + ahol + c = c t t t ( dt, + c = c( dt t t t lletve x t ) = t M M = M. Adott x = ( t ) x és x t ) x 3. ábra: Az dőkésés közelítése ( = kezdet feltételekhez a (4) egyelet mde egyes dszkretzácós tervallumba megoldható, és az x ( állapotváltozó t + dőpllaatbel értéke meghatározható x + + = t = ( t + + ) = a ) = a x + a x + a + a + a M M x x M M,. (5) 3

4 Isperger T., Stépá G., Marás folyamatok damka stabltása, Gépgyártás, XLI(7-8) (2), pp Az a, a, a, a, a M, a M együtthatók a (4) egyelet megoldásából adódak. Az (5) egyeletek által megfogalmazott kapcsolat a következő M+2 dmezós dszkrét egyelettel fejezhető k y + = A y, (6) ahol y = col( x x x M ), a a am a a am A =. Az egyes dszkretzácós tervallumoko értelmezett megoldások csatolásakét előáll az eredet (3) egyelet alapmátrxa. Például az t + k ek megfelelő y k a következőképpe adódk y k = A k A k A y. (7) A (3) egyelet τ peródusdeje a dszkretzácós tervallum M+/2 szerese, azaz em egész számsorosa. Ezért a redszer τ peródusdejére voatkozó Φ átvtel mátrxát em tudjuk potosa meghatároz, mert csak y M vagy y M+ vektorok fejezhetők k y segítségével, az x ( t + τ ) ak megfelelő y M+/2 vektor em. K tudjuk azoba fejez az x ( t + 2τ ) ak megfelelő y 2M+ vektort, amellyel megkapjuk a Φ átvtel mátrx égyzetét 2 y 2M + = Φ y, (8) Φ 2 = A A A A. (9) 2 M + 2 M A (3) egyelet stabltásáak feltétele, hogy a Φ átvtel mátrx összes sajátértéke abszolút értékbe -él ksebb legye. A mátrxfüggvéyek tulajdoságából következk. hogy Φ 2 sajátértékere szté eek a feltételek kell teljesüle. A stabltásvzsgálat ezek alapjá a (2) egyeletre elvégezhető. 3. Stabltás térképek A stabltás térképek a következő reáls adatokkal készültek: m =.4 [kg], ζ =., f = 2 x [Hz], Kh F = [N/mm 2 ], z=2. A marószerszám forgás ráya és az előtolás ráyáak vszoya alapjá kétfajta megmukálást defálhatuk [5]: egyeráyú marás ekkor a marószerszám aktív éle az előtolással azoos ráyba mozog, lletve elleráyú marás ekkor a marószerszám aktív éle az előtolással elletétes ráyba mozog, ez utóbbra láthatuk 4

5 Isperger T., Stépá G., Marás folyamatok damka stabltása, Gépgyártás, XLI(7-8) (2), pp példát a 2. ábrá. Teljes radáls fogásmélység eseté (a/d = ) az elle lletve egyeráyú marás egyarát jele va. A meghatározott stabltás térképek lletve a hozzájuk tartozó p( függvéy a 4. ábrá láthatók. A stabls tartomáyokat S betű jelz. Az ábrák M=2-as közelítés mellett készültek MatLab programmal. 4. ábra: Stabltás térképek: (A) elleráyú marás, a/d =.5, (B) egyeráyú marás, a/d =.5, lletve (C) telbe marás (a/d = ) esetére 4. Következtetések Látható, hogy a mukadarab marószerszám geometra vszoya alapvetőe befolyásolják a folyamat damka stabltását. Ha egy gyártás folyamat eseté a szerszám "berezeg", akkor a mukadarab tükrös elhelyezésével a folyamat sok esetbe stablzálható. A jeleség magyarázatát a 4. ábrá s feltütetett p( függvéy adja. Az (A) esetbe a p( függvéy előjele poztív, a (B) esetbe túlyomórészt egatív. Ez azt jelet, hogy a redszert gerjesztő forgácsolás erő változás x ráyú kompoese a két esetbe elletétes értelmű. A (C) esetbe ez a két hatás együttese jeletkezk. Ebbe az esetbe a stabls tartomáy még csak em s összefüggő, stabls paraméter szgetek keletkezek (ld. b 4 [mm] ll. 2 [/m] köryéké). Az eredméyek azt mutatják, hogy a agysebességű marás megmukálások damkája még a klasszkus forgácsolás műveletekél megszokott regeeratív jeleségekél s boyolultabb a paraméteres gerjesztések a holtdős ögerjesztéssel való kombácója matt. Eek a damkáak a megértésével azoba jeletőse övelhetjük az új techológák hatékoyságát. 5

6 Isperger T., Stépá G., Marás folyamatok damka stabltása, Gépgyártás, XLI(7-8) (2), pp Köszöetylváítás A szerzők köszöetüket fejezk k az Országos Tudomáyos Kutatás Alapak a kutatás elvégzéséhez yújtott támogatásért (OTKA T3762/99). Köszöetüket fejezzük k Isperger Atalak a haszos szakma kozultácókért. Irodalomjegyzék [] Tlusty, J., Polacek, A., Daek, C., Spacek, J., 962, Selbsterregte Schwguge a Werkzeugmasche, VEB Verlag Techk, Berl. [2] Tobas, S. A., 965, Mache Tool Vbrato, Blacke, Lodo. [3] Stépá, G., 998, Delay-dfferetal Equato Models for Mache Tool Chatter, Dyamcs ad Chaos Maufacturg Processes, Wley, New York. [4] Laczk, B., 986, Forgácsolás folyamat rezgésdagosztkája, Egyetem doktor értekezés, Budapest Műszak Egyetem. [5] Tlusty, J., Polacek, A., Daek, C., Spacek, J., 962, Selbsterregte Schwguge a Werkzeugmasche, VEB Verlag Techk, Berl. [6] Tobas, S. A., 965, Mache Tool Vbrato, Blacke, Lodo. [7] Ms, I., Yaushevsky, R., 993, A ew theoretcal approach for the predcto of mache tool chatter mllg, Joural of Egeerg Idustry, 5, pp. -8. [8] Balachadra, B., Zhao, M.X., 2, A Mechacs Based Model for Study of Dyamcs of Mllg Operatos, Meccaca, 35(2) pp [9] Alttas, Y., Budak, E., 995, Aalytcal Predcto of Stablty Lobes Mllg, Aals of the CIRP, 44, pp [] Daves, M. A., Pratt, J. R., Dutterer, B., Burs, T. J., 2, Iterrupted Machg A Doublg the Number of Stablty Lobes?, The Joural of Maufacturg Scece ad Egeerg press. [] Isperger T., Stépá G., 2b, Stablty of the Mllg Process, Perodca Polytechca 44(), pp [2] Bayly, P. V., Halley, J. E., Ma, B. P., Daves, M. A., 2, Stablty of Iterrupted Cuttg by Temporal Fte Elemet Aalyss, Proceedgs of the ASME 2 Desg Egeerg Techcal Cofereces, Pttsburgh, paper o. DETC2/VIB- 258 (CD-ROM). [3] Corpus, W. T., Edres, W. J., 2, A Hgh-Order Soluto for the Added Stablty Lobes Itermttet Machg, Proceedgs of the Symposum o Machg Processes, Orlado, MED-, pp [4] Isperger, T., Stépá, G., 2, Sem-dscretzato of delayed dyamcal systems, Proceedgs of ASME 2 Desg Egeerg Techcal Cofereces, Pttsburgh, paper o. DETC2/VIB-2446 (CD-ROM). [5] Bal J.: Forgácsolás, Taköyvkadó, Budapest,

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

VASBETON ÉPÜLETEK MEREVÍTÉSE

VASBETON ÉPÜLETEK MEREVÍTÉSE BUDAPET MŰZAK É GAZDAÁGTUDOMÁY EGYETEM Építőmérök Kar Hdak és zerkezetek Taszéke VABETO ÉPÜLETEK MEREVÍTÉE Oktatás segédlet v. Összeállította: Dr. Bód stvá - Dr. Farkas György Dr. Kors Kálmá Budapest,.

Részletesebben

Függvénygörbe alatti terület a határozott integrál

Függvénygörbe alatti terület a határozott integrál Függvéygörbe alatt terület a határozott tegrál Tektsük az üggvéyt a ; tervallumo. Adjuk becslést a görbe az tegely és az egyees között síkdom területére! Jelöljük ezt a területet I-vel! A becslést legegyszerűbbe

Részletesebben

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- 5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

Backtrack módszer (1.49)

Backtrack módszer (1.49) Backtrack módszer A backtrack módszer kombatorkus programozás eljárás, mely emleárs függvéy mmumát keres feltételek mellett, szsztematkus kereséssel. A módszer előye, hogy csak dszkrét változókat kezel,

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek Termékjellemzők optmalzálásáál haszálatos formácós módszerta 1 Bevezetés Koczor Zoltá, Némethé Erdőd Katal, Kertész Zoltá, Szecz Péter Óbuda Egyetem, RKK, Mőségráyítás és Techológa Szakcsoport Napjak aktuáls

Részletesebben

SZERKEZETEK MÉRETEZÉSE FÖLDRENGÉSI HATÁSOKRA

SZERKEZETEK MÉRETEZÉSE FÖLDRENGÉSI HATÁSOKRA SZERKEZEEK MÉREEZÉSE FÖLDRENGÉSI HAÁSOKRA (Az Eurocode-8 alapjá) Kollár László (3) Méretezés módszerek BME Szlárdságta és artószerkezet aszék 03. október. artószerkezet-rekostrukcós Szakmérök Képzés Méretezés

Részletesebben

GEOFIZIKA / 4. GRAVITÁCIÓS ANOMÁLIÁK PREDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE

GEOFIZIKA / 4. GRAVITÁCIÓS ANOMÁLIÁK PREDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE MSc GEOFIZIKA / 4. BMEEOAFMFT3 GRAVITÁCIÓS ANOMÁLIÁK REDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE A gravtácós aomálák predkcója Külöböző feladatok megoldása sorá - elsősorba

Részletesebben

oldatból történő kristályosítás esetén

oldatból történő kristályosítás esetén Borsos és Lakatos: Méretfüggő kristályövekedési sebesség modellezése Méretfüggő kristályövekedési sebesség modellezése oldatból törtéő kristályosítás eseté Borsos Ákos és Lakatos G. Béla Pao Egyetem, Méröki

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

9. HAMILTON-FÉLE MECHANIKA

9. HAMILTON-FÉLE MECHANIKA 9. HAMILTON-FÉLE MECHANIKA 9.. Legedre-éle traszormáció x x h x, p= p x x Milye x-él maximális? pl.= x alulról kovex h x =0: d p= dx x=x p a példába: p=x ; h= p x x Mekkora a maximuma? g p= p x p x p g=

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat Fzka feladatok: F.1. Cuam A cuam hullám formájáak változása, ahogy a sekélyebb víz felé mozog (OAA) (https://www.wdowsuverse.org/?page=/earth/tsuam1.html) Az ábra, táblázat a cuam egyes jellemzőt tartalmazza.

Részletesebben

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától

Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,

Részletesebben

2.10. Az elegyek termodinamikája

2.10. Az elegyek termodinamikája Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,

Részletesebben

i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon.

i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon. 3. Bézer görbék 3.1. A Berste polomok 3.1. Defícó. Legye emegatív egész, tetszőleges egész. A ( ) B (u) = u (1 u) polomot Berste polomak evezzük, ahol ( ) = {!!( )! 0, 0 egyébkét. A defícóból közvetleül

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

10 A TRANSZPORTFOLYAMATOK ÁLTALÁNOS JELLEMZÉSE

10 A TRANSZPORTFOLYAMATOK ÁLTALÁNOS JELLEMZÉSE 0 A TRANSZPORTFOLYAMATOK ÁLTALÁNOS JLLMZÉS gy termodamka redszer állapota lehet dőbe álladó, vagy változó. Az dőbe álladó redszereket két agy csoportra oszthatuk: egyesúlyba lévő redszerekre és stacoárus

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika ... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB

Részletesebben

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel-

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel- ACÉLOK KÉMIAI LITY OF STEELS THROUGH Cserjésé Sutyák Áges *, Szilágyié Biró Adrea ** beig s s 1. E kutatás célja, hogy képet meghatározásáak kísérleti és számítási móiek tosságáról, és ezzel felfedjük

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R,

KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R, KOMBINATORIKA ELŐADÁS osztatla matematkataár hallgatók számára Szta formula Előadó: Hajal Péter 2018 1. Bevezető példák 1. Feladat. Háy olya sorbaállítása va a {a,b,c,d,e} halmazak, amelybe a és b em kerül

Részletesebben

1.2. Ütközés Ütközési modell, alapfeltevések Ütközés 3

1.2. Ütközés Ütközési modell, alapfeltevések Ütközés 3 .2. Ütközés 3 alkalmazásához azoba szükséges a kiematika ismerete, a kietikus és poteciális eergia megfelelő kifejezése és a tehetetleségi yomaték számítása, valamit helyese kell alkalmazi a differeciálási

Részletesebben

RUGÓTERHELÉSŰ BIZTONSÁGI SZELEP MŰKÖDÉSÉNEK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA

RUGÓTERHELÉSŰ BIZTONSÁGI SZELEP MŰKÖDÉSÉNEK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR RUGÓTERHELÉSŰ BIZTONSÁGI SZELEP MŰKÖDÉSÉNEK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA PhD ÉRTEKEZÉS KÉSZÍTETTE: SIMÉNFALVI ZOLTÁN OKLEVELES GÉPÉSZMÉRNÖK GÉPÉSZMÉRNÖKI TUDOMÁNYOK

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Valós függvénytan. rendezett pár, ( x, valós számok leképezése az csoportra. függvény mint előírás, pl. y x azt jelenti, hogy x

Valós függvénytan. rendezett pár, ( x, valós számok leképezése az csoportra. függvény mint előírás, pl. y x azt jelenti, hogy x II. Valós függvéyta Alapvetőe ebbe a fejezetbe s elem matematka smeretekről lesz szó, de az smeretek alapos, készségsztű begyakorlása (mely esetleg túlmegy az tt közölt feladatok megoldásá) elegedhetetleek

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Reakciómechanizmusok leírása. Paraméterek. Reakciókinetikai bizonytalanságanalízis. Bizonytalanságanalízis

Reakciómechanizmusok leírása. Paraméterek. Reakciókinetikai bizonytalanságanalízis. Bizonytalanságanalízis Megbízható kémiai modellek kifejlesztése sok mérési adat egyidejő feldolgozása alajá uráyi amás www.turayi.eu ELE Kémiai Itézet Reakciókietikai Laboratórium Eddig dolgoztak eze a témá: (témavezetık: uráyi

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú ..4. Óbuda Egyetem ák Doát Gépész és ztoságtechka Mérök Kar yagtudomáy és Gyártástechológa Itézet Termelés olyamatok II. Költségbecslés Dr. Mkó alázs mko.balazs@bgk.u-obuda.hu z dı- és költségbecslés eladata

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

2. A KVANTUMMECHANIKA AXIÓMÁI

2. A KVANTUMMECHANIKA AXIÓMÁI . A KVANTUMMECHANIKA AXIÓMÁI A XIX. század vége felé úgy tűt, hogy a fzka legfotosabb kérdése tsztázódtak. A mechaka, termodamka és Maxwell mukássága yomá az elektrodamka s többékevésbé befejezett, axómákra

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk

Tulajdonságok. Teljes eseményrendszer. Valószínőségi változók függetlensége. Példák, szimulációk Valószíőségszámítás és statsztka elıadás fo. BSC/B-C szakosokak 3. elıadás Szeptember 26 p 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 A bomáls és a hpergeom. elo. összehasolítása 0 1 2 3 4 5 6 7 8 9 10 k Hp.geom

Részletesebben

Differenciaegyenletek aszimptotikus viselkedésének

Differenciaegyenletek aszimptotikus viselkedésének Differeciaegyeletek aszimptotikus viselkedéséek vizsgálata Mathematica segítségével Botos Zsófia Újvidéki Egyetem TTK Újvidék Szerbia E-mail: botoszsofi@yahoo.com 1. Bevezető Tekitsük az késleltetett diszkrét

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

4 TÁRSADALMI JELENSÉGEK TÉRBELI EGYÜTTMOZGÁSA

4 TÁRSADALMI JELENSÉGEK TÉRBELI EGYÜTTMOZGÁSA ELTE Regoáls Földrajz Taszék 005 4 TÁRSADALMI JELENSÉGEK TÉRBELI EGYÜTTMOZGÁSA 4. Általáos szempotok A terület folyamatok, a tagoltság vzsgálata szte sohasem szűkül le egy-egy jeleség (mutatószám) térbel

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Megjegyzés: Amint már előbb is említettük, a komplex számok

Megjegyzés: Amint már előbb is említettük, a komplex számok 1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Modern Fizika Labor. 13. Molekulamodellezés. Fizika BSc. A mérés dátuma: nov. 08. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 13. Molekulamodellezés. Fizika BSc. A mérés dátuma: nov. 08. A mérés száma és címe: Értékelés: Moder Fizika Labor Fizika BSc A mérés dátuma: 2011. ov. 08. A mérés száma és címe: 13. Molekulamodellezés Értékelés: A beadás dátuma: 2011. dec. 09. A mérést végezte: Szőke Kálmá Bejami Kalas György Bejámi

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.

Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van. Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

A központos furnérhámozás néhány alapösszefüggése

A központos furnérhámozás néhány alapösszefüggése A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás

Részletesebben

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A Bíráló véleméy SzabóZoltá: A Geometrc Approach or the Cotrol o Swtched ad LPV Systems (Kapcsolt és LPV redszerek ráyítása geometra megközelítésbe) c. MTA doktor (DSc) értekezésről Az értekezés az ráyíthatóság,

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba Kvatummechaika gyakorlo felaatok - Megolások felaat: z eltolás operátoráak megtalálásával teljese aalóg móo fejtsük Taylor-sorba a hullámfüggvéyt a változójába: ψr θ ϕ + ϕ ψr θ ϕ + ψr θ ϕ ϕ + ψr θ ϕ ϕ

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Stabilitás Irányítástechnika PE MI_BSc 1

Stabilitás Irányítástechnika PE MI_BSc 1 Stabilitás 2008.03.4. Stabilitás egyszerűsített szemlélet példa zavarás utá a magára hagyott redszer visszatér a yugalmi állapotába kvázistacioárius állapotba kerül végtelebe tart alapjelváltás Stabilitás/2

Részletesebben

Egyenáramú szervomotor modellezése

Egyenáramú szervomotor modellezése Egyenáramú szervomotor modellezése. A gyakorlat élja: Az egyenáramú szervomotor mködését leíró modell meghatározása. A modell valdálása számításokkal és szotverejlesztéssel katalógsadatok alapján.. Elmélet

Részletesebben

Folytonos idejű rendszerek stabilitása

Folytonos idejű rendszerek stabilitása Folytoos idejű redszerek stabilitása Összeállította: dr. Gerzso Miklós egyetemi doces PTE MIK Műszaki Iformatika Taszék 205.2.06. Itelliges redszerek I. PTE MIK Mérök iformatikus BSc szak Stabilitás egyszerűsített

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

A forgácsolás alapjai

A forgácsolás alapjai A forgácsolás alapjai Dr. Igaz Jenő: Forgácsoló megmunkálás II/1 1-43. oldal és 73-98. oldal FONTOS! KÉREM, NE FELEDJÉK, HOGY A PowerPoint ELŐADÁS VÁZLAT NEM HELYETTESÍTI, CSAK ÖSSZEFOGLALJA, HELYENKÉNT

Részletesebben

DFTH november

DFTH november Kovács Ernő 1, Füves Vktor 2 1,2 Elektrotechnka és Elektronka Tanszék Mskolc Egyetem 3515 Mskolc-Egyetemváros tel.: +36-(46)-565-111 mellék: 12-16, 12-18 fax : +36-(46)-563-447 elkke@un-mskolc.hu 1, elkfv@un-mskolc.hu

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Tudományos Diákköri Konferencia Marási folyamatok stabilizálása abszorberrel. Szerző: Bakonyvári Dávid Konzulens: Lehotzky Dávid

Tudományos Diákköri Konferencia Marási folyamatok stabilizálása abszorberrel. Szerző: Bakonyvári Dávid Konzulens: Lehotzky Dávid Tudományos Diákköri Konferencia 2015 Marási folyamatok stabilizálása abszorberrel Szerző: Bakonyvári Dávid Konzulens: Lehotzky Dávid Tartalomjegyzék Kivonat....3 Abstract...4 1. Bevezetés...5 2. Abszorberrel

Részletesebben

A szerkezetszintézis matematikai módszerei

A szerkezetszintézis matematikai módszerei 7 A szerkezetsztézs matematka módszere 1.5 Első derváltat géylő módszerek Az első derváltat géylő módszerek (elsőredű módszerek, melyek felhaszálják a grades formácókat, általába hatékoyabbak, mt a ulladredű

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

A 12/2013 (III. 28.) NGM rendelet szakmai és vizsgakövetelménye alapján Gépgyártás-technológiai technikus

A 12/2013 (III. 28.) NGM rendelet szakmai és vizsgakövetelménye alapján Gépgyártás-technológiai technikus A 12/2013 (III. 28.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 521 03 Gépgyártás-technológiai technikus Tájékoztató A vizsgázó az első lapra írja

Részletesebben