Egyenáramú szervomotor modellezése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Egyenáramú szervomotor modellezése"

Átírás

1 Egyenáramú szervomotor modellezése. A gyakorlat élja: Az egyenáramú szervomotor mködését leíró modell meghatározása. A modell valdálása számításokkal és szotverejlesztéssel katalógsadatok alapján.. Elmélet bevezet: Az egyenáramú szervomotor napjankban az egyk legelterjeebb eszköz nagy pontosságú pozonáló eladatok megoldására. A szervomotorok jellemz a ks mehanka és elektromos dállandók (gyors dnamka), kterje lneárs mködés tartomány, könny vezérelhetség. Használatosak par robotkarok, mobls robotok, X-Y pozonáló asztalok, stb. meghajtására. Ahhoz, hogy ezekkel a motorokkal nagy pontosságú szabályozást tdjnk végezn elengedhetetlen, hogy a motor vselkedését leíró matematka modellt smerjük. Ks teljesítmény szervomotoroknál a modell állórésze állandó mágnesbl készülhet, míg a orgórész tekerselt. A orgórészre kapsolt eszültség (U) hatására a rotor orogó mozgást végez A modellezéshez a zka és elektronka jól smert alaptörvényet használhatjk. A Bot Savart trvény következményeként a motor által kejtet orgatónyomaték () arányos a rotoron átolyó árammal (). A enz törvény következményeként, a rotorban vsszandkált eszültség (e) pedg arányos a rotor ordlatszámával (). enz : e Bot Sa vart : τ n ahol, konsansok. Ismert, hogy a rotor egy sorba kötött ndktvtású deáls tekersel és ellenállással modellezhet. gyelembe véve a küls rákapsolt eszültséget (U) és a enz törvényt a motor elektromos egyenlete: d e ()

2 . Ábra: A rotor, mnt elektromos áramkör A mehanka mozgásegyenlet elírásához smernünk kell a rotorra ható orgatónyomatékokat (. Ábra): - a motor által kejtet nyomaték, amt a Bot Savart trvény alapján határozhatnk meg - a motorra ható küls nyomaték, amt a motor által mozgatott mnkagép ejt k ( ) - a motor belsejében ellép súrlódás erk (a rotor elüggesztése és a szénkeék matt). Ezt Colomb súrlódás modellel írhatjk le. ( sgn(), ahol C a Colomb súrlódás tényez) C A Newton mozgástörvény értelmében: Ábra: A rotorra ható erk ahol a rotor nerája. d τ () A motor dnamks modelljéhez a mehanka () és elektromos vselkedést () leíró egyenleteket használjk: d d τ (3) d

3 jelöl a rotor szögpozíóját... Az egyenáramú motor állapotteres modellje és átvtel üggvénye: Amnt beláttk, a motor vselkedését lneárs derenálegyenletekkel írhatjk le, ezért a motor sebesség- vagy pozíószabályozásának tervezéséhez a lneárs rendszerek rányítástehnkáját alkalmazhatjk. Ahhoz, hogy a lneárs szabályozótervezés algortmsokat alkalmazn tdjk, élszer a motor modelljét állapotteres alakba átírn vagy meghatározn a motor átvtel üggvényét. Általában az állapotteres modell alakja: D Cx y B Ax x, ahol x az állapotok vektora, a bemenetek vektor, A, B, C, D pedg a rendszermátrxok, amelyek tartalmazzák a motor paraméteret. Az egyenáramú szervomotor esetében denáljk az alább állapot- valamnt bemenet vektort: x τ (4) eltételezzük, hogy sak a motor szögelordlása mérhet. Ebben az esetben a (3) egyenlet az alább alakba írható át: D C B A y d d d τ τ (5) Az (5) derenál egyenletrendszer a motor állapotteres modelljét adja meg, amely alapján állapotteres tervezés algortmsokat (pl. Akerman módszer, Q optmáls rányítás). Vegyük észre, hogy a súrlódás er meg a küls nyomaték zavaró bemenetekként jelennek meg a modellbe. Ezek hatását terhelésbesl algortmsokkal kompenzálhatjk. Az átvtel üggvény meghatározására a súrlódás er meg a küls nyomaték hatását elhanyagoljk ( τ ). Az átvtelt az vezérljelrl a szögsebességre () határozzk meg. Indljnk k a () mozgásegyenletbl: d

4 Ezt derenálva és alkalmazva az () egyenletet: d d d d d d d A ent derenálegyenletre alkalmazva a aplae transzormáltat könnyen megkaphatjk a motor átvtel üggvényét: ( s) H ( s) ( s) s s 3. A mérés menete 3.. A motor paraméterenek meghatározása A MAXON ég nagy pontosságot és jó szabályozás jellemzket megkövetel alkalmazásokhoz gyárt ks teljesítmény szervomotorokat. Vegyük példának az A-max 3 4V/5W típsú motort. Keressük k a motor katalógsa alapján (lásd a mellékelt katalógslapot) a motor paraméteret és alakítsk át SI mértákegyséekre: - a rotor ellenállása (termnal resstane): 7. 3 Ω - a rotor ndktvtása (termnal ndtane):.5 mh.5 H - A sebességállandó nverze (speed onstant): V V speed onst 5 rpm 6.6 rad / se részletezve: rpm ord ; 6se ord...π rad; π rad...rpm; 6 se rad x...5 rpm; se - A nyomatékállandó (torqe onstant): ( ) [ Nm torqe onstant 38. ] A

5 - A rotor nerája (rotor nerta): g m 4.9 kg m 4.9 kg m Az A, B állapotmátrxokban az alább paraméterek jelennek meg: A motor belsejében ellép Colomb súrlódás együttható nem katalógsadat, azonban számolással meghatározhatjk. Vegyük észre, hogy adott a rotor tekersén küls terhelés nélkül olyó áram (no load rrent). Staonárs állapotban a () egyenlet: d NO _ OAD C τ. Innen a Colomb súrlódás együttható: NO _ OAD Nm 3.. A modellezés Smlnk környezetben A kszámított paraméterek alapján írjk el a motor állapotteres modelljét és építsük el az alább Smlnk modellt, amely tartalmazza: a motor állapotteres modelljét, bemeneteket (vezérljel, küls nyomaték), a Colomb súrlódás er modelljét. A három állapotot oszlloszkópon gyeljük meg (válasszk a C mátrxot egységmátrxnak). A szmláós dánek válassznk.5 mp-t. A modell valdálásához válasszk a küls nyomatékot zérónak. Ebben az esetben a szögsebesség kmeneten a tranzens lejárta tán meg kell kapjk a motor terhelés nélkül π sebességét (no load speed), am katalógsadat NO _ OAD rad / se. 6

6 3. Ábra. Smlnk modell a motor dnamks vselkedésének vzsgálatához 3.3. Szmláós eredmények: 4. Kérdések és eladatok: 4. Ábra. A motoráram, rotor sebesség és pozíó. Tanlmányozzk az (5) állapotteres modell rányíthatóságát és meggyelhetségét.. Határozzk meg a motor átvtel üggvényét a vezérljelrl a szögpozíó kmenetre. 3. Tanlmányozzk a nem zéró küls terhelnyomaték hatását a rotor áramra és a rotor szögsebességére.

DFTH november

DFTH november Kovács Ernő 1, Füves Vktor 2 1,2 Elektrotechnka és Elektronka Tanszék Mskolc Egyetem 3515 Mskolc-Egyetemváros tel.: +36-(46)-565-111 mellék: 12-16, 12-18 fax : +36-(46)-563-447 elkke@un-mskolc.hu 1, elkfv@un-mskolc.hu

Részletesebben

Szervomotor pozíciószabályozása

Szervomotor pozíciószabályozása Szervomotor pozíciószabályozása 1. A gyaorlat célja Egyenáramú szervomotor pozíciószabályozásána tervezése. A pozíció irányítási algoritms megvalósítása valós iben. A pozíció szabályozás tranzienséne archiválása,

Részletesebben

1. Holtids folyamatok szabályozása

1. Holtids folyamatok szabályozása . oltds folyamatok szabályozása Az rányított folyamatok jelentés részét képezk a lassú folyamatok. Ilyenek például az par környezetben található nagy méret kemencék, desztllácós oszlopok, amelyekben valamlyen

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

Ipari kemencék PID irányítása

Ipari kemencék PID irányítása Ipari kemencék PID irányítása 1. A gyakorlat célja: Az ellenállással melegített ipari kemencék modelljének meghatározása. A Opelt PID tervezési módszer alkalmazása ipari kemencék irányítására. Az ipari

Részletesebben

Készítette: Telefon:

Készítette: Telefon: Pozíció Darab Leírás 1 SQ 5-7 Cikkszám: 965217 3" többfokozatú búvárszivattyú házi vízellátó rendszerekhez, tartályok töltésére-ürítésére, öntözésre és környezetvédelmi alkalmazásokra. A szivattyúnak "lebegő"

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból

BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból BEMUTATÓ FELADATOK () 1/() Egy mozdony vízszintes 600 m-es pályaszakaszon 150 kn állandó húzóer t fejt ki. A vonat sebessége 36 km/h-ról 54 km/h-ra növekszik. A vonat tömege 1000 Mg. a.) Mekkora a mozgási

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Elektromechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu

Részletesebben

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 20/12/2012 14:57

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 20/12/2012 14:57 FORD RANGER 1 2 3 4 5 1.8 m3 6 7 8 9 10 11 3 7 8 5 1 2 4 6 9 10 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 29 29 30 [Nm] 475 450 425 400 375 350 325 [kw] [PS] 180 245 165 224 150 204

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Integrált rendszerek n é v; dátum

Integrált rendszerek n é v; dátum Integrált rendszerek n é v; dátum.) Az dentfkálás (folyamatdentfkácó) a.) elsődleges feladata absztrahált leírás fzka modell formában b.) legfőbb feladata a struktúradentfkálás (modellszerkezet felállítása)

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

1 2 3 4 5 7 9 A B 10 11 12 13 14 15 16 17 18 19 [Nm] 370 350 330 310 290 270 250 230 210 190 170 150 130 110 90 140 PS 100 PS 125 PS 70 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 110 150 100 136

Részletesebben

1 2 3 4 5 A B 6 7 8 9 [Nm] 370 350 330 310 290 270 250 [kw] [PS] 110 150 100 136 90 122 80 109 70 95 230 210 60 82 190 170 150 50 40 68 54 130 110 90 140 PS 100 PS 125 PS 30 20 41 27 70 1000 1500 2000

Részletesebben

1 2 3 4 5 6 7 A B 8 9 10 11 [Nm] 370 [kw] [PS] 110 150 350 330 310 100 136 90 122 290 270 80 109 250 70 95 230 210 60 82 190 50 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500

Részletesebben

2 3 4 5 6 7 8 9 A B A B 11 12 13 [Nm] 370 350 330 310 290 270 250 230 210 190 [kw] [PS] 110 150 100 136 90 122 80 109 70 95 60 82 50 68 170 150 40 54 130 110 90 140 PS 85 PS 110 PS 70 1000 1500 2000 2500

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

Egyenáramú motor kaszkád szabályozása

Egyenáramú motor kaszkád szabályozása Egyeáramú motor kazkád zabályozáa. gyakorlat élja z egyeáramú motor modellje alajá kazkád zabályozó terezée. zabályozá kör feléítée Smulk köryezetbe. zmuláó eredméyek feldolgozáa.. Elmélet beezet a az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

1 2 3 4 5 6 7 112 8 9 10 11 12 13 [Nm] 400 375 350 325 300 275 250 225 200 175 150 125 114 kw 92 kw 74 kw [155 PS] [125 PS] [100 PS] kw [PS] 140 [190] 130 [176] 120 [163] 110 [149] 100 [136] 90 [122] 80

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Robotirányítási rendszer szimulációja SimMechanics környezetben

Robotirányítási rendszer szimulációja SimMechanics környezetben Robotrányítás rendszer szmulácója SmMechancs környezetben 1. A gyakorlat célja A SmMechancs szoftvereszköz megsmerése, alkalmazása robotka rendszerek rányításának szmulácójára. Két szabadságfokú kar PID

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Newton törvények, erők

Newton törvények, erők Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső

Részletesebben

Szervomotor sebességszabályozása

Szervomotor sebességszabályozása Srvomotor sbsségsabályoása. A gyaorlat célja Egynáramú srvomotor sbsségsabályoásána trvés. A motorsabályoás programváána flépítés. A sbsség rányítás algortms mgvalósítása valós dbn. 2. Elmélt bvt A motor

Részletesebben

CRT Monitor gammakarakteriszikájának

CRT Monitor gammakarakteriszikájának Budapest Műszak és Gazdaságtudomány Egyetem Mechatronka, Optka és Gépészet Informatka Tanszék CRT Montor gammakarakterszkájának felvétele 9. mérés Mérés célja: Számítógéppel vezérelt CRT montor gamma karaktersztkájának

Részletesebben

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat Mskolc Egyetem Gépészmérnök és Informatka Kar Automatzálás és Infokommunkácós Intézet Tanszék Optka elmozdulás érzékelő llesztése STMF4 mkrovezérlőhöz és robot helyzetérzékelése Szakdolgozat Tervezésvezető:

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

CNC Robot Robomachine. M-2iA

CNC Robot Robomachine. M-2iA CNC Robot Robomachine M-2iA M-2iA/3S M-2iA/3SL Tartalom Bevezetés... 03 Főbb jellemzők... 04 Műszaki adatok... 05 Csuklóterhelési diagram Normál tehetetlenségű üzemmód... 06 Opció: nagy tehetetlenségű

Részletesebben

Gyakorló feladatok vektoralgebrából

Gyakorló feladatok vektoralgebrából Gyakorló feladatok ektoralgebrából Az alábbi feladatokban, hasak nem jelezzük másként, az i, j, k bázist használjk.. a.) Milyen messze annak egymástól az A(,,) és a B(4,-,6) pontok? b.) Számítsa ki az

Részletesebben

oktatási segédlet Kovács Norbert SZE, Gazdálkodástudományi tanszék 2007. október

oktatási segédlet Kovács Norbert SZE, Gazdálkodástudományi tanszék 2007. október Fogyasztók a tõkepacon oktatás segédlet Kovács Norbert SZE, Gazdálkodástudomány tanszék 007. október Költségvetés egyenes kamatláb esetén. dõszak fogyasztása A. év fogyasztásának maxmuma költségvetés egyenes

Részletesebben

IT jelű DC/DC kapcsolóüzemű tápegységcsalád

IT jelű DC/DC kapcsolóüzemű tápegységcsalád IT jelű DC/DC kapcsolóüzemű tápegységcsalád BALOGH DEZSŐ BHG BEVEZETÉS A BHG Híradástechnka Vállalat kutató és fejlesztő által kdolgozott napjankban gyártásban levő tárolt programvezérlésű elektronkus

Részletesebben

RO-400750 Cluj, P.O. Box 358, Románia tel.: +40-264-401-827, fax.: +40-264-593-117 Lorand.Szabo@mae.utcluj.ro

RO-400750 Cluj, P.O. Box 358, Románia tel.: +40-264-401-827, fax.: +40-264-593-117 Lorand.Szabo@mae.utcluj.ro VILLAMOS AKTUÁTOR MODELLEZÉSE SCILAB KÖRNYEZETBEN MODELLING ELECTRICAL ACTUATORS IN SCILAB ENVIRONMENT MODELAREA ACTUATOARELOR ELECTRICE ÎN MEDIUL SCILAB KOVÁCS Ernő 1, FÜVESI Vktor 2, SZALONTAI Levente

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Passzív és aktív aluláteresztő szűrők

Passzív és aktív aluláteresztő szűrők 7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

2 51 3 4 5 6 7 8 9 10 11 12 13 14 15 [Nm] 350 330 310 290 270 250 230 210 190 170 150 130 110 90 70 130 PS 110 PS 85 PS [kw] [PS] 100 136 90 122 80 109 70 95 60 82 50 68 40 54 30 41 20 27 10 14 [Nm] 400

Részletesebben

Alkalmazott Mechanika Tanszék. Széchenyi István Egyetem

Alkalmazott Mechanika Tanszék. Széchenyi István Egyetem Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 2013. szeptember 6. 1. Folytonos

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Alapmőveletek koncentrált erıkkel

Alapmőveletek koncentrált erıkkel Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

Proporcionális hmérsékletszabályozás

Proporcionális hmérsékletszabályozás Proporcionális hmérséletszabályozás 1. A gyaorlat célja Az implzsszélesség modlált jele szoftverrel történ generálása. Hmérsélet szabályozás implementálása P szabályozóval. 2. Elméleti bevezet 2.1 A proporcionális

Részletesebben

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor MISKOLCI EGYETEM Gépgyártástechnológa Tanszék Mskolc - Egyetemváros ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET Összeállította: Dr. Szabó Sándor A orgácsoló megmunkálásokhoz

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 1. rész egyetemi docens - 1 - Főbb típusok: Elektromos motorok Egyenáramú motor DC motor. Kefenélküli egyenáramú motor BLDC motor. Indukciós motor AC motor aszinkron

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK

11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK 11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK 1. A gyakorlat célja Az ADXL10 integrált gyorsulás mérő felépitése, működése és használatának bemutatása. Centrifugális gyorsulás kimutatása, mérése és számitása

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

Darupályák ellenőrző mérése

Darupályák ellenőrző mérése Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Műveleti erősítők Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Milyen kimenő jel jelenik meg a műveleti erősítő bemeneteire adott jel hatására? Nem invertáló bemenetre

Részletesebben

Hely és elmozdulás - meghatározás távolságméréssel

Hely és elmozdulás - meghatározás távolságméréssel Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja

Részletesebben

1.Tartalomjegyzék 1. 1.Tartalomjegyzék

1.Tartalomjegyzék 1. 1.Tartalomjegyzék 1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet

Részletesebben

A nagy teljesítõképességû vektorhajtások pontos paraméterszámításokat igényelnek

A nagy teljesítõképességû vektorhajtások pontos paraméterszámításokat igényelnek A nagy teljesítõképességû vektorhajtások pontos paraméterszámításokat igényelnek Mike Cade - Control Techniques plc A motorszabályozás algoritmusaihoz számos motorparamétere van szükség, de pontatlan értékek

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

Áramtükrök. A legegyszerűbb két tranzisztoros áramtükör:

Áramtükrök. A legegyszerűbb két tranzisztoros áramtükör: Áramtükrök Az áramtükör egy olyan alapvető építő elem az analóg elektronikában, amelynek ismerete elengedhetetlen. Az áramtükrök olyan áramkörök, amik az áramok irányát változtatják meg, de a be- ill.

Részletesebben

SCARA robot munkatere és pályagenerálás

SCARA robot munkatere és pályagenerálás SCARA robot munkatere és pályagenerálás 1. A gyakorlat célja Egy SCARA robotkar munkatere korlátainak meghatározása felhasználva az direkt geometriai feladatot megoldó programot. SCARA robot elírt, világkoordinátákban

Részletesebben

Villamosság biztonsága

Villamosság biztonsága Óbudai Egyetem ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utótechnikai ntézet Villamosság biztonsága Dr. Noothny Ferenc jegyzete alapján, Összeállította: Nagy stán tárgy tematikája iztonságtechnika

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

2.2.10. VISZKOZITÁS MEGHATÁROZÁSA ROTÁCIÓS VISZKOZIMÉTERREL

2.2.10. VISZKOZITÁS MEGHATÁROZÁSA ROTÁCIÓS VISZKOZIMÉTERREL 2.2.10. Vszkztás meghatárzása Ph. Hg. VIII. Ph. Eur. 5.3. - 1 01/2006:20210 2.2.10. VISZKOZITÁS MEGHATÁOZÁSA OTÁCIÓS VISZKOZIMÉTEEL A módszer annak az erőnek a mérésén alapul, amely egy flyadékban állandó

Részletesebben

Mechatronika, Optika és Gépészeti Informatika Tanszék MOTOR - BOARD

Mechatronika, Optika és Gépészeti Informatika Tanszék MOTOR - BOARD echatronika, Optika és Gépészeti Informatika Tanszék OTOR - BORD I. Elméleti alapok a felkészüléshez 1. vizsgált berendezés mérést a HPS System Technik (www.hps-systemtechnik.com) rendszereszközök segítségével

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek.

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek. Ismertető A középiskolában sokféle egyenlet megoldásával megismerkednek a diákok. A matematikaórán azonban csak korlátozott típusú egyenletek fordulnak elő. Nem is cél az egyenletmegoldás általános tárgyalása,

Részletesebben

Minta Írásbeli Záróvizsga és BSc felvételi kérdések Mechatronikai mérnök

Minta Írásbeli Záróvizsga és BSc felvételi kérdések Mechatronikai mérnök Minta Írásbeli Záróvizsga és BSc felvételi kérdések Mechatronikai mérnök Debrecen, 2017. 01. 03-04. Név: Neptun kód: 1. Az ábrán egy hajtás fordulatszám-nyomaték jelleggörbéje látható. M(ω) a motor, az

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot

Részletesebben

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató A biztonsággal kapcsolatos információk Model AX-C850 Használati útmutató Áramütés vagy testi sérülések elkerülése érdekében: Sosem csatlakoztasson két bemeneti csatlakozó aljzatra vagy tetszőleges bemeneti

Részletesebben

Szárítás során kialakuló hővezetés számítása Excel VBA makróval

Szárítás során kialakuló hővezetés számítása Excel VBA makróval Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka

Részletesebben

1. Gyors folyamatok szabályozása

1. Gyors folyamatok szabályozása . Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál

Részletesebben

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! 5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +

Részletesebben

Bevezetés a kémiai termodinamikába

Bevezetés a kémiai termodinamikába A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei 10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL

23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL 23. ISMEKEDÉS A MŰVELETI EŐSÍTŐKKEL Céltűzés: A műveleti erősítők legfontosabb tlajdonságainak megismerése. I. Elméleti áttentés A műveleti erősítők (továbbiakban: ME) nagy feszültségerősítésű tranzisztorokból

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Gingl Zoltán, Szeged, 2015. 2015.09.29. 19:14 Elektronika - Alapok

Gingl Zoltán, Szeged, 2015. 2015.09.29. 19:14 Elektronika - Alapok Gingl Zoltán, Szeged, 2015. 1 2 Az előadás diasora (előre elérhető a teljes anyag, fejlesztések mindig történnek) Könyv: Török Miklós jegyzet Tiezte, Schenk, könyv interneten elérhető anyagok Laborjegyzet,

Részletesebben

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc.

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc. Vllamosságtan Dr. adács László főskola docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mal: Honlap: elkrad@un-mskolc.hu www.un-mskolc.hu/~elkrad Ajánlott rodalom Demeter Károlyné - Dén Gábor Szekér Károly

Részletesebben

Egyszabadságfokú mechanikai rendszer irányítása nyílt hurkú vezérlés

Egyszabadságfokú mechanikai rendszer irányítása nyílt hurkú vezérlés Egyszabadságfokú mechanikai rendszer irányítása nyílt hurkú vezérlés A gyakorlat célja Egyenáramú szervo motorral vezérelt egyszabadságfokú mechanikai rendszer meghajtó áramkörének és az ADVANTECH PCI

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

TxRail-USB Hőmérséklet távadó

TxRail-USB Hőmérséklet távadó TxRail-USB Hőmérséklet távadó Bevezetés TxRail-USB egy USB-n keresztül konfigurálható DIN sínre szerelhető hőmérséklet jeladó. Lehetővé teszi a bemenetek típusának kiválasztását és konfigurálását, méréstartomány

Részletesebben

Irányítástechnika 2. előadás

Irányítástechnika 2. előadás Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok

Részletesebben

A rögzített tengely körül forgó testek kiegyensúlyozottságáról kezdőknek

A rögzített tengely körül forgó testek kiegyensúlyozottságáról kezdőknek A rögzített tengely körül forgó tetek kiegyenúlyozottágáról kezdőknek Bevezeté A faiparban nagyon ok forgó mozgát végző gépelem, zerzám haználato, melyek rende működéének feltétele azok kiegyenúlyozottága.

Részletesebben