A szerkezetszintézis matematikai módszerei

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A szerkezetszintézis matematikai módszerei"

Átírás

1 7 A szerkezetsztézs matematka módszere 1.5 Első derváltat géylő módszerek Az első derváltat géylő módszerek (elsőredű módszerek, melyek felhaszálják a grades formácókat, általába hatékoyabbak, mt a ulladredű módszerek. Eek az az ára, hogy elő kell állíta a grades formácókat, vagy a véges-dfferecák módszerével, vagy aaltkusa. Az első redű módszerek em hatékoyak, ha a derváltak em folytoosak. Általába azért hatékoyabbak, mt a ulladredű módszerek Bütető-függvéyes módszerek: SUMT, belső, külső bütetőfüggvéy A bütető függvéyek módszere az első próbálkozások körébe tartozk, hogy a feltételes optmálás probléma megoldható legye. Az alapelképzelés az, hogy olya feltétel élkül optmálás problémát oldjo meg, melyek megoldása kovergál a feltételes optmálás probléma megoldásához. Ez a típusú feltétel élkül optmálás probléma két külöböző típusú bütető függvéyt alkalmaz: az egyk típust az egyelőtleség, a másk típust az egyelőség feltételekre. Az egyelőség feltételek em bothatók két egyelőtleségre, mvel ott cs megegedett tartomáy. A SUMT (Sequetal Ucostraed Mmsato Techque eljárást Facco és McCormck (1968 fejlesztette k. Az eredet probléma célfüggvéyét és méretezés feltételet haszálja ahhoz, hogy egy feltételélkül célfüggvéy-mmálást fogalmazzo meg többváltozós esetbe. Külső bütető függvéyek A külső bütető függvéyek a feltételek megsértéséhez kapcsolódak. Az külső elevezés arra utal, hogy a bütetés csak a megegedett tartomáyo kívül kerül alkalmazásra. A leggyakorbb külső bütető függvéy az, amelyk aráyos a feltétel túllépéséek égyzetével. Eek a módszerek az előye az s, hogy em megfelelő kezdőpotból s dítható. Másk előye az, hogy csak az aktív feltételek vaak hatással a célfüggvéy optmumára. Hátráya, hogy cs megfelelő megoldás mdaddg, amíg az optmumot em érte el. Másk hátráya, hogy a bütető paraméterek a végtelehez közelíteek az optmumál. M l F( x,rk = f ( x + rk { max[ 0,g j ( x ]} + [ hk ( x ] j= 1 k= 1 ahol a határ lm F = f. r k m m, (1.9

2 8 A szerkezetsztézs matematka módszere A bütető függvéy első része poztív részt jelöl, a maxmumát a (0, g j ( x tartomáyak. A külső bütető-függvéy bemutatása látható az 1.1.a. ábrá. F* a mmáls függvéyértékű potot jelöl. F(X 1 r k F(r F(r 3 f(x F(X 1 r k F(x 1 r 1 F(x 1 r F(x 1 r 3 F 1 x F x F 3 x F(r 1 F 1 x F x F 3 x optmum f(x optmum (a X (b X 1.1 ábra Külső és belső bütető-függvéyek értéke Belső bütető függvéyek A belső bütető-függvéyek módszeréél mde közbeső megoldás a megegedett tartomáyo fekszk és olya megoldásba kovergál, mely szté a megegedett tartomáyo va. Ez a bütető függvéy az verze a méretezés feltételek, ha a feltétel aktív. A módszer előye, hogy mde terácó megfelelő, az eljárás bármkor megállítható. A méretezés feltételek krtkussá csak az optmum közelébe válak. Hátráya, hogy mde méretezés feltétel hatással va célfüggvéyre függetleül attól, hogy aktív-e, vagy sem az optmumál. Nagy hátráya, hogy a em megfelelő pot agy egatív bütető függvéyt eredméyez. Ez azt jelet, hogy az optmálást megfelelő kezdőpotból kell díta és sohasem szabad em megfelelő potot vzsgál. A feltétel élkül probléma megfogalmazásáál az u. bütető függvéy tag az eredet célfüggvéyhez va hozzáadva, mely bütet az f(x függvéyt, ha elhagyja a megegedett tartomáyt. Egy r k téyező adja meg f bütetéséek mértékét. Az f ( r k sorozatál r k 0 ha k = 0, 1,,..., a bütető függvéy defálható például a következőképpe 1 F (x,r k = f(x - r k ; vagy F (x,r j g ( x k = f(x - r k l g j ( x, (1.30 ahol a határ lm F m = fm. r k j j

3 9 A szerkezetsztézs matematka módszere A belső bütető függvéy ábrázolása az 1.1.b. ábrá látható. F* a mmáls függvéyértéket jelet. Kterjesztett belső bütető függvéy Ez a bütető függvéy kombálja a belső és külső bütető függvéyeket, melyek az előzőekbe kerültek smertetésre. Egy új ε paramétert vezet be, mely kvaltatíve vezérl a két függvéy között kapcsolatot. Egyk típusa a kterjesztett belső bütető függvéyek a következő: r P( x = x g( x ; g( ε, (1.31 r g( x 3g( x P( x = ; g ( x > ε. (1.3 ε ε ε Ez a bütető függvéy olya felépítésű, hogy az első és másodk derváltja folytoosak az átmeetél, ha a méretezés feltétel sma. Ha a feltételek megsértése agy mértékű, akkor a külső bütető függvéyek módszerét alkalmazza, egyébkét a belső bütető függvéyek módszerét. Ezáltal a módszer redelkezk md a belső, md a külső bütető függvéyek módszeréek előyevel. Elhagyható a megfelelő pot szükségessége. Az eljárás hátráya, hogy ha az átmeet paraméter értéke redukálva va, akkor a feltételek megsértése külööse agy bütető függvéy értékeket eredméyez. A feltétel élkül emleárs programozás probléma megoldható bármely eljárással, pl. kváz- Newto kereső módszerrel, mely voalmet kereséssel kombált. Mdazoáltal a voalmet keresések agyo potosak kell lee, mvel a bütető függvéyek matt a vzsgált tartomáy agyo szűk. A m számítógép programukba a Davdo-Fletcher-Powell eljárás került beépítésre a SUMT módszerbe a belső bütető függvéyek módszerével. A programlsta ANSI C-be megtalálható a Farkas, Járma 1997b köyv B függelékbe. Nagyszámú varácó és kombácó létezk a bütető függvéyekre (pl. Facco ad McCormck Általába a bütető függvéyek módszeréek a hátráya, hogy a Hessa mátrx kodcószáma övekszk, ha az r k paraméter túl aggyá válk. A belső bütető függvéy algortmus a következőképpe működk: 1. A módosított célfüggvéy az eredetből és a bütető függvéy tagból áll és a következő alakú

4 30 A szerkezetsztézs matematka módszere F(x,r=f(x+r k P 1 +r g j (x -1/ k P+M j= 1 = P+ 1 ( h x, (1.33 ahol r k poztív kostas. Ahogy az algortmus halad előre, r k újra meghatározásra kerül és egy mooto csökkeő sort alkot r 1 > r >... > 0. Amkor r k kcsvé válk, megfelelő feltételek eseté F elér f et és a feladat megoldásra kerül.. Választ egy kezdőpotot (megfelelő, vagy em-megfelelő és r k.kezdet értékét. 3. Meghatározza a megfelelő eljárással a módosított célfüggvéy mmumát az adott r k eseté. 4. Megbecsül az optmáls megoldás értékét extrapolálással. 5. Új értéket választ r k ak és addg smétl az eljárást, amíg a kovergeca-krtérum em teljesül. A módszer folyamatábrája az 1.13 ábrá látható. r k értéke az eljárás sorá 10-4 körülre csökke le. a kezdő pot és az r kezdő értékéek kválasztása kdulás pot módosítása módosított célfüggvéy mmálása optmáls pot meghatározása extrapolácóval r csökketése kovergeca teljesül? stop 1.13 ábra A SUMT módszer folyamatábrája

5 31 A szerkezetsztézs matematka módszere Az egyelőtleség feltételekre voatkozó bütető függvéy lehet más alakú, emcsak az 1.30 egyeletek megfelelő recprokfüggvéy 1/g j (x, haem például logartmkus függvéy - l(g j (x. Az egyes bütető függvéyek hatékoysága függ a probléma természetétől A Davdo-Fletcher-Powell módszer A Davdo (1959 által kfejlesztett változó metrkájú módszert Fletcher és Powell (1963 fejlesztette tovább. Ez az egyk legjobb általáos felhaszálású feltétel élkül optmáló eljárás, mely a redelkezésre álló derváltakat alkalmazza. ( Kdul az eredet kezdőpotból x és az N*N méretű poztív deft szmmetrkus mátrxból H. Ez a H mátrx általába az egységmátrx I. Az terácószám =1. ( A módszer meghatározza a függvéy f(x gradesét a kezdőpotba és felvesz az ráyokat S = H f. (1.34 * ( Megkeres az optmáls lépésméretet λ, az S ráyba és számítja a következő potot x + = * 1 x + λ S. (1.35 ahol H mt az egységmátrx kerül felvételre. (v Elleőrz az új potot x +1 az optmaltás szempotjából és ha x +1 optmum, akkor megállítja az teratív eljárást, egyébkét folytatja a számítást. (v Frssít a H mátrxot H+ 1 = H + M + M N N, (1.36 SS = λ *, (1.37 S Q T T T HQ HQ = ( (, (1.38 T Q H Q és Q = f ( x f ( x. + 1 (v Új terácót kezd = +1 és megy az ( lépéshez. A belső bütető függvéyek módszerét haszálja az eljárás a feltételek kezeléséhez az (1.30 képlet szert.

6 3 A szerkezetsztézs matematka módszere Köbös terpolácós módszert haszál a mmáls lépésméret meghatározásához égy lépése. Néha túlcsordul a számítás sorá az F(x,rk függvéy, mvel g j (x agyo közel kerül a zérushoz az optmum közelébe, ezért a kovergeca-krtérum agyo fotos. λ * 1.6 Másodk derváltat haszáló módszerek A másodk derváltat haszáló módszerek, melyek között legsmertebb a Newto módszer, az f(x függvéy égyzetes közelítésé alapulak. Másodredű formácókat haszálak fel, melyeket f(x ek a függetle változók szert másodredű parcáls derváltjaból yerk A Newto módszer Klasszkus másodredű módszer a Newto módszer. Az eljárás a másodredű Taylor-sor kterjesztésével dul. A keresés s ráya a következőképpe kerül meghatározásra: ( k ( k+1 ( k Ha (x - x (k kcserélésre kerül x = x x közelítése x ( k -val kfejezve a következő k T k k 1 k T k f( x f( x + f( x ( x x + ( x x f( x ( x x -vel, akkor a célfüggvéy f(x kvadratkus ( ( ( ( ( ( k, (1.39 f(x mmuma a x ( k ráyba az f(x dfferecálásából adódk az összes x kompoes fgyelembevételével és az egyeletet zérussal egyelővé téve a következőket kapjuk [ ] 1 ( k ( k ( x = f( x f( x k, (1.40 ] 1 ( ahol [ f x k ( az verz Hessa mátrx H(x(k, mely az 1.10 fejezetbe va defálva (a mátrx f(x másodredű parcáls derváltja x szert, meghatározva x(k-ba. Megjegyezzük, hogy az 1.40 egyeletbe a mátrx vertálása szükséges és agyo fotos olya módszert alkalmaz, mely garatálja az verz poztív deft jellegét, mt arra még később hvatkozuk. Több stadard mátrx vertálásra készült számítógép program em megfelelő ebből a szempotból. Szükséges hagsúlyoz, hogy a másodredű parcáls derváltat aaltkusa elő kell állíta, vagy közelíte, am éháy esetbe ehézséget okoz. A Newto módszer

7 33 A szerkezetsztézs matematka módszere kovergecáját garatálja, feltételezve hogy az f(x kétszerese derválható, az hogy a Hessa mátrx verzéek poztív deftek kell lee. f(x mmuma az S k ráyba az f(x függvéy x szert derválásából adódk, a derváltat ulláak véve. A tervezés változók új vektora a következő k k 1 x = x + α S ( ( * ( k k ahol k az terácószám, S (k a keresés ráy,, (1.41 α k * skalárs szorzótéyező x változásáak megadására ebbe az terácóba. Az 1.40 egyeletből kapjuk a következőt k [ ] ( ( 1 ( k k S = H( x f ( x, (1.4 ( ahol [ Hx k 1 k ( ] a Hessa mátrx Hx ( ( verze. Ezért az 1.4 egyelet egy keresés ráyt ad egydmezós kereséshez. H(x > 0 és ha a célfüggvéy megfelelőe közelíthető egy kvadratkus függvéyel egy olya tartomáyo, ahol a legmeredekebb ráy (steepest descet eljárás ks hatékoyságú. A mmumtól távol a legmeredekebb ráy eljárás a leghatékoyabb lehet. Azt a következtetést lehet levo, hogy egy megfelelő kombácója a legmeredekebb ráy és a Newto módszerek lehet a leghatékoyabb eljárás, a két módszer öálló hatékoyságáál agyobb. Az eljárás sorá emcsak célfüggvéy értéket és grades formácót kell produkáluk, de a H mátrx másodredű derváltjat s. Ha a mmált függvéy valóba kvadratkus a megegedett tartomáyo a tervezés változók függvéyébe, a keresés ráyba elér az optmumot egy terácó sorá. α * =1 értékkel való mozgatás A Newto módszer alapproblémája, hogy a H mátrx szgulárs lehet, vagy legalábbs em poztív deft, mt az szükséges garaca lee f(x mmuma eléréséhez. A H mátrx szgulárs lesz mdg, ha a célfüggvéy leárs egy vagy több tervezés változó tektetébe. Ha a Hessa mátrxak egatív sajátértéke va, ez egy emkovex problémára utal. Másk probléma, hogy a Newto módszer alapjá megadott mozgatás olya agy, hogy oszcllácót okoz a megoldásál. Ebből a szempotból ajálatos megfelelő lépéshatárok bevezetése mde terácóba, hogy elkerülje a helytele kodcoálást.

8 34 A szerkezetsztézs matematka módszere Abba az esetbe, ha köye meg tudjuk határoz a másodk derváltak mátrxát, a Newto módszer csakem mdg a leghatékoyabb eljárás Szekvecáls kvadratkus programozás A szekvecáls kvadratkus programozás, vagy SQP (sequetal quadratc programmg módszer egy általáosa haszálható algortmus emleárs optmálás problémák megoldására a következő feltételekkel: a feladat em túl agy, a függvéyek és gradesek meghatározhatók megfelelőe agy potossággal, a feladat sma és jól aráyosított. A matematka kovergeca és az SQP umerkus vselkedése már jól kdolgozott és smert és számos publkácóba szerepel. Ezek közül éháy Stoer (1985, vagy Spellucc (1993 áttektés szempotjából. Az elmélet kovergecát vzsgálta Ha (1976, 1977, Powell (1978a, 1978b, Schttkowsk (1983. Numerkus összehasolító vzsgálatokat Schttkowsk (1980 és Hock & Schttkowsk (1981 végzett és megmutatták a módszer előyet a matematka programozás algortmusokkal szembe a fet feltételek eseté. A módszer alapötlete, hogy a másodredű formácót s közelít, hogy gyors kovergecasebességet kapjo. Így a Lagrage függvéy L(x, u kvadratkus közelítését defáljuk és a Hessa mátrx közelítését egy u. kváz-newto mátrx segítségével. Megfelelő szekvecáls kvadratkus programozás (Feasble Sequetal Quadratc Programmg Az FSQP módszer egy FORTRAN szubrut-gyűjteméy folytoosa változó célfüggvéyek (adott esetbe egy függvéy mmumáak, vagy maxmumáak meghatározására általába folytoos feltételek eseté. Ha a felhaszáló által adott kezdőpot em megfelelő éháy egyelőtleség, vagy leárs egyelőség feltétel szempotjából, akkor a program kezdőpotot geerál eze feltételekhez a fokozatos közelítés módszerével úgy, hogy mde feltétel teljesüljö. A emleárs egyelőség feltételek egyelőtleség feltételekké kerülek átalakításra (hogy mde terácó sorá teljesüljeek és a célfüggvéyek maxmumát felváltja egy egzakt bütetőfüggvéy, mely csak a emleárs egyelőség feltételek megsértését bütet (Zhou, Tts 1991, 199, A felhaszáló választhat, hogy vagy a módosított célfüggvéy csökkeését géyl a megfelelő kezdőpot elérése utá a emleárs egyelőtleség és a leárs feltételekre (mooto voalmet keresés, vagy a csökkeést legalább égy terácó utá várja (em-mooto voalmet keresés. A

9 35 A szerkezetsztézs matematka módszere mooto voalmet keresés eseté az SQP ráya először elfordulak, ha a emleárs feltételek eredméyezk a megfelelő ráyt, utáa esetleg "elhajlítja'', hogy bztosítsa a megoldáshoz közel, hogy egy lépés elég legye a megoldás eléréséhez, am szuperleárs kovergecát géyel. A em-mooto voalmet keresés szuperleárs kovergecát valósít meg, ezáltal elkerül a függvéyérték meghatározásokat pótlólagos potokba és a tovább megoldáskeresést pótlólagos kvadratkus programmal. Mutá a emleárs egyelőség feltételek egyelőtleségvé vaak alakítva, eze algortmusok a módosított feladatot drekt módo oldják meg. A felhaszálóak szubrutokat kell íra a célfüggvéy(ek és a méretezés feltételek meghatározására. A függvéyek aaltkus derváltjat a felhaszáló megadhatja, vagy kérhet az FSQP programtól a közelítésüket a véges dfferecák módszerével. FSQP két algortmust haszál, melyek az SQP- alapulak, úgy módosítva, hogy megfelelő terácós potot tudjaak keres. Az elsőél (mooto voalmet keresés, egy bzoyos Armjo-típusú keresést haszál azzal a jellemzővel, hogy az első lépés végüls elfogadásra kerül a szuperleárs kovergeca feltétele mellett. A másodk módszerél hasoló a hatás a em-mooto egyees voalmet kereséssel. Mdkét esetbe cél a célfüggvéy maxmumáak elérése, ha cs emleárs egyelőtleség feltétel. Ha a felhaszáló által adott kezdőpot em-megfelelő a emleárs egyelőtleség és leárs egyelőtleség feltételek eseté, akkor az FSQP először kezdőpotot geerál, mely mde feltételt kelégít úgy, hogy mmálja eze feltételek maxmumat. Utáa a Maye-Polak-féle sémát alkalmazva a emleárs egyelőség feltételeket egyelőtleség feltételekké alakítja át. A kapott optmálás probléma csak leárs egyelőség és emleárs egyelőtleség feltételeket kezel. A továbbakba az FSQP által számított terácók kelégítk eze feltételeket. 1.7 Optmaltás krtérumok módszere Az optmaltás krtérumok módszere (OC a Kuh-Tucker-féle (KT optmaltás krtérumo alapulak. Eze módszerek előye, hogy agyo hatékoyak. Hátráya, hogy függeek a szerkezet tulajdoságatól és a kovergeca em mdg garatált. Az egycélfüggvéyes emleárs optmálás probléma az 1.1 és 1. képletekek megfelelőe mmálja az f ( x x 1, x,..., x N célfüggvéyt, gj ( x 0, j = 1,,..., P feltételek eseté, ahol f(x a többváltozós emleárs függvéy, g j (x a emleárs egyelőtleség feltételek. Bevezetjük a λ Lagrage-téyezőket. Az egyelőtleség feltételeket egyelőségvé alakítjuk át, bevezetve az Y j paramétereket:

10 36 A szerkezetsztézs matematka módszere g j + Y = 0. j A Lagrage-függvéy a következő: P j j j j j j= 1 Lx (, λ, Y = f( x + λ g( x + Y [ ]. (1.43 A szükséges feltételek eze függvéy lokáls mmuma megtalálásához: P L = f ( x + λ j g j( x = 0, (1.44 x j= 1 L = gj( x + Yj = 0, (1.45 x L = λ jyj = 0. (1.46 x Az (1.45 és (1.46 egyeletek mutatják, ha g j = 0, vagys a feltétel aktív, akkor Y j = 0 és λ j 0. Ha a feltétel em aktív, akkor g j < 0, Y j 0, és λ j 0. Összefoglalva, ha a feltétel aktív, akkor Y j = 0, tehát az Y j elemek elhayagolhatók. Az (1.44 és (1.45 egyeletek helyett a következő feltétel haszálható λ j 0 és λ j g j = 0. (1.47 A Kuh-Tucker-féle optmaltás krtérum a következő P f ( x = λ g ( x, (1.48 j= 1 λ j 0, λ j g j = 0. j j g 1 g g 1 f g f f g 1 g coe g (a g 1 g (b f 1.14 ábra A Kuh-Tucker-féle optmaltás krtérum, ha va optmum (a, lletve ha cs (b Az első feltétel geometra jeletése, hogy lehetséges a célfüggvéy gradesét a feltételek gradeséek leárs kombácójából előállíta, vagys az optmum potba a célfüggvéy gradese a feltételek gradeséek kúpjába helyezkedk el (1.14 ábra. Más szavakkal a

11 37 A szerkezetsztézs matematka módszere célfüggvéy a megegedett tartomáyt az optmum potba ért. Ez a pot lehet globáls optmum, ha a megegedett tartomáy kovex. Ha kokáv, akkor a pot lokáls optmum s lehet. Ha mde feltétel aktív, az (1.47 feltétel és a g j = 0 egyeletek +p változóra x és λ j függvéyébe adódak. Számos megoldás módszert javasoltak, mvel a megoldás függ a célfüggvéy és a méretezés feltételek típusától. A rácsos tartók optmálása sorá agyo hatékoy a módszer, habár lemezeket, héjakat szté optmáltak vele, összellesztve az OC módszert végeselemes eljárásokkal (Kusalaas, J.,Reddy, G.B, 1977, Rozvay ( Dszkrét optmálás eljárások A gyakorlat tervezésbe a keresztmetszet jellemzők dszkrét értékek lehetek. Ilyeek például a hegerelt acélelemek, melyek csak adott méretbe készülek és a keresztmetszet jellemzők em egyeletese változak. Ilye esetbe a tervezés változó csak a dszkrét értéksor egy elemét vehet fel. A változó dszkrét jellege övelhet a futásdőt Backtrack módszer A backtrack módszer kombatorkus programozás eljárás, mely emleárs függvéy mmumát keres feltételek mellett, szsztematkus kereséssel. A módszer előye, hogy csak dszkrét változókat kezel, így az eredméyek azoal haszálhatók. A backtrack módszer általáos leírása megtalálható Walker (1960, Golomb & Baumert (1965 és Bter & Regold (1975 művebe. Ezt a módszert alkalmazta hegesztett acéltartó tervezésére Lews (1968 és Aamala (1970. Farkas & Szabó (1980 a módszert mmáls költségű hegesztett hbrd I-tartók tervezésére haszálták. A backtrack programozás hatékoyságáak megbecslésére Kuth (1975 javasolt módszert. Farkas (1984 köyvébe a következő problémák kerültek megoldásra a backtrack módszerrel: hajlított hegesztett I-tartók, yomásak ktett égyszög-szelvéyű csőszelvéyek, rácsos csőszerkezetek, hbrd I-tartók egy hegesztett llesztéssel az övekbe, hajlított-yírt hegesztett szekréyszelvéyű tartók, aszmmetrkus I-szelvéyű darupályatartók, hegesztett szekréyszelvéyű zárt préskeretek. Az egycélfüggvéyes emleárs optmálás feladat általáos megfogalmazása a következő: mmálja az f ( x x 1, x,..., x N célfüggvéyt,

12 38 A szerkezetsztézs matematka módszere gj x j = P h( x = 0 = P+ 1,..., P+ M feltételek eseté, f(x egy többváltozós emleárs függvéy, g j (x és h (x emleárs egyelőtleség és egyelőség feltételek. Az egyelőség feltételeket át kell alakíta egyelőtleségvé, hogy az eljárás kezel tudja őket: h ( x ε 0 = P+ 1,..., P+ M h ( x ε 0 (1.49 ε adott kcsy szám. Az algortmus alkalmas olya optmum-keresésre, ahol a célfüggvéy mooto övekvő, vagy csökkeő jellegű. Az optmáls megoldás a változók értékeek csökkeésével kerül elérésre. Eredetleg a módszer mmum-keresésre alkalmas, kdulva a változók maxmáls értékeből Itervallum felező eljárás Egyváltozós függvéy optmumáak megkeresésére agyo sok eljárás smert. Nagyo hatékoy és megbízható eljárás az tervallum-felező eljárás, mely lecsökket a keresés dőt. Feltételezzük, hogy a célfüggvéy mooto csökkeő, ha a változó értéke csökke. A voalmet keresésél, amkor egy változó értéke változk a cél a változó mmáls megfelelő értékéek a megkeresése, kdulva a változó maxmáls értékéből. A kezdőpotak, vagys a változó maxmáls értékéek k kell elégítee a feltételeket. Másodk lépés a mmáls érték vzsgálata. Ha kelégít a feltételeket, akkor a megoldást találta meg. Ha em, akkor a tartomáyt két részre osztja a középső értékél. Ha a feltételek teljesülek a középső értékél, akkor a tartomáy felső fele megfelelő potokat tartalmaz. Ebbe az esetbe az alsó részt kell vzsgál, hogy megtaláljuk a határt a megfelelő és a em megfelelő tartomáy között. A [ jel a megfelelést, a { jel a em megfelelést jelet. A felező eljárás a következőképpe dolgozk: Tételezzük fel, hogy a következő dszkrét értéksor adott a lemezvastagságra: mm {...] Tovább feltételezés, hogy a maxmáls érték megfelelő, a mmáls em megfelelő. Ha a középső érték megfelelő, akkor a továbbakba vzsgált tartomáy a következő: {......]

13 39 A szerkezetsztézs matematka módszere A tartomáy felső részé már em lehet megoldást talál, vagys megtalál a legksebb, még megfelelő értéket, csak a tartomáy alsó részé. A vzsgálatot az alsó rész középső potjával folytatjuk. Ha em megfelelő, akkor a maradék tartomáy az eredet egyede csupá égy pot elleőrzése utá {......] Ha a középső pot megfelelő, akkor az megadja a megoldást. 1 ] Az összes és a megvzsgált dszkrét potok aráya 9/5. Ha 105 dszkrét értékük va, akkor az aráy sokkal jobb, mert már az első felezés utá elhagyható 51 dszkrét érték tovább vzsgálat élkül. A felező eljárás akkor áll meg, ha a lépésméret ksebb, mt két dszkrét érték között távolság. A lépésméretek em szükséges álladóak le mde dszkrét érték között, de praktkus okokból általába álladóak vesszük, ha lehet. A dszkrét értékek száma k +1 kell legye, ahol k egy egész érték. Egy dszkrét értéksor ematt kegészíthető az alábbak szert: Alapszám: Kegészített: A backtrack módszerél a változók vektor alakba szerepelek x = {x } T ( = 1,..., melyekhez a célfüggvéy f(x mmuma tartozk majd és kelégít a méretezés feltételeket g(x 0 (j = 1,...,P. A változókra dszkrét értéksor adott, övekvő sorredbe. Specáls esetbe az értéksor x k,m, xk,max értékekkel és egy álladó lépéstávval x k -el lehet megadva. A módszer folyamatábráját az 1.15 ábra tartalmazza. Először részleges keresését folytat mde egyes változóra és ha mde lehetséges varácót megvzsgált, akkor ugrk vssza (backtrack egy új részleges keresésre az előző változóál. Ha a vzsgált változó az első, akkor em kell több varácót megvzsgála (számos vsszaugrást végrehajtott már. A számítás fő fázsa a következők: 1. A változók kostas értékcsoportja mellett ( =,..., az mmáls értékét keres a x,t méretezés feltételek teljesülése mellett. Az tervallum-felező eljárást alkalmazza. Ezt a módszert akkor alkalmazhatja, ha a célfüggvéy mooto a változók függvéyébe. x,m

14 40 A szerkezetsztézs matematka módszere. Az első fázs eseté a felező eljárást kostas változóértékek eseté haszálja és mmum értéke meghatározására a feltételek kelégülése mellett. 3. A legksebb érték x,m meghatározása a célfüggvéyre f(x voatkozó egyeletből törték f ( x,..., x f 1, m, m = o x 1,m ahol f a célfüggvéy értéke a maxmáls x-értékek behelyettesítésével. Az voatkozásába a következő három eset lehetséges: x,m értékek (3a Ha csökketjük x -1 értékét lépésről-lépésre mdaddg, amíg a feltételek teljesülek, akkor x,m x elérjük a mmáls értéket. Ha mde lehetséges varácóját (a felező eljárás vzsgálatszám-csökketését khaszálva megvzsgáltuk, akkor ugrk a program az előző változóra x -1 -re és csökket lépésről-lépésre mdaddg, amíg a feltételek x re teljesülek és elér x -1, m értékét. (3b Ha x < x, akkor vsszaugrk -re.,m,1 x -1 x,m (3c Ha em elégít k a feltételeket, akkor vsszaugrk.-re. Ha a feltételek megfelelek, akkor folytatja a számítást (3a szert. x -1,m Az összes lehetséges varácó t = 1, ahol t az egyes változók dszkrét értéke száma. A módszer csak egy ks részét vzsgálja meg eek, a felező eljárásak köszöhetőe. Az eljárás hatékoysága sok téyezőtől függ (a változók száma, a dszkrét értékek száma, az optmáls értékek helye az értéksorba, a célfüggvéy és/vagy a méretezés feltételek komplextása, ezért ehéz megjósol a futásdőt. A módszer fő hátráya az, hogy a futásdő expoecálsa övekszk a változók számáak övekedésével. A program átalakításra került C programyelve úgy, hogy már em függ a struktúrája a változók számától, mt korábba. Mde változó mmáls értéke a felező eljárással kerül meghatározásra, kvéve az utolsót, mely a célfüggvéy értékéből kerül meghatározásra. Az algortmus ANSI C forrásyelv programja a Farkas, Járma (1997 köyv C függelékbe található az ott smertetett egyszerű posta probléma megoldására. A módszer előye, hogy dszkrét értékekkel dolgozk, így az eredméy azoal haszálható, továbbá hogy a szsztematkus keresés matt globáls optmumot ad Kombatorka probléma megoldása a backtrack módszerrel

15 41 A szerkezetsztézs matematka módszere Egyszerű kombatórka feladat krályők elhelyezése sakktáblá úgy, hogy em ütk egymást. A feladatot 4*4-es sakktáblá oldjuk meg. A célfüggvéy tehát a kráyők számáak maxmálása. A feltételek arra voatkozak, hogy a krályők em ütk egymást, tehát cseek azoos sorba, oszlopba, vagy átlóba. Mde sorba egy krályő helyezhető tehát el, tehát a maxmum 4 lehet. Az elhelyezett krályőket sorok szert számozzuk. Az 1.16.a ábráak megfelelőe elhelyezhetjük az első krályőt, találuk helyet a másodkak, de a harmadk már em helyezhető el, vagys cs megoldás. Ha cs lehetőség a harmadk krályő (változó elhelyezésére, akkor vsszaugruk a másodkhoz és új pozícót keresük ek. Új helyet találva elhelyezhetjük a harmadk krályőt s. Sajos a egyedk krályőek már em találuk helyet (1.16.b ábra. (a (b (c (d ábra Az első és másodk krályők elhelyezése (a, első, másodk és harmadk krályők elhelyezése (b, megoldások égy krályőre (c, d Ha megvzsgáljuk a harmadk változó összes lehetséges helyét, akkor vssza kell ugrauk a másodk sorba. Mvel ott scs tovább lehetőség, ezért a vsszaugrás az első sorba törték. Itt változtatva a krályő helyzetét megoldást találuk a feladatra, az összes sorba el tuduk helyez krályőt, elérve a maxmáls számot, kelégítve a feltételeket s, tehát em ütk egymást (1.16.c ábra. Természetese lehet és ez esetbe va több megoldás s (1.16.d ábra.

16 4 A szerkezetsztézs matematka módszere Az eljárás dszkrét jellegét mutatja, hogy a krályők csak a tábla kocká állhatak, cs közbeső helyük, lletve a lehetséges helyük számos Hegesztett I-szelvéy optmáls méretezése backtrack módszerrel A feladat megkeres a hegesztett I-szelvéy mmáls tömegét, a kéttámaszú, hajlított-yomott tartóál (1.17 ábra. Változók a gercmagasság h = x 1, a gercvastagság t w = x és az övlemez területe A f = x 3.

17 43 A szerkezetsztézs matematka módszere start stop változók dszkrét értéke x max, x m, lépésközök f 0 (x max, =1,... N kezdő függvéyértékek számítása eredméyek kyomtatása =1 x m változó számítása felező eljárással a változó értékéek övelése következő változó = +1 <= N-1? az első változó ksebb mt a maxmum? utolsó változó számítása az f 0 célfüggvéyből a változó értékéek övelése az előző változó = -1 x > x max x < x max az előző változó ksebb, mt a maxmum? > 1? x = x max feltételek teljesülek? f 0 = f(x új legksebb függvéyérték csökketjük az x értékét x = x max - x feltételek teljesülek? x > x m x = x + x javulás a célfüggvéybe? 1.15 ábra A backtrack módszer folyamatábrája

18 44 A szerkezetsztézs matematka módszere Célfüggvéy a tartó tömege. A fesztáv adott, az ayag szté smert (Fe 360-as acél, így a mmáls tömeg aráyos a mmáls keresztmetszet-területtel. f( x= x x + x 1 3, (1.50 A f t w h 1.17 ábra A hegesztett I-tartó szelvéye A tervezés feltételek a következők: Mb N f g 1 (x a ormálfeszültség feltétel σ b + σ c = + W A γ ahol M b a hajlítóyomaték, N a yomóerő, W x a keresztmetszet téyező, A a keresztmetszet-terület, f y a folyáshatár, γ M 1 a részbztoság téyező. x y M1, (1.51 g (x a hely gerchorpadás feltétel h t w = σ 1+ σ b σ σ c ( c ( b, (1.5 Megjegyezzük, hogy az Eurocode 3 más számítás módszert ad meg. Az adatok a következők: M b = 30 knm; N = 18 kn; f y = 40 MPa, γ M 1 =1.. A változók alsó- és felső határértéket, valamt a lépéstávolságokat az 1.1 táblázat adja meg. A számítás eredméyek az 1. táblázatba találhatók.

19 45 A szerkezetsztézs matematka módszere 1.1 táblázat A változók alsó és felső határértéke Felső Alsó Lépéstáv h t w A f táblázat A példa számítás eredméye a backtrack módszerrel x 1 x x 3 f g 1 g Megjegyzések f o = mm x 1m megfelelő, felező eljárás x -re x 3 = ( *6 / = > x 3max f o = backtrack x -re x 3 = ( *7 / = < x 3max backtrack x -re felező eljárás x -re x 3 = ( *6 / = f o = 7880 backtrack x -re x 3 = ( *7 / = < x 3m backtrack x 1 -re felező eljárás x -re

20 46 A szerkezetsztézs matematka módszere x 3 = ( *6 / = f o = 7800 backtrack x -re x 3 = ( *7 / = < x 3m backtrack x 1 -re felező eljárás x -re x 3 = ( *7 / = < x 3m backtrack x 1 -re felező eljárás x -re x 3 = ( *7 / = < x 3m cs backtrack Az eredméy x 1 = 700; x = 6; x 3 = 1800, vagys h = 700 mm; t w = 6 mm ; A f = 1800 mm. A számítás sorá a mmáls célfüggvéy és a hozzátartozó változók értéke tárolásra kerül. A számítás végé a tárolt értékek kerülek kíratásra. A keresés em drekt, az eredméy az eljárás végé adódk. Ha a másodk vzsgált érték már a megoldás, az eljárás akkor s folytatódk mdaddg, amíg a vsszaugrások révé a lehetőségek kmerülek, hogy a célfüggvéyt mmálja Dszkrét értékek keresése a folytoos optmálás utá Folytoos optmálás utá az eredméyek haszálhatóbbá tétele matt előyös a dszkretzálás. A dszkrét értékekek természetese md az explct, md az mplct feltételeket k kell elégíteük. Feltételezzük, hogy a dszkrét optmum a folytoos optmumhoz közel va (Járma 198. Kdulva a folytoos optmumból a másodlagos keresés kválasztja a legközelebb dszkrét értékeket az értéksorból. A kválasztott dszkrét értékek száma lehet kettő, három, égy, vagy több. A lehetséges varácókat a kettes, hármas, vagy agyobb számredszerek alkalmazásával állíthatjuk elő. Számpéldákba a bárs számredszert haszáltuk, két dszkrét értékkel a folytoos érték alatt és felett. A kettes számredszerbe a ulla jel jelethet az alsó, az egyes a felső dszkrét értéket. Az első szám a kettes számredszerbe megadja az összes lehetséges varácót az alsó és

21 47 A szerkezetsztézs matematka módszere felső dszkrét értékekből. Mde varácót elleőrz, hogy megfelelek-e az explct és az mplct feltételek, valamt mey a célfüggvéy értéke. Az a varácó kerül végül kválasztásra, amelykél a célfüggvéy értéke mmáls. A másodlagos dszkretzálás folyamatábrája az 1.18 ábrá látható. A folytoos optmálás kerekítetle értéke a következők: 1 Alsó Felső Alsó Felső 3 Alsó Felső 4 Alsó Felső A 0000 jeletése az, hogy mde változóál az alsó dszkrét értéket vesz, az 1111 jeletése, hogy mdegykél a felsőt vesz. A több szám a kettes számredszerbe a több varácót jelet. Az az elleőrzött varás a megoldás, mely a legksebb célfüggvéy-értéket adja a feltételek teljesülése mellett. 1.9 Érzékeység-vzsgálat Bármely tervezés problémáál az optmumot meg kell vzsgál érzékeység szempotjából, vagys azt, hogy a változó értékéek ks változása eseté a feltételekél és célfüggvéyél mlye változást déz elő. Ha az érzékeység agyfokú, akkor célszerű a feltételeket újra megfogalmaz, áttekte az eljárás modelljét, az együtthatókat. Bzoyos esetekbe, ha az együtthatók adatbázsból, vagy mérésből származak, vagys véletle hatások s szerepet játszaak, akkor a agyfokú érzékeység éháy változó eseté problémát jelet. Néháy belső bütetőfüggvéymódszer skerese kkerül ezt, hogy ks változás eseté agy legye az érzékeység, de ezek általába ks hatékoyságúak a probléma-megoldásba. A másk véglet, ha a célfüggvéy agyo ks érzékeységet mutat a szélsőérték köryezetébe, a változók értékéek változásakor. Vagys em ér el esetleg az optmumot, vagy a függvéymeghatározás agyo költségessé válk a potosság fokozásával, ha szgorítjuk a kovergeca-krtérumot Közelítő eljárások Némelyk matematka programozás eljárás leárs, vagy égyzetes közelítést géyel az f(x, g(x és h(x függvéyekél. A leárs, vagy elsőredű közelítése a célfüggvéyek, f(x, például megvalósítható a csokolt Taylor sorral x (k helye.

22 48 A szerkezetsztézs matematka módszere ( k ( k ( f( x f( x + f( x ( x x k (1.53 Az f(x függvéy égyzetes közelítése megvalósítható a Taylor sor harmad- és magasabb redű tagjaak elhayagolásával. 1 f( x f( x + f( x ( x x + ( x x f( x ( x x ( k T ( k ( k ( k T ( k ( k, (1.54 ahol ( f( x k a Hessa mátrx az f(x célfüggvéyre H(x, am égyzetmátrxa az f(x célfüggvéy másodredű parcáls derváltjaak az x ( k helye. ( k ( k f( x f( x... = = x1 x1 x ( k ( k f( x H( x. (1.55 ( k ( k f( x f( x... x x1 x 1.11 Többcélfüggvéyes optmálás Az első többcélfüggvéyes optmálást (vektoroptmálás Pareto (1896 publkálta. Utáa csakem ötve év múlva Neuma és Morgester (1947, majd Debreu (1959 foglalkozott vele. A többcélfüggvéyes optmálás moder megfogalmazása Zadeh (1963 evéhez fűződk. A 60-as évekg vszoylag keveset foglalkoztak az optmálás elméletével, utáa vszot agyszámú ckk jelet meg. Nagyo sok foglalkozott közülük a többcélfüggvéyes optmálás elméletével és dötéshozatal alkalmazásával, de kevese publkáltak mérök alkalmazásokat. Áttektő ckkeket a többcélfüggvéyes dötéshozatal témájába Stadler (1986,1988 és Coho (1978 írtak. Csakem mde dötés többcélfüggvéyes. Komplex mérök problémákál gyakra létezk számos eheze megfogalmazható célfüggvéy, amt fgyelembe kell ve. Az lye esetet többcélfüggvéyes optmálásak kell megfogalmaz, ahol a tervező célja az egyes célfüggvéyek mmumáak és maxmumáak egydejű meghatározása, mely kompromsszumot jelet közöttük. Évtzedeke keresztül a mérökök egyszerű mértékeket haszáltak, mt a költség, a súly, a haszo, hogy meghatározzák az optmumot. A tervezés példa egyszerű kéttámaszú tartó, ahol a tartó költsége lehet mmáladó célfüggvéy, de a tartó merevsége s lehet maxmáls, vagy egy másk jellemző, mt a lehajlás. Ez a két célfüggvéy, mt költség és lehajlás koflktusba vaak. Az egycélfüggvéyes megoldás em lehet elfogadható. Kompromsszum szükséges, hogy ayra csökketse a két elletétes célfüggvéy értékét, mt ameyre lehetséges. A többcélfüggvéyes programozás eljárások azok, melyek ezt elvégzk. A többcélfüggvéyes aalízs és optmálás a tervezés egy általáos flozófáját

23 49 A szerkezetsztézs matematka módszere jeletk. Ezek a tervezőt előyösebb helyzetbe juttatják, hogy a dötéshozót alteratív megoldások halmazával láthassa el, em úgy mt az egycélfüggvéyes optmálás egyedül végeredméye. számok bárs redszerbe 0-tól -g x d, S max dszkrét értékek kezdet halmaza t = 1 kerekítetle optmum értékek 0 x d U 1 x d L = 1,..., j = 1 elleőrzzük a dszkrét értékek külöböző változatát f d (x d p = 1 p m = g j (x 0 f d (x d < s max b = x d s max = f d (x d p = p+1 p < p m t = 0 dszkrét változók végső kmeet értéke, végső függvéyértékek stop 1.18 A másodlagos dszkretzálás folyamatábrája A szerkezetoptmálásál a legkedveltebb célfüggvéy a mmáls tömeg, vagy költség, a maxmáls merevség, a mmáls alakváltozás specáls szerkezet potokba, maxmáls sajátfrekveca, stb. (Bradt 1984, Eze krtérumok általába egymás elle hatak. Ilye

24 50 A szerkezetsztézs matematka módszere esetekbe mdeképpe szükséges a többcélfüggvéyes optmálás probléma megfogalmazása és a kompromsszumos megoldások keresése a tervezés térbe. Ezutá választható k a végső megoldás, amkor tovább feltételt, vagy feltételeket veszek fgyelembe, vagy globáls krtérumot alkalmazak, mt megfelelés-, távolság függvéyek, vagy herarchkus módszerek (lásd. Escheauer et al. 1990; Jedo 1990; Kosk A többcélfüggvéyes optmálás probléma a következőképpe fogalmazható meg: Keres a változók azo x vektorát, melyre gaz, hogy f(x * = opt f(x, (1.56 mközbe g j (x 0 j = 1,...,P (1.57 h (x = 0 = P,...,P+Q, ahol x a tervezés változók vektora, melyet egy -dmezós Eukldesz térbe értelmezük, f k (x a célfüggvéyek vektora, melyet egy r-dmezós Eukldesz térbe értelmezük. g j (x és h (x egyelőtleség és egyelőség feltételek. Eze feladat megoldása a Pareto optmum. A Pareto optmum defícója az, hogy x * optmum akkor, ha egyk célfüggvéy értéke sem javítható úgy, hogy legalább egy másk célfüggvéy értéke e romlaa.

Backtrack módszer (1.49)

Backtrack módszer (1.49) Backtrack módszer A backtrack módszer kombatorkus programozás eljárás, mely emleárs függvéy mmumát keres feltételek mellett, szsztematkus kereséssel. A módszer előye, hogy csak dszkrét változókat kezel,

Részletesebben

A szerkezetszintézis matematikai módszerei

A szerkezetszintézis matematikai módszerei 5 A szerkezetsztézs matematka módszere.4 Derváltat em haszáló elárások Azo optmáló elárások, melyek a keresés sorá csak a célfüggvéy értéket haszálák, derváltakat em, azokat derváltat em haszáló elárásak

Részletesebben

1.5.1 Büntető-függvényes módszerek: SUMT, belső, külső büntetőfüggvény

1.5.1 Büntető-függvényes módszerek: SUMT, belső, külső büntetőfüggvény .5 Első derváltat génylő módszerek Az első derváltat génylő módszerek (elsőrendű módszerek, melyek felhasználák a gradens nformácókat, általában hatékonyabbak, mnt a nulladrendű módszerek. Ennek az az

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon.

i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon. 3. Bézer görbék 3.1. A Berste polomok 3.1. Defícó. Legye emegatív egész, tetszőleges egész. A ( ) B (u) = u (1 u) polomot Berste polomak evezzük, ahol ( ) = {!!( )! 0, 0 egyébkét. A defícóból közvetleül

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

VASBETON ÉPÜLETEK MEREVÍTÉSE

VASBETON ÉPÜLETEK MEREVÍTÉSE BUDAPET MŰZAK É GAZDAÁGTUDOMÁY EGYETEM Építőmérök Kar Hdak és zerkezetek Taszéke VABETO ÉPÜLETEK MEREVÍTÉE Oktatás segédlet v. Összeállította: Dr. Bód stvá - Dr. Farkas György Dr. Kors Kálmá Budapest,.

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy?

Miért pont úgy kombinálja kétfokozatú legkisebb négyzetek módszere (2SLS) az instrumentumokat, ahogy? Mért pot úgy kombálja kétfokozatú legksebb égyzetek módszere (2SLS az strumetumokat, ahogy? Kézrat A Huyad László 60. születésapjára készülő köyvbe Kézd Gábor 2004. júlus A Budapest Corvus Egyetem rövd

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika ... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

GEOFIZIKA / 4. GRAVITÁCIÓS ANOMÁLIÁK PREDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE

GEOFIZIKA / 4. GRAVITÁCIÓS ANOMÁLIÁK PREDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE MSc GEOFIZIKA / 4. BMEEOAFMFT3 GRAVITÁCIÓS ANOMÁLIÁK REDIKCIÓJA, ANALITIKAI FOLYTATÁSOK MÓDSZERE, GRAVITÁCIÓS ANOMÁLIATEREK SZŰRÉSE A gravtácós aomálák predkcója Külöböző feladatok megoldása sorá - elsősorba

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

Függvénygörbe alatti terület a határozott integrál

Függvénygörbe alatti terület a határozott integrál Függvéygörbe alatt terület a határozott tegrál Tektsük az üggvéyt a ; tervallumo. Adjuk becslést a görbe az tegely és az egyees között síkdom területére! Jelöljük ezt a területet I-vel! A becslést legegyszerűbbe

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Iformácós redszerek elmélet alapja Iformácóelmélet Glbert-Moore Szemléltetése hasoló a Shao kódhoz A felezőpotokra a felezős kódolás A felezőpot értéke bttel hosszabb kfejtést géyel /2 0 x x x p p 2 p

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometra és alakzatrekostrukcó b Háromszöghálók - algortmusok http://cgtbmehu/portal/ode/3 https://wwwvkbmehu/kepzes/targyak/viiima0 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök és

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció 3D-s számítógépes geometra és alakzatrekostrukcó b Háromszöghálók http://cgtbmehu/portal/ode/3 https://wwwvkbmehu/kepzes/targyak/viiiav08 Dr Várady Tamás, Salv Péter BME, Vllamosmérök és Iformatka Kar

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján

Arrhenius-paraméterek becslése közvetett és közvetlen mérések alapján Tudomáyos Dákkör Dolgozat SZABÓ BOTOND Arrheus-paraméterek becslése közvetett és közvetle mérések alapá Turáy Tamás. Zsély Istvá Gyula Kéma Itézet Eötvös Lorád Tudomáyegyetem Természettudomáy Kar Budapest,

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú ..4. Óbuda Egyetem ák Doát Gépész és ztoságtechka Mérök Kar yagtudomáy és Gyártástechológa Itézet Termelés olyamatok II. Költségbecslés Dr. Mkó alázs mko.balazs@bgk.u-obuda.hu z dı- és költségbecslés eladata

Részletesebben

1. Operáció kutatás matematikát matematikai statisztika és számítástechnika. legjobb megoldás optimum operációkutatás definíciója :

1. Operáció kutatás matematikát matematikai statisztika és számítástechnika. legjobb megoldás optimum operációkutatás definíciója : 1. Operácó kutatás Az operácó kutatás 1940 ó ta smeretes. Bár a techka felő dés, a termelés folamatok szervezése már korábba s géelte a matematka eszkö zö k felhaszálását, - amelekbe fellelhető k az operácó

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

A heteroszkedaszticitásról egyszerûbben

A heteroszkedaszticitásról egyszerûbben Mûhely Huyad László kaddátus, egyetem taár, a Statsztka Szemle főszerkesztője A heteroszkedasztctásról egyszerûbbe E-mal: laszlo.huyad@ksh.hu A heteroszkedasztctás az ökoometra modellezés egyk kulcsfogalma,

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Valós függvénytan. rendezett pár, ( x, valós számok leképezése az csoportra. függvény mint előírás, pl. y x azt jelenti, hogy x

Valós függvénytan. rendezett pár, ( x, valós számok leképezése az csoportra. függvény mint előírás, pl. y x azt jelenti, hogy x II. Valós függvéyta Alapvetőe ebbe a fejezetbe s elem matematka smeretekről lesz szó, de az smeretek alapos, készségsztű begyakorlása (mely esetleg túlmegy az tt közölt feladatok megoldásá) elegedhetetleek

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás

Részletesebben

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A

alapmátrix azon alapuló számítását. Az összefüggés igényli az L( A 1 esetére megadja a Wei-Norman egyenletet és a Φ (t) ) Lie-algebra A Bíráló véleméy SzabóZoltá: A Geometrc Approach or the Cotrol o Swtched ad LPV Systems (Kapcsolt és LPV redszerek ráyítása geometra megközelítésbe) c. MTA doktor (DSc) értekezésről Az értekezés az ráyíthatóság,

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek Termékjellemzők optmalzálásáál haszálatos formácós módszerta 1 Bevezetés Koczor Zoltá, Némethé Erdőd Katal, Kertész Zoltá, Szecz Péter Óbuda Egyetem, RKK, Mőségráyítás és Techológa Szakcsoport Napjak aktuáls

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL

AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL MAGYAR TUDOMÁNY NAPJA DOKTORANDUSZOK FÓRUMA Mskolc Egyetem, 2006. ovember 9. AZ IGÉNY SZERINTI TÖMEGGYÁRTÁS KÉSZLETGAZDÁLKODÁSI PROBLÉMÁINAK MEGOLDÁSA MÓDOSÍTOTT ÚJSÁGÁRUS MODELL SEGÍTSÉGÉVEL Mleff Péter,

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

Molekulák elektronszerkezete - kv2n1p07/1 vázlat

Molekulák elektronszerkezete - kv2n1p07/1 vázlat Molekulák elektroszerkezete - kvp07/ vázlat Szalay Péter Eötvös Lorád Tudomáyegyetem, Kéma Itézet 0. szeptember 8. Tematka A Bor-Oppehemer közelítés. Az elektro-hullámfüggvéy közelítése; az eerga kfeezése

Részletesebben

Intelligens adatelemzés ea. vázlat 1. rész

Intelligens adatelemzés ea. vázlat 1. rész Itellges adatelemzés ea. vázlat. rész A tematka.ea. a tárgy tematkájáak áttektése. Egy mtaélda M-S adatok elemzése (A)..ea. HF-ok jellegéek megbeszélése, a HF témák választásához szemotok 3.ea. Statsztka

Részletesebben

7. MÉRÉSEK KIÉRTÉKELÉSE FÜGGVÉNYILLESZTÉSSEL

7. MÉRÉSEK KIÉRTÉKELÉSE FÜGGVÉNYILLESZTÉSSEL 7. MÉRÉSEK KIÉRTÉKELÉSE FÜGGVÉNYILLESZTÉSSEL Ebbe a fejezetbe kokrét mérések kértékelését mutatjuk be, köztük azokét s, amelyeket az. fejezetbe leírtuk. A kértékelés módszerét tulajdoképpe levezethetjük

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011

MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011 MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe

Részletesebben

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- 5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a

Részletesebben

Geometriai optika. Fénytani alapfogalmak, a fény egyenes vonalú terjedése

Geometriai optika. Fénytani alapfogalmak, a fény egyenes vonalú terjedése Az optka felosztása Geometra optka Fzka optka (hullámoptka) Kvatumoptka Geometra optka Féyta alapfogalmak, a féy egyees voalú terjedése Féyta alapfogalmak féyforrás féyyaláb féysugár F D F r O y x Potszerű

Részletesebben

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl). ) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

2.10. Az elegyek termodinamikája

2.10. Az elegyek termodinamikája Kéma termodamka.1. z elegyek termodamkája fzka kéma több féle elegyekkel foglakozk, kezdve az deáls elegyektől a reáls elegyekg. Ha az deáls elegyek esetébe az alkotók közt kölcsöhatásokat elhayagoljuk,

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Mskol Egyetem Gépészmérök és Iformatka Kar Alkalmazott Iformatka Taszék 2012/13 2. félév 9. Előadás Dr. Kulsár Gyula egyetem does Matematka modellek a termelés tervezésébe és ráyításába Néháy fotosabb

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

Diszkrét Matematika 1. óra Fokszámsorozatok

Diszkrét Matematika 1. óra Fokszámsorozatok Dszkrét Matematka. óra 29.9.7. A köetkezı fogalmakat smertek tektük: gráf, egyszerő gráf, hurokél, párhuzamos élek, fa, ághatás operácó. Fokszámsorozatok Def.: G gráf fokszámsorozata fokaak reezett öekı

Részletesebben

Korreláció- és regressziószámítás

Korreláció- és regressziószámítás Korrelácó- és regresszószámítás sztochasztkus kapcsolat léyege az, hogy a megfgyelt sokaság egységeek egyk smérv szert mlyeségét, hovatartozását smerve levoható ugya bzoyos következtetés az egységek másk

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE EG FÁZISÚ ÖBBOMPONENS RENDSZERE: AZ ELEGE ÉPZDÉSE AZ ELEGÉPZDÉS ERMODINAMIÁJA: GÁZO Általáos megfotolások ülöböz kéma mség komoesek keveredésekor változás törték a molekulárs kölcsöhatásokba és a molekulák

Részletesebben

Horváth Alice. Éles valószínűségi korlátok műszaki és aktuáriusi alkalmazásokkal

Horváth Alice. Éles valószínűségi korlátok műszaki és aktuáriusi alkalmazásokkal Horáth Alce Éles alószíűség korlátok műszak és aktuárus alkalmazásokkal doktor értekezés témaezető: Bakó Adrás DSc egyetem taár Széchey Istá Egyetem Ifrastrukturáls Redszerek Modellezése és Fejlesztése

Részletesebben

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel-

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel- ACÉLOK KÉMIAI LITY OF STEELS THROUGH Cserjésé Sutyák Áges *, Szilágyié Biró Adrea ** beig s s 1. E kutatás célja, hogy képet meghatározásáak kísérleti és számítási móiek tosságáról, és ezzel felfedjük

Részletesebben

Méréselmélet: 5. előadás,

Méréselmélet: 5. előadás, 5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

SZERKEZETEK MÉRETEZÉSE FÖLDRENGÉSI HATÁSOKRA

SZERKEZETEK MÉRETEZÉSE FÖLDRENGÉSI HATÁSOKRA SZERKEZEEK MÉREEZÉSE FÖLDRENGÉSI HAÁSOKRA (Az Eurocode-8 alapjá) Kollár László (3) Méretezés módszerek BME Szlárdságta és artószerkezet aszék 03. október. artószerkezet-rekostrukcós Szakmérök Képzés Méretezés

Részletesebben

Megjegyzés: Amint már előbb is említettük, a komplex számok

Megjegyzés: Amint már előbb is említettük, a komplex számok 1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés, alakzatrekostrukcó, yomtatás 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/3 htts://wwwvkbmehu/kezes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök

Részletesebben