Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9."

Átírás

1 Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs Technológiai Kar szederkenyi@itk.ppke.hu PPKE-ITK, április 25. Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 1 / 36

2 Tartalom 1 Optimális szabályozás: problémafelvetés 2 Variációszámítási alapok 3 Az LQR probléma megoldása 4 Példák Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 2 / 36

3 1 Optimális szabályozás: problémafelvetés 2 Variációszámítási alapok 3 Az LQR probléma megoldása 4 Példák Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 3 / 36

4 LQR: problémafelvetés Adott egy (MIMO) LTI állapottér-modell ẋ(t) = Ax(t)+Bu(t), x(0) = x 0 y(t) = Cx(t) egy funkcionál (szabályozási cél) J(x,u) = 1 2 T ahol Q T = Q, Q > 0 és R T = R, R > 0. 0 [x T (t)qx(t)+u T (t)ru(t)]dt Kiszámítandó beavatkozás: {u(t), t [0, T]}, amellyel J minimális az állapottér-modell megoldásai mentén (megszorítás) Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 4 / 36

5 1 Optimális szabályozás: problémafelvetés 2 Variációszámítási alapok 3 Az LQR probléma megoldása 4 Példák Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 5 / 36

6 Variációszámítás 1 Probléma: Minimalizáljuk u-ra: J(x,u) = T 0 F(x,u,t)dt feltétel: ẋ = f(x,u,t). Megoldás: vektor Lagrange-multiplikátorokkal λ(.) J(x,ẋ,u) = T Hamilton-függvény H = F +λ T f. 0 [F(x,u,t) +λ T (t)(f(x,u,t) ẋ)]dt J = T 0 [H λ T ẋ]dt Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 6 / 36

7 Variációszámítás 2 ẋ parciális integrálással elmininálható [λ T x] T 0 = T 0 T λ T x + λ T ẋ 0 ekkor J = T 0 [H λt ẋ]dt-ból kapjuk: x és u variációja: J = [λ T x] T 0 + T 0 [H + λ T x]dt x(t) x(α,t) = x(t)+αη(t) u(t) u(β,t) = u(t)+βγ(t) Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 7 / 36

8 Euler-Lagrange egyenletek 1 Kritériumfüggvény: I(α,β) = [λ T (t)x(α,t)] T T 0 x-hez és u-hoz I szélsőértéke tartozik, ha [H(x(α,t),u(β,t),t) + λ T (t)x(α,t)]dt I T α = I β = I α = 0, I β = 0 0 T 0 [ ] H x + λ T (t) η(t)dt = 0 H u γ(t)dt Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 8 / 36

9 Euler-Lagrange egyenletek 2 Euler-Lagrange egyenletek H x + λ T = 0 H u = 0 Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 9 / 36

10 1 Optimális szabályozás: problémafelvetés 2 Variációszámítási alapok 3 Az LQR probléma megoldása 4 Példák Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 10 / 36

11 LQR Euler-Lagrange egyenletek Euler-Lagrange egyenletek a H = F +λ T f Hamilton-függvénnyel: H x + λ T = 0, H u = 0 LTI rendszerekre: f = Ax + Bu F = 1 2 (xt Qx + u T Ru) H = 1 2 (xt Qx + u T Ru)+λ T (Ax + Bu) LQR Euler-Lagrange egyenletek: x (xt Qx) = 2x T Q λ T + x T Q +λ T A = 0, λ T (T) = 0 u T R +λ T B = 0 Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 11 / 36

12 Állapotok és társ-állapotok dinamikája Átrendezett Euler-Lagrange egyenletek λ+qx + A T λ = 0 u = R 1 B T λ Állapotegyenlet: ẋ = Ax(t)+Bu(t), x(0) = x 0 Mátrix-vektor alak [ ] [ ẋ(t) A BR = 1 B T λ(t) Q A T ][ x(t) λ(t) ], x(0) = x 0 λ(t) = 0 Rendszerdinamika + Hammerstein társ-állapot diff.e. Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 12 / 36

13 LQR: irányítható&megfigyelhető eset Lemma * Ha (A, B) irányítható, akkor λ(t) = K(t)x(t), K(t) R n n A módosított állapot- és társ-állapot-egyenletek λ+qx + A T λ = 0 Kx + Kẋ = A T Kx Qx u = R 1 B T λ u = R 1 B T Kx ẋ = Ax + Bu ẋ = Ax BR 1 B T Kx Kx + K[A BR 1 B T K]x + A T Kx + Qx = 0 x(t). Mátrix Riccati differenciálegyenlet K(t)-re K + KA+A T K KBR 1 B T K + Q = 0 Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 13 / 36

14 Stacionárius eset Speciális eset: stacionárius megoldás T J = 0 (x T Qx + u T Ru)dt lim K(t) = K i.e. K = 0 t Control Algebraic Riccati Equation (CARE) KA+A T K KBR 1 B T K + Q = 0 Tétel: (R. Kalman) Ha (A,B) irányítható, akkor a CARE-nak egyértelmű pozitív definit szimmetrikus megoldása van (K). Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 14 / 36

15 LQR és tulajdonságai Megoldás: lineáris statikus teljes állapotvisszacsatolás u 0 (t) = R 1 B T Kx(t) = Gx(t) ahol G = R 1 B T K. Zárt kör dinamikája ẋ = Ax BR 1 B T Kx = (A BG)x, x(0) = x 0 A zárt kör tulajdonságai a zárt kör aszimptotikusan stabil függetlenül A,B,C,R,Q értékétől, azaz Re λ i (A BG) < 0, i = 1,2,...,n a zárt kör pólusai Q és R megválasztásától függnek Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 15 / 36

16 1 Optimális szabályozás: problémafelvetés 2 Variációszámítási alapok 3 Az LQR probléma megoldása 4 Példák Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 16 / 36

17 1. Példa: az RLC-kör szabályozása Rendszer: RLC kör. A nyitott kör (u = 0V ) válasza x(0) = [1 1] T kezdeti érték esetén. (Pólusok: 5 ± i) 1.5 i [A] u C [V] idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 17 / 36

18 1. Példa: az RLC-kör szabályozása Q = [ ], R = 0.1 Visszacsatolási erősítés: G = [2.9539, ] A zárt kör (A BG) pólusai: λ 1 = , λ 2 = Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 18 / 36

19 1. Példa: az RLC-kör szabályozása A zárt kör működése i [A] u C [V] idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 19 / 36

20 1. Példa: az RLC-kör szabályozása A szabályozó által generált bemenet 1 u be 0 1 feszültség [V] idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 20 / 36

21 1. Példa: az RLC-kör szabályozása Q = [ ], R = 1 Visszacsatolási erősítés: G = [0.6818, ] A zárt kör (A BG) pólusai: λ 1,2 = 8.409±8.409i Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 21 / 36

22 1. Példa: az RLC-kör szabályozása A zárt kör működése i [A] u C [V] idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 22 / 36

23 1. Példa: az RLC-kör szabályozása A szabályozó által generált bemenet 0.2 u be feszültség [V] idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 23 / 36

24 1. Példa: az RLC-kör szabályozása Q = [ ], R = 10 Visszacsatolási erősítés: G = [0.0944, ] A zárt kör (A BG) pólusai: λ 1,2 = ±8.6568i Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 24 / 36

25 1. Példa: az RLC-kör szabályozása A zárt kör működése 1.5 i [A] u C [V] idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 25 / 36

26 1. Példa: az RLC-kör szabályozása A szabályozó által generált bemenet 0.04 u be feszültség [V] idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 26 / 36

27 2. Példa: a szeparációs elv alkalmazása Szabályozandó rendszer: egyenáramú motor Paraméterek: J tehetetlenségi nyomaték 0.01 kg m 2 /s 2 b csillapítási tényező 0.1 Nm s K elektromotoros erő tényező Nm/A R ellenállás 1 ohm L induktivitás 0.5 H állapotváltozók, bemenet, kimenet: x 1 = θ szögsebesség [rad/s] x 2 = i átfolyó áram [A] u bemenő feszültség [V] y = x 1 Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 27 / 36

28 2. Példa: a szeparációs elv alkalmazása Állapottér-modell: [ ẋ1 ẋ 2 ] [ b = J K L y = [ 1 0 ][ x 1 x 2 K J R L ] ][ x1 x 2 ] +[ 0 1 L ] u Pólusok: , Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 28 / 36

29 2. Példa: a szeparációs elv alkalmazása A szabályozatlan rendszer működése u(t) = 5V bemenetre: 5 x 1 x x idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 29 / 36

30 2. Példa: a szeparációs elv alkalmazása Állapotmegfigyelő tervezése Az állapotmegfigyelő előírt pólusai: -15, -16 ("gyorsabbak" az eredeti rendszer pólusainál) Az L mátrix értéke: [ ] 19 L = Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 30 / 36

31 2. Példa: a szeparációs elv alkalmazása Stabilizáló állapotvisszacsatolás tervezése A tervezendő LQR szabályozó paraméterei: [ ] Q =, R = A kapott visszacsatolási erősítés: G = [ ] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 31 / 36

32 2. Példa: a szeparációs elv alkalmazása Az állapotbecslővel kombinált stabilizáló visszacsatolás viselkedése A szabályozó által generált bementi feszültség: u [V] idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 32 / 36

33 2. Példa: a szeparációs elv alkalmazása A visszacsatolt rendszer állapotváltozói x 3.5 x 1 x idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 33 / 36

34 2. Példa: a szeparációs elv alkalmazása Az állapotbecslő működése x x 1 (tényleges) x 1 (becsült) x 2 (tényleges) x 2 (becsült) idö [s] Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 34 / 36

35 3. Példa: Inverz inga szabályozása A súlyozómátrixok (tervezési paraméterek): A kiszámított visszacsatolási erősítés: Q = I 4 4, R = 1 G = [ ] A zárt rendszer sajátértékei: λ = i i Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 35 / 36

36 3. Példa: Inverz inga szabályozása A szabályozó működése: ipend_lq_1.avi Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 36 / 36

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el? Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I Folytonos idejű rendszerek leírása az állapottérben Állapotvisszacsatolást alkalmazó szabályozási körök Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki

Részletesebben

Ha ismert (A,b,c T ), akkor

Ha ismert (A,b,c T ), akkor Az eddigiekben feltételeztük, hogy a rendszer állapotát mérni tudjuk. Az állapot ismerete szükséges az állapot-visszacsatolt szabályzó tervezéséhez. Ha nem ismerjük az x(t) állapotvektort, akkor egy olyan

Részletesebben

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,

Részletesebben

Bevezetés az állapottér elméletbe: Állapottér reprezentációk

Bevezetés az állapottér elméletbe: Állapottér reprezentációk Tartalom Bevezetés az állapottér elméletbe: Állapottér reprezentációk vizsgálata 1. Példa az állapottér reprezentációk megválasztására 2. Átviteli függvény és állapottér reprezentációk közötti kapcsolatok

Részletesebben

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás Tartalom Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás 2018 1 Állapottér reprezentációk tulajdonságai Általánosan egy lineáris, SISO dinamikus rendszer

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA XI. Előadás Robot manipulátorok III. Differenciális kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom A forgatási mátrix időbeli deriváltja A geometriai

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

Arató Mátyás, Baran Sándor, Fazekas Gábor. Lineáris dinamikai rendszer négyzetes veszteséggel

Arató Mátyás, Baran Sándor, Fazekas Gábor. Lineáris dinamikai rendszer négyzetes veszteséggel Arató Mátyás, Baran Sándor, Fazekas Gábor Lineáris dinamikai rendszer négyzetes veszteséggel mobidiák könyvtár Arató Mátyás, Baran Sándor, Fazekas Gábor Lineáris dinamikai rendszer négyzetes veszteséggel

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008

Részletesebben

Hurokegyenlet alakja, ha az áram irányával megegyező feszültségeséseket tekintjük pozitívnak:

Hurokegyenlet alakja, ha az áram irányával megegyező feszültségeséseket tekintjük pozitívnak: Első gyakorlat A gyakorlat célja, hogy megismerkedjünk Matlab-SIMULINK szoftverrel és annak segítségével sajátítsuk el az Automatika c. tantárgy gyakorlati tananyagát. Ezen a gyakorlaton ismertetésre kerül

Részletesebben

Irányítástechnika 2. előadás

Irányítástechnika 2. előadás Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok

Részletesebben

Számítógépvezérelt szabályozások elmélete

Számítógépvezérelt szabályozások elmélete Számítógépvezérelt szabályozások elmélete Folytonos idejű rendszerek Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék Számítógépvezérelt szabályozások

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010 november

Részletesebben

Ljapunov-függvényen alapuló szabályozótervezési módszerek nemlineáris rendszerekre. Bokányi Ágnes

Ljapunov-függvényen alapuló szabályozótervezési módszerek nemlineáris rendszerekre. Bokányi Ágnes DIPLOMAMUNKA Ljapunov-függvényen alapuló szabályozótervezési módszerek nemlineáris rendszerekre Írta: Bokányi Ágnes Témavezető: Prof. Hangos Katalin tudományos tanácsadó Tanszéki konzulens: Prof. Petz

Részletesebben

pont) Írja fel M struktúrában a parametrikus bizonytalansággal jellemzett

pont) Írja fel M struktúrában a parametrikus bizonytalansággal jellemzett Irányításelmélet MSc (Tipikus példák) Gáspár Péter 1. Egyértelmű-e az irányíthatósági állapottér reprezentáció? Egyértelműe a diagonális állapottér reprezentáció? 2. Adja meg az állapotmegfigyelhetőség

Részletesebben

Inverz inga irányítása állapot-visszacsatolással

Inverz inga irányítása állapot-visszacsatolással Inverz inga irányítása állapot-visszacsatolással Segédlet az Irányítástechnika c. tantárgyhoz Összeállította: Dr. Bokor József, egyetemi tanár Dr. Gáspár Péter, tanszékvezető egyetemi tanár Dr. Szászi

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból

Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból 1 Átviteli tényező számítása: Lineáris rendszer: Pl1.: Egy villanymotor 100V-os bemenő jelre 1000 fordulat/perc kimenő jelet ad.

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

ODE SOLVER-ek használata a MATLAB-ban

ODE SOLVER-ek használata a MATLAB-ban ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk

Részletesebben

Számítógép-vezérelt szabályozás- és irányításelmélet

Számítógép-vezérelt szabályozás- és irányításelmélet Számítógép-vezérelt szabályozás- és irányításelmélet 2. gyakorlat Feladattípusok két függvény konvolúciója ÿ + aẏ + by = e at, y(), ẏ() típusú kezdetiérték feladatok megoldása (Laplace transzformációval)

Részletesebben

Gyártórendszerek irányítási struktúrái

Gyártórendszerek irányítási struktúrái GyRDin-10 p. 1/2 Gyártórendszerek Dinamikája Gyártórendszerek irányítási struktúrái Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos@scl.sztaki.hu GyRDin-10 p. 2/2 Tartalom

Részletesebben

Irányítástechnika II. előadásvázlat

Irányítástechnika II. előadásvázlat Irányítástechnika II. előadásvázlat Dr. Bokor József egyetemi tanár, az MTA rendes tagja BME Közlekedés- és Járműirányítási Tanszék 2018 1 Tartalom Irányítástechnika II. féléves tárgytematika Az irányításelmélet

Részletesebben

A Brüsszelátor dinamikája Shaun Ault és Erik Holmgreen dolgozata alapján (March 16, 2003)

A Brüsszelátor dinamikája Shaun Ault és Erik Holmgreen dolgozata alapján (March 16, 2003) A Brüsszelátor dinamikája Shaun Ault és Erik Holmgreen dolgozata alapján (March 16, 2003) Várdainé Kollár Judit szeminárium Budapest 2006. november 6. 1. Bevezetés: Belouszov Zsabotyinszkij-reakció: Ce(III)

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt

Részletesebben

IRÁNYÍTÁSTECHNIKA II.

IRÁNYÍTÁSTECHNIKA II. IRÁNYÍTÁSTECHNIKA II. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI

Részletesebben

Elhangzott tananyag óránkénti bontásban

Elhangzott tananyag óránkénti bontásban TTK, Matematikus alapszak Differenciálegyenletek (Előadás BMETE93AM03; Gyakorlat BME TE93AM04) Elhangzott tananyag óránkénti bontásban 2016. február 15. 1. előadás. Közönséges differenciálegyenlet fogalma.

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

Elektromechanikai rendszerek szimulációja

Elektromechanikai rendszerek szimulációja Kandó Polytechnic of Technology Institute of Informatics Kóré László Elektromechanikai rendszerek szimulációja I Budapest 1997 Tartalom 1.MINTAPÉLDÁK...2 1.1 IDEÁLIS EGYENÁRAMÚ MOTOR FESZÜLTSÉG-SZÖGSEBESSÉG

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 1. rész egyetemi docens - 1 - Főbb típusok: Elektromos motorok Egyenáramú motor DC motor. Kefenélküli egyenáramú motor BLDC motor. Indukciós motor AC motor aszinkron

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

Ideiglenes példatár az Intelligens rendszerek I. kurzus 1. zárthelyi dolgozatához

Ideiglenes példatár az Intelligens rendszerek I. kurzus 1. zárthelyi dolgozatához Ideiglenes példatár az Intelligens rendszerek I. kurzus 1. zárthelyi dolgozatához Gerzson Miklós 2015. december 8. 2 Tartalomjegyzék Bevezetés 5 1. Kötelező kérdések 7 1.1. Kötelező kérdések a Kalman-féle

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 29.

Matematika szigorlat, Mérnök informatikus szak I máj. 29. Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

1. Az előző előadás anyaga

1. Az előző előadás anyaga . Az előző előadás anyaga Egy fiú áll az A pontban és azt látja, hogy a barátnője fuldoklik a B pontban egy tóban. Milyen plyán kell a fiúnak mozognia, hogy a leggyorsabban a barátnőjéhez érjen, ha a parton

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

Gépészeti rendszertechnika (NGB_KV002_1)

Gépészeti rendszertechnika (NGB_KV002_1) Gépészeti rendszertechnika (NGB_KV002_1) 3. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/

Részletesebben

Lotka Volterra-féle populációdinamikai modellek vizsgálata

Lotka Volterra-féle populációdinamikai modellek vizsgálata Eötvös Loránd Tudományegyetem Természettudományi Kar Alkalmazott Analízis és Számításmatematikai Tanszék Lotka Volterra-féle populációdinamikai modellek vizsgálata Szakdolgozat Készítette: Kiss Franciska

Részletesebben

Soros felépítésű folytonos PID szabályozó

Soros felépítésű folytonos PID szabályozó Soros felépítésű folytonos PID szabályozó Főbb funkciók: A program egy PID szabályozót és egy ez által szabályozott folyamatot szimulál, a kimeneti és a beavatkozó jel grafikonon való ábrázolásával. A

Részletesebben

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet) Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az

Részletesebben

DFTH november

DFTH november Kovács Ernő 1, Füves Vktor 2 1,2 Elektrotechnka és Elektronka Tanszék Mskolc Egyetem 3515 Mskolc-Egyetemváros tel.: +36-(46)-565-111 mellék: 12-16, 12-18 fax : +36-(46)-563-447 elkke@un-mskolc.hu 1, elkfv@un-mskolc.hu

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

MECHATRONIKA Mechatronika alapképzési szak (BSc) záróvizsga kérdései. (Javítás dátuma: )

MECHATRONIKA Mechatronika alapképzési szak (BSc) záróvizsga kérdései. (Javítás dátuma: ) MECHATRONIKA 2010 Mechatronika alapképzési szak (BSc) záróvizsga kérdései (Javítás dátuma: 2016.12.20.) A FELKÉSZÜLÉS TÉMAKÖREI A számozott vizsgakérdések a rendezett felkészülés érdekében vastag betűkkel

Részletesebben

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható folytonos idejű Markovláncok  segítségével. E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Fiznum második rész hosszabb feladatsor. Pál Bernadett. Határozzuk meg a 13. feladatban szereplő rendszer sajátfrekvenciáit!

Fiznum második rész hosszabb feladatsor. Pál Bernadett. Határozzuk meg a 13. feladatban szereplő rendszer sajátfrekvenciáit! Fiznum második rész Pál Bernadett 1. 1. hosszabb feladatsor 15 Határozzuk meg a 13. feladatban szereplő rszer sajátfrekvenciáit! Kiszámoljuk a mátrixot. ábra az első feladatsorban. mẍ 1 = D(x 2 x 1 ) +

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat!

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat! . Mátrixok. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: [ ] [ ] π a A = ; B = 8 7, 5 x. 7, 5 ln y. Legyen 4 A = 4 ; B = 5 5 Számítsuk ki az A + B, A B, A, B mátrixokat!. Oldjuk

Részletesebben

A MATEMATIKA NÉHÁNY KIHÍVÁSA

A MATEMATIKA NÉHÁNY KIHÍVÁSA A MATEMATIKA NÉHÁNY KIHÍVÁSA NAPJAINKBAN Simon L. Péter ELTE, Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tsz. 1 / 20 MATEMATIKA AZ ÉLET KÜLÖNBÖZŐ TERÜLETEIN Kaotikus sorozatok és differenciálegyenletek,

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben