A Brüsszelátor dinamikája Shaun Ault és Erik Holmgreen dolgozata alapján (March 16, 2003)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Brüsszelátor dinamikája Shaun Ault és Erik Holmgreen dolgozata alapján (March 16, 2003)"

Átírás

1 A Brüsszelátor dinamikája Shaun Ault és Erik Holmgreen dolgozata alapján (March 16, 2003) Várdainé Kollár Judit szeminárium Budapest november 6.

2 1. Bevezetés: Belouszov Zsabotyinszkij-reakció: Ce(III) és a Ce(IV) keletkezése ciklikus - kálium-bromát és malonsav jelenlétében. Az alábbi egyenletek megmutatják az egyszerűsített folyamatot: Ce(III) Ce(IV ) Ce(IV ) + CHBr(COOH) 2 Ce(III) + Br + otherproducts

3 Mi szükséges ahhoz, hogy egy reakció oszcilláljon? A reakció legyen távol az egyensúlytól. A reakcióban legyenek autokatalikus lépések. A rendszernek legyen legalább két állandósult állapota. (bistabilitás)

4 Oszcilláló reakciók: gyártási folyamatokban a szívben az ingerközpont - a szinuszcsomó működését vezérli glükolitikus ciklusban előforduló köztes anyagcsere termékek koncentrációja

5 Az előző előadásokból ismeretes, hogy a kémiai kinetikai egyenletek a következő módon írhatók: A + B C + D [ A] = [Ḃ] = [Ċ] = [Ḋ] = r a = k[a][b] Kicsit összetettebb rendszer esetén, vegyük hozzá: 2A 3E [Ḃ] = [Ċ] = [Ḋ] = k[a][b] [ A] = k 3 [A][B] 2k 6 [A] 2 [Ė] = 3k 6[A] 2

6 2. A Brüsszelátor: (Ilya Prigogine) A X 2X + Y 3X B + X Y + C X D A Brüsszelátor dinamikája leírható egy kétdimenziós közönséges differenciálegyenlet-rendszerrel: Ẋ = a + X 2 Y bx X ahol X(t), Y (t) R, a, b > 0. Ẏ = bx X 2 Y, (1)

7 3. Dimenziómentes alak Transzformáció: t = τt, x(t) = ξx(t), y(t) = ηy (t) a τ, ξ és η ügyes választásával. (Dimenziómentes, ha: ξ = X(t) X, η = Y (t) Y ) Transzformálva: ẋ = ξa τ + 1 τξη x2 y b + 1 x τ ẏ = 1 τξ 2x2 y + b η τξ x Legyen: τ := 1 ξ := 1 a η := 1 ekkor : ẋ = 1 + ax 2 y (b + 1)x ẏ = a(bx ax 2 y)

8 Fázisportré:

9 4. Egyensúly: A rendszer stacionárius pontjára kapjuk: 1 (b + 1) x + a x 2 ȳ = 0 b x a x 2 ȳ = 0, ahonnan: x = 1 ȳ = b/a.

10 5. Lineáris stabilitási analízis A rendszer Jacobi-mátrixa: Df(x, y) = ( x, ȳ) = (1, b/a)-t behelyettesítve: ( ) b 1 + 2axy ax 2 a(b 2axy) a 2 x 2, Df(1, b/a) = ( ) b 1 a ab a 2. Vizsgálva a stabilitást, kapjuk a nyomra és a determinánsra: τ = Trace(Df(1, b/a)) = b a 2 1 = Det(Df(1, b/a)) = a 2

11 stabilitas.nb 5 b instabil a

12

13 a > 0 = > 0 ( x, ȳ) nem nyeregpont > 0 és b < a 2 + 1, akkor τ < 0; attraktor > 0 és b = a = Hopf-bifurkáció > 0 és b > a 2 + 1, akkor τ > 0; repellor

14 6. A Hopf-bifurkáció megjelenése A Jacobi mátrix sajátértékei a λ 2 λ(b 1 a 2 ) + a 2 = 0 egyenletből kapjuk. b c = a esetén a sajátértékek tiszta képzetesek: 1. λ 1,2 (b) = ±ia 2. τ = b a 2 1 (b c = a = τ = 0) = a 2 = τ 2 4 < 0. Re(λ(b)) = 1 2 τ tehát Re(λ 1,2 (b)) b = 1 b=bc 2 b [b a2 1] = 1 2 0

15 7. b c = a közeli periódus Ha b = b c, akkor τ eltűnik, így λ = 1 2 (τ ± τ 2 4 ) = a 2 -ből: λ c = ±i és a közelítés periódusa: 2π/a. I(λ c ) = a

16 8. Nullavonalak: ẋ = 0 kijelölésével az ẋ nullavonalára kapjuk: 1 (b + 1)x + ax 2 y = 0 y = ẏ = 0 kijelölésével az ẏ nullavonalra kapjuk: (b + 1)x 1 ax 2 bx ax 2 y = 0 x(b axy) = 0 = x = 0 vagy: y = b ax (A második esetben a nullavonalon x = 0 nem lehetséges.)

17 Untitled-1 1 In[21]:= a := 1 b := 2.5 Hb + 1L x 1 y := a x 2 z := b a x Plot@8y, z<, 8x, 0.1, 4<D Out[25]= Graphics

18 9. Bendixson-zsák Hol metszi az x tengelyt az ẋ nullavonal? Az y = b ax 1 (b + 1)x + 0 = 0 = x = 1 b + 1 nullavonal és az x = 1 b+1 Megkonstruáljuk az "l" egyenest: y = metszéspontja adja: b(b + 1) a (c 1, c 2 ) (ẋ, ẏ) < 0 c 1 = c 2 = 1-t választva, elvégezzük a skalárszorzást, kapjuk: Ábrázolás után: 1 (b + 1)x + ax 2 y + abx a 2 x 2 y < 0 x > 1

19

20 Köszönöm a figyelmet! Várdai Judit vardai.judit@ymmfk.szie.hu

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

6. gyakorlat: Lineáris rendszerek fázisképei

6. gyakorlat: Lineáris rendszerek fázisképei 6. gyakorlat: Lineáris rendszerek fázisképei A fáziskép meghatározása az együtthatómátrix nyoma és determinánsa segítségével a következőképpen lehetséges. Az x'ax egyenletben ahol A a b az együtthatómátrix

Részletesebben

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek 7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,

Részletesebben

Fázisportrék. A Dinamikai rendszerek órákon bemutatott példarendszerek fázisportréi. Lineáris oszcillátor. v = ax bv

Fázisportrék. A Dinamikai rendszerek órákon bemutatott példarendszerek fázisportréi. Lineáris oszcillátor. v = ax bv Fázisportrék A Dinamikai rendszerek órákon bemutatott példarendszerek fázisportréi Lineáris oszcillátor ẋ=v v = ax bv a=0, b=0: centrum, konzervatív rendszer a=0, b=0,5: stabil fókusz, disszipatív rendszer

Részletesebben

Bevezetés az állapottér elméletbe: Állapottér reprezentációk

Bevezetés az állapottér elméletbe: Állapottér reprezentációk Tartalom Bevezetés az állapottér elméletbe: Állapottér reprezentációk vizsgálata 1. Példa az állapottér reprezentációk megválasztására 2. Átviteli függvény és állapottér reprezentációk közötti kapcsolatok

Részletesebben

8. DINAMIKAI RENDSZEREK

8. DINAMIKAI RENDSZEREK 8. DINAMIKAI RENDSZEREK A gyakorlat célja az, hogy egy kétváltozós reakciókinetikai rendszer vizsgálatával a hallgatók megismerjék a dinamikai rendszerek alapfogalmait, elsajátítsák a lineáris stabilitásvizsgálat

Részletesebben

7. DINAMIKAI RENDSZEREK

7. DINAMIKAI RENDSZEREK 7. DINAMIKAI RENDSZEREK Különböző folyamatok leírására különböző tudományterületeken állítanak fel olyan modelleket, amelyek nemlineáris közönséges autonóm differenciálegyenlet-rendszerre vezetnek. Ezek

Részletesebben

8. DINAMIKAI RENDSZEREK

8. DINAMIKAI RENDSZEREK 8. DINAMIKAI RENDSZEREK Különböző folyamatok leírására különböző tudományterületeken állítanak fel olyan modelleket, amelyek nemlineáris közönséges autonóm differenciálegyenlet-rendszerre vezetnek. Ezek

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05

Részletesebben

Lotka Volterra-féle populációdinamikai modellek vizsgálata

Lotka Volterra-féle populációdinamikai modellek vizsgálata Eötvös Loránd Tudományegyetem Természettudományi Kar Alkalmazott Analízis és Számításmatematikai Tanszék Lotka Volterra-féle populációdinamikai modellek vizsgálata Szakdolgozat Készítette: Kiss Franciska

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,

Részletesebben

Autonóm egyenletek, dinamikai rendszerek

Autonóm egyenletek, dinamikai rendszerek 238 8. Autonóm egyenletek, dinamikai rendszerek 8.8. tétel. (Andronov Witt) 5 6 Ha a Γ periodikus pálya karakterisztikus multiplikátorainak abszolút értéke 1-nél kisebb, akkor a Γ pálya stabilis határciklus.

Részletesebben

Kvadratikus alakok gyakorlás.

Kvadratikus alakok gyakorlás. Kvadratikus alakok gakorlás Kúpszeletek: Adott eg kvadratikus alak a következő formában: ax 2 + 2bx + c 2 + k 1 x + k 2 + d = 0, a, b, c, k 1, k 2, d R (1) Ezt felírhatjuk a x T A x + K x + d = 0 alakban,

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Kapari Dávid. Periodikus viselkedés kémiai reakciók differenciálegyenleteiben

Kapari Dávid. Periodikus viselkedés kémiai reakciók differenciálegyenleteiben Eötvös Loránd Tudományegyetem Természettudományi Kar Kapari Dávid Periodikus viselkedés kémiai reakciók differenciálegyenleteiben BSc Szakdolgozat Témavezető: Simon L. Péter Alkalmazott Analízis és Számításmatematikai

Részletesebben

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás Tartalom Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás 2018 1 Állapottér reprezentációk tulajdonságai Általánosan egy lineáris, SISO dinamikus rendszer

Részletesebben

92 MAM143A előadásjegyzet, 2008/2009. x = f(t,x). x = f(x), (6.1)

92 MAM143A előadásjegyzet, 2008/2009. x = f(t,x). x = f(x), (6.1) 9 MAM43A előadásjegyzet, 8/9 6. Stabilitáselmélet 6.. Autonóm nemlineáris rendszerek Legyen f : R R n R n. Ekkor az általános elsőrendű explicit nemlineáris differenciálegyenletrendszer alakja x = f(t,x.

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Differenciálegyenletek gyakorlat Matematika BSc II/2, elemző szakirány

Differenciálegyenletek gyakorlat Matematika BSc II/2, elemző szakirány A sebesség fogalmának szemléltetése az Differenciálegyenletek gyakorlat Matematika BSc II/, elemző szakirány. gyakorlat ẋ(t) = lim h 0 x(t+h) x(t) h képlet alapján, ahol t jelöli az időt, x pedig az elmozdulást.

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

differenciálegyenletek

differenciálegyenletek Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y

Részletesebben

Differenciálegyenletek

Differenciálegyenletek Differenciálegyenletek feladatgyűjtemény Tóth János Simon L. Péter Csikja Rudolf 013. augusztus 6. Tartalomjegyzék Előszó 3 Jelölések 4 I. Feladatok 7 1. Bevezető feladatok 8. Alapok 13.1. Elemi kvalitatív

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Ha ismert (A,b,c T ), akkor

Ha ismert (A,b,c T ), akkor Az eddigiekben feltételeztük, hogy a rendszer állapotát mérni tudjuk. Az állapot ismerete szükséges az állapot-visszacsatolt szabályzó tervezéséhez. Ha nem ismerjük az x(t) állapotvektort, akkor egy olyan

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

3. Fékezett ingamozgás

3. Fékezett ingamozgás 3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

ö ö ú ö í Ĺ ö ź Í ö í ö ö í ö ę ö ö ö ů đ Ö ź đ Á öö ź í ú ź ń ź ú źú í ö ú ű ú ö ź ź ł í ö ď ö í í ö í Ĺ Í ź í í ű ű ö í Í

ö ö ú ö í Ĺ ö ź Í ö í ö ö í ö ę ö ö ö ů đ Ö ź đ Á öö ź í ú ź ń ź ú źú í ö ú ű ú ö ź ź ł í ö ď ö í í ö í Ĺ Í ź í í ű ű ö í Í ö í í Ĺ É Í É É Á É ÍÉ Ü Á É Í Á É Á É Ü Ę É Á Ą ł É Á ł ł É É Ĺ ł í Ö ź í í ú ź ź í ź ę ź Ü íá Ł ź ö ö ú ö í Ĺ ö ź Í ö í ö ö í ö ę ö ö ö ů đ Ö ź đ Á öö ź í ú ź ń ź ú źú í ö ú ű ú ö ź ź ł í ö ď ö í í ö

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax) III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

5.1. Autonóm nemlineáris rendszerek

5.1. Autonóm nemlineáris rendszerek 5. Stabilitáselmélet 87 5. Stabilitáselmélet 5.1. Autonóm nemlineáris rendszerek Legyen f : R R n R n. Ekkor az általános elsőrendű explicit nemlineáris differenciálegyenletrendszer alakja x = f(t,x).

Részletesebben

Í ú Ö ź ő ő ľ ľ ő Ö ľ ő ý ó ü ů ľ ú ń ö ů ű ö ó ź ü ź ó ő ľ ľ ő ź ń ź ő ő ö ó ő ľ ö đ ď ú ś ő ó ź óĺ Í ď ó ľ ö ő ő đ ö ę ó ö ű ź ź ó ľ ľő ľ ő ó ö ő ő

Í ú Ö ź ő ő ľ ľ ő Ö ľ ő ý ó ü ů ľ ú ń ö ů ű ö ó ź ü ź ó ő ľ ľ ő ź ń ź ő ő ö ó ő ľ ö đ ď ú ś ő ó ź óĺ Í ď ó ľ ö ő ő đ ö ę ó ö ű ź ź ó ľ ľő ľ ő ó ö ő ő ó ő ů ő ő ő ő ü ő ó ľ ú ü ü ť ő É ľ É ÉÉ ą Ú ľ É Í ľľ ą ą ą ą ł Ą É Ü É ľ É ą Ą ó ľ ü ľ ü ő ő ü Ö ö ü ő ü ľ ü ł ć ő ľ ü ö ő ú đ ü źů ö ź ľ ó ľő ü ľ ľ É ľ Ą Đ Í ú Ö ź ő ő ľ ľ ő Ö ľ ő ý ó ü ů ľ ú ń ö ů ű

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Differenciálegyenletek gyakorlat Matematika BSc II/2, elemző szakirány

Differenciálegyenletek gyakorlat Matematika BSc II/2, elemző szakirány Differenciálegyenletek gyakorlat Matematika BSc II/, elemző szakirány 1. gyakorlat Bevezető mese: pillanatnyi sebesség, mozgásegyenlet, radioaktív bomlás, populációdinamika. Differenciálegyenlet, iránymező,

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Í Ú É Ö Ö ý ä Ö Ö Í É Ö Ö ľľ ľ ľ ŕ ľ ľ ä ť ä

Í Ú É Ö Ö ý ä Ö Ö Í É Ö Ö ľľ ľ ľ ŕ ľ ľ ä ť ä ľ ľ Í Ú É Ö Ö ý ä Ö Ö Í É Ö Ö ľľ ľ ľ ŕ ľ ľ ä ť ä ü Í ď É ľ ú Í Ö É Ö Ú Ú ę ú Ö Í đ ť É ÁšÄ Ö É ä ŕ Ü Í Í Í Í ń Ö Í Í Äń Đ ü ü Í Ľ ř Ú Ň Ą Ü Í Í Ó Í Í Ö Í Ó ż źď ľä Ę Ęľ ŕ ť Í ľ ä ü ą ő ť ő ő Ö ď ľť ľ ť

Részletesebben

Differenciálegyenletek és dinamikai rendszerek

Differenciálegyenletek és dinamikai rendszerek Differenciálegyenletek és dinamikai rendszerek Simon L. Péter Eötvös Loránd Tudományegyetem Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tanszék 2012 Tartalomjegyzék 1. Bevezetés 4 1.1.

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

1. Transzformációk mátrixa

1. Transzformációk mátrixa 1 Transzformáiók mátrixa Lineáris transzformáiók Definíió T test Az A : T n T n függvény lineáris transzformáió, ha tetszőleges v,w T n vektorra és λ skalárra teljesül, hogy A(v + w) A(v) + A(w) és A(λv)

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Kaotikus Differenciálegyenletek Szakdolgozat Chmelik Gábor Matematika B.Sc., Matematikai elemző szakirány Témavezető: Simon L. Péter, egyetemi docens

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21.

Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21. Analízis előadások Vajda István 2009. március 21. A módszer alkalmazásának feltételei: Állandó együtthatós, lineáris differenciálegyenletek megoldására használhatjuk. A módszer alkalmazásának feltételei:

Részletesebben

A MATEMATIKA NÉHÁNY KIHÍVÁSA

A MATEMATIKA NÉHÁNY KIHÍVÁSA A MATEMATIKA NÉHÁNY KIHÍVÁSA NAPJAINKBAN Simon L. Péter ELTE, Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tsz. 1 / 20 MATEMATIKA AZ ÉLET KÜLÖNBÖZŐ TERÜLETEIN Kaotikus sorozatok és differenciálegyenletek,

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

1. A Hilbert féle axiómarendszer

1. A Hilbert féle axiómarendszer {Euklideszi geometria} 1. A Hilbert féle axiómarendszer Az axiómarendszer alapfogalmai: pont, egyenes, sík, illeszkedés (pont egyenesre, pont síkra, egyenes síkra), közte van reláció, egybevágóság (szögeké,

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

Tamás Réka. Másodrendű közönséges differenciálegyenletek és szerepük a numerikus modellezésben

Tamás Réka. Másodrendű közönséges differenciálegyenletek és szerepük a numerikus modellezésben Eötvös Loránd Tudományegyetem Természettudományi Kar Tamás Réka Másodrendű közönséges differenciálegyenletek és szerepük a numerikus modellezésben BSc Szakdolgozat Matematika BSc, Matematikai elemező szakirány

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

í ó ń ó É í ő ő ü ő Í ź ą ó ź đő ź ü ó íń ú í ö ö í ü ő ď ü ę ó ó ę ő ď ú ü ú ź ó í ő ó í í ó ö ö ö ö ű ę ó ź ä í ó ó ó ő ő ó ó ó ú ü Ó ű ź ö ź í ú í

í ó ń ó É í ő ő ü ő Í ź ą ó ź đő ź ü ó íń ú í ö ö í ü ő ď ü ę ó ó ę ő ď ú ü ú ź ó í ő ó í í ó ö ö ö ö ű ę ó ź ä í ó ó ó ő ő ó ó ó ú ü Ó ű ź ö ź í ú í ő É ő ó ő ü ę Ĺ ý ą É í ö ő ő ý ő í í ę ý ö ő í ý ü ł ć Ĺ ü ő ú í í ő ü ď ö ó í ó ó ó ü ő ü ó ő ŕ ú ö ó ő í ó ő ź ü ó í í ó ö ö í ó í ú ó ü ę í ę ö ö óđ ú ö ü Ĺ ý ú ü ó ę ö ő ő ä ź í ö ü ę ú í źů ź í í

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Äł Á Ŕ. ÁáÔ. ęôá. ą Á

Äł Á Ŕ. ÁáÔ. ęôá. ą Á Ó ö ö ô ś Ö Ś üü Ö Ö Ö Ü ź Ö Ó Ó Ö Ö Ö Ő Ö Ő Ö Ö ą Ó Ö Ö Ó Ó Ö Ó ŕ Ó Ö Ö Ó Ö ě Ś ż ŕ Ö ŕ ą ŕ ą ŕ Ö Ó ŕ ŕ ŕ ŕ ŕ ŕ ř ő Ö ć ť ź ś ś Š š ś ą ę ś Ö ś Ö Ý Ó ö Ď ć Ö śš żö Ö ö Ö Ö ô ö ő ć ą ś ň Ó ą ą Ú É Ó ę

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

ö ö ü ü ű ö Í ö ö ö ű Í ü ű ö ö ö ü ű ö ö ö ö ö Í ű ű ü ü Ó ű ö ö É ü ö ö ö ü ü É ö ü ö Á ü Á ű ü ű ű ű ű Í ÍÁ ü ö ö ö ü ü ü É ü ü Á ö ü ü ö ö ű ü ö ü ü ü ö ü ü ü ö ü ü ü ö ö ü ű ö ű ü ö ü ü ö ű ü Í ü

Részletesebben

Í ű Á Á ű ü ü ü ű Í ü ü ü ü Í ű ű ü ü ű ü ü ű ü Í Í É Á Á Á É Á Ö Á Á Á ü É Ó Á Á Á Á É É Á ű É É Á ű ű Á Í Á Í É Á Á Á Á Á Á Ó Á ű ű ü ű ű ű ű ű ü ű Ó ü ű ü ü ű ü ű Í Í ü ű ü ü ü ü ü ű ü ű ü ü ü ü ü ű

Részletesebben

ó ö ó Í Í Ó Í Á Í Í Í Ó Ú ó Í Ó ó Ó ó Í Ó Ó Ó Ó Ó Ó Ó ó Á Ó Ó ó ö ó Ú Í Í Ó Ó Ó Í Ó Ú É Í Í Í Ú Ó ő Í Í Ó Ó Ú Ó Ó ó Í ó Á Ó Ó Ó ó ó Í Ó Ó Ó Ó Ó Í Ú Í Í É ö Ó Ó Í Ó Ú Ó Ú Ó Ö Í Í Ú Ó Ó ó Ű Ó Ó Ó Ó Ó Ó Ó

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2011. november 29. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor: I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:

Részletesebben

ú Í ű ů ý ź ú ę ź ź ź ú ú ź źą ú ź ź ü ü ź ź ę Ĺ ź ü Ĺ ź ź ü ę ę ę ź ú ź źů ú ű ź

ú Í ű ů ý ź ú ę ź ź ź ú ú ź źą ú ź ź ü ü ź ź ę Ĺ ź ü Ĺ ź ź ü ę ę ę ź ú ź źů ú ű ź ź ü Ę ü ü Ĺ ü ť ü ú Í ü ź ú ź Í ú ű ü ź ź ü ź ú ů ü ű ď ü ü ę ű ű ź ú Ĺ ź ę ú ü ű ú Í ű ů ý ź ú ę ź ź ź ú ú ź źą ú ź ź ü ü ź ź ę Ĺ ź ü Ĺ ź ź ü ę ę ę ź ú ź źů ú ű ź ź ź ź ú ź ź ú ď ú ź ď ü ź ď ú Á ę ú ú

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

4. Lineáris rendszerek

4. Lineáris rendszerek 60 Hartung Ferenc: Differenciálegyenletek, MA22i, MA623d, 2006/07 4 Lineáris rendszerek 4 Lineáris algebrai előismeretek Legyen A egy n n-es mátrix, I az n n-es egységmátrix A pλ := deta λi n-edfokú polinomot

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Elhangzott tananyag óránkénti bontásban

Elhangzott tananyag óránkénti bontásban TTK, Matematikus alapszak Differenciálegyenletek (Előadás BMETE93AM03; Gyakorlat BME TE93AM04) Elhangzott tananyag óránkénti bontásban 2016. február 15. 1. előadás. Közönséges differenciálegyenlet fogalma.

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Károlyi Katalin Eötvös Loránd Tudományegyetem Alkalmazott Analízis Tanszék. Abstract

Károlyi Katalin Eötvös Loránd Tudományegyetem Alkalmazott Analízis Tanszék. Abstract KÖZÖNSÉGES DIFFERENCIÁLEGYENLETEK TÖBBPONTOS PEREMÉRTÉK PROBLÉMÁI Károlyi Katalin Eötvös Loránd Tudományegyetem Alkalmazott Analízis Tanszék 1117 Budapest, Pázmány Péter sétány 1/c. (karolyik@cs.elte.hu)

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008

Részletesebben

ő ü ő ę ü ő ő ő ź ę ü í ú ü í ő ő ö ő í ý É ö í ü ü í ď ý í ź ý Ĺ ö ö źú ő ü ý ő ő ü ź ď ę ö ö í í ö ú ő ź ő ý ő ő ö ü ź ő ę í Ĺ ę ő ő ő í ü ź í ö ę í ö ö ő ú ę í ő ü í ő ő ő ę í ő ü ü ę í đ ö ę đ ü ź

Részletesebben

L-transzformáltja: G(s) = L{g(t)}.

L-transzformáltja: G(s) = L{g(t)}. Tartalom 1. Stabilitáselmélet stabilitás feltételei inverz inga egyszerűsített modellje 2. Zárt, visszacsatolt rendszerek stabilitása Nyquist stabilitási kritérium Bode stabilitási kritérium 2018 1 Stabilitáselmélet

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

ú ö ő ö ő ź í ő ö ő ą ö ő đö ź ő í ö ő ö í ö Á É Í ö Ą Í ł É Ü É ł Á łů łá É ł ł ł ő Á ą Á Á Đ Á Ü łá

ú ö ő ö ő ź í ő ö ő ą ö ő đö ź ő í ö ő ö í ö Á É Í ö Ą Í ł É Ü É ł Á łů łá É ł ł ł ő Á ą Á Á Đ Á Ü łá ő Ĺ ź ő ü đ Ł Ą Ő Ĺ ü ü ő ő í í ő ü í ö É đ ú ő ź í ő ö łí ę ő ö ő ę ö ö ź đ í ź ű łí ő ő ő ő ö Ĺ ł ź ź ő ö ö í ő ö ö ü ö ö Ĺ ź ö ü ö ö đ ö ő ú ö ő ö ő ź í ő ö ő ą ö ő đö ź ő í ö ő ö í ö Á É Í ö Ą Í ł

Részletesebben

CSATOLT REZGÉSEK Kedves barátom, Skrapits Lajos tanár úr emlékére

CSATOLT REZGÉSEK Kedves barátom, Skrapits Lajos tanár úr emlékére CSATOLT REZGÉSEK Kedves barátom, Skrapits Lajos tanár úr emlékére Schipp Ferenc ELTE IK umerikus Analízis Tanszék A szabadon esô rugó fizikája Húsz évvel ezelôtt az ELTE Általános Fizika Tanszék hagyományos

Részletesebben

ü ú ö í ü ü ű ü ö ú í í ű Ĺ í ö ü ö ű ü í í í ü ú í ö ĺ í ö ű ĺ í í ü ü íĺ ö ü Í ď ť Ą

ü ú ö í ü ü ű ü ö ú í í ű Ĺ í ö ü ö ű ü í í í ü ú í ö ĺ í ö ű ĺ í í ü ü íĺ ö ü Í ď ť Ą ü ú í ľ í Á ö ű ö ú ö í ö í ü ö ú ü ö í ü ü í ö ű í ű ü í í í í Á ú ű í í ű ü ö ö í ű í í ü ü ú ö í ü ü ű ü ö ú í í ű Ĺ í ö ü ö ű ü í í í ü ú í ö ĺ í ö ű ĺ í í ü ü íĺ ö ü Í ď ť Ą ű í í ö ö ü ű í ö ö í

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben