Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?"

Átírás

1 Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs Technológiai Kar szederkenyi@itk.ppke.hu PPKE-ITK, május 2. Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 1 / 17

2 Mintavételezés u(t k ) u(t) y(t) y(t k ) D/A A/D discrete time S continuous time Control Algorithm Clock Computer Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 2 / 17

3 Mintavételezés nulladrendű tartóval A D/A átalakító működése u(k) t 0 t 1 t 2 t 3 Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 3 / 17

4 CT-LTI rendszerek mintavételezése Adott: ẋ = Ax + Bu y = Cx + Du u mintavételezése nulladrendű tartóval u(τ) = u(t k ) = u(k), t k τ < t k+1 Ekvidisztáns (periodikus) mintavételezés: t k+1 t k = h = const Kiszámítandó: a mintavételezett (diszkrét idejű) rendszer állapottér-modellje Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 4 / 17

5 Mintavételezett állapotegyenletek - 1 A folytonos idejű állapotegyenlet megoldása t x(t) = e A(t t0) x(t 0 )+ e A(t τ) Bu(τ)dτ t 0 Helyettesítés: t = t k+1 és t 0 = t k tk+1 x(t k+1 ) = e A(t k+1 t k ) x(t k )+ e A(tk+1 τ) Bu(τ)dτ t k periodikus mintavételezés és θ = τ t k, t k+1 τ = h θ x(k + 1) = e Ah x(k)+ h 0 ea(h θ) Bu(k)dθ = x(k + 1) = e Ah x(k)+e Ah h 0 e Aθ dθbu(k) Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 5 / 17

6 Mintavételezett állapotegyenletek - 2 és h x(k + 1) = e Ah x(k)+e Ah e Aθ dθbu(k) h 0 Diszkrét idejű állapotegyenletek e Aθ dθ = [ A 1 e Aθ ] h 0 = A 1 (I e Ah ) x(k + 1) = e Ah x(k)+a 1 (e Ah I)Bu(k) DT-LTI állapotegyenletek mintavételezett rendszerekhez x(k + 1) = Φx(k)+Γu(k) Φ = e Ah = I + Ah+..., Γ = A 1 (e Ah I)B = (Ih+ Ah2 2! +...)B 0 Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 6 / 17

7 DT-LTI állapottér modellek x(k + 1) = Φx(k) + Γu(k) y(k) = Cx(k) + Du(k) adott x(0) kezdeti feltétellel és állapotegyenlet kimeneti egyenlet x(k) R n, y(k) R p, u(k) R r véges dimenziós vektorok és Φ R n n, Γ R n r, C R p n, D R p r mátrixok Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 7 / 17

8 DT állapotegyenletek megoldása x(1) = Φx(0)+Γu(0) x(2) = Φx(1)+Γu(1) = Φ 2 x(0)+φγu(0)+γu(1) x(3) = Φx(2)+Γu(2) = Φ 3 x(0)+φ 2 Γu(0)+ΦΓu(1)+Γu(2).... x(k) = Φx(k 1)+Γu(k 1) = Φ k x(0)+ k 1 j=0 Φk j 1 Γu(j) Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 8 / 17

9 DT-LTI I/O rendszermodellek 1 Impulzusválasz-függvény: I/O modell SISO rendszerekhez U = [u(0) u(1)...u(n 1)] T, Y = [y(0) y(1)...y(n 1)] T Általános lineáris modell Y = HU + Y p ahol H n n-es mátrix, és Y p tartalmazza a kezdeti feltételeket. Kauzális rendszerek esetén H alsóháromszög y(k) = k h(k,j)u(j)+y p (k) j=0 ahol h(k, j) az impulzusválasz-függvény Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 9 / 17

10 DT-LTI I/O rendszermodellek 2 LTI modellek impulzusválasz-függvénye: h(k, j) = h(k j) Az állapotegyenlet megoldásából D = 0-ra: x(k) = Φx(k 1)+Γu(k 1) = Φ k x(0)+ k 1 j=0 Φk j 1 Γu(j) y(k) = Cx(k) = CΦ k x(0)+ k 1 j=0 CΦk j 1 Γu(j) { h(k) = A súlyfüggvény diszkrét idejű megfelelője. 0 k < 1 CΦ k 1 Γ k 1 Diszkrét idejű Markov paraméterek: CΦ k 1 Γ Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 10 / 17

11 Diszkrét idejű jelek f = {f(k),k = 0,1,...} skalár értékű diszkrét idejű jelek jelnormái a végtelen norma a 2-es norma f = sup f(k) k f 2 2 = k= f 2 (k) Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 11 / 17

12 Eltolási operátorok Definíció: előre való eltolási operátor: q amely a következő műveletet végzi egy diszkrét idejű jellel: qf(k) = f(k + 1) (1) Definíció: hátrafelé való eltolási operátor (késleltetés): q 1 amely a következő műveletet végzi: q 1 f(k) = f(k 1) (2) q Operátor X vektortéren értelmezett. norma által indukált normája: q(x) q = sup x =1 x Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 12 / 17

13 DT-LTI I/O rendszermodellek 3 Diszkrét differenciaegyenlet modellek: SISO rendszerekhez Előrefelé vett differenciákkal y(k + n a)+a 1y(k + n a 1)+...+a na y(k) = b 0u(k + n b )+...+b nb u(k) ahol n a n b (proper). Tömörebb forma A(q)y(k) = B(q)u(k), A(q) = q na +a 1q na a na, B(q) = b 0q n b+b 1q n b b nb Hátrafelé vett differenciákkal y(k)+a 1y(k 1)+...+a na y(k n a) = b 0u(k d)+...+b nb u(k d n b ) ahol d = n a n b > 0 az időkésleltetés. Tömörebb forma A (q 1 )y(k) = B (q 1 )u(k d), A (q 1 ) = q na A(q 1 ) Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 13 / 17

14 DT-LTI I/O rendszermodellek 4 Impulzusátviteli operátor A DT-LTI állapottér modellből számolva x(k + 1) = Φx(k)+Γu(k), y(k) = Cx(k)+Du(k) x(k + 1) = qx(k) = Φx(k)+Γu(k) x(k) = (qi Φ) 1 Γu(k) y(k) = Cx(k)+Du(k) = [C(qI Φ) 1 Γ+D]u(k) (Φ, Γ, C, D) ÁTM-hez tartozó impulzusátviteli operátor H(s) : H(q) = C(qI Φ) 1 Γ+D Az átviteli függvény diszkrét idejű megfelelője. Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 14 / 17

15 DT-LTI I/O rendszermodellek 5 Impulzusátviteli operátor: a SISO eset H(q) = C(qI Φ) 1 Γ+D = B(q) A(q), deg B(q) < deg A(q) = n ahol A(q) a Φ mátrix karakterisztikus polinomja. Kapcsolat a diszkrét differenciaegyenlettel y(k)+a 1 y(k 1)+...+a n y(k n) = b 1 u(k 1)+...+b n u(k n) Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 15 / 17

16 DT-LTI rendszerek pólusai 1 folytonos idő diszkrét idő állapot egy. ẋ(t) = Ax(t)+Bu(t) x(kh+h) = Φx(kh)+Γu(kh) Φ = e Ah kimeneti egy. y(t) = Cx(t) y(kh) = Cx(kh) pólusok λ i (A) λ i (Φ) λ i (Φ) = e λ i(a)h Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 16 / 17

17 DT-LTI rendszerek pólusai 2 S-plane Z-plane Im s Im z 3Π h Π h Re s 1 Re z Π h 3Π h Szederkényi G. (PPKE) Computer Controlled Systems PPKE-ITK 17 / 17

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Számítógéppel irányított rendszerek elmélete. Gyakorlat - Mintavételezés, DT-LTI rendszermodellek

Számítógéppel irányított rendszerek elmélete. Gyakorlat - Mintavételezés, DT-LTI rendszermodellek Számítógéppel irányított rendszerek elmélete Gyakorlat - Mintavételezés, DT-LTI rendszermodellek Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos.katalin@virt.uni-pannon.hu

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Gyártórendszerek irányítási struktúrái

Gyártórendszerek irányítási struktúrái GyRDin-10 p. 1/2 Gyártórendszerek Dinamikája Gyártórendszerek irányítási struktúrái Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos@scl.sztaki.hu GyRDin-10 p. 2/2 Tartalom

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás Tartalom Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás 2018 1 Állapottér reprezentációk tulajdonságai Általánosan egy lineáris, SISO dinamikus rendszer

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Bevezetés az állapottér elméletbe: Állapottér reprezentációk

Bevezetés az állapottér elméletbe: Állapottér reprezentációk Tartalom Bevezetés az állapottér elméletbe: Állapottér reprezentációk vizsgálata 1. Példa az állapottér reprezentációk megválasztására 2. Átviteli függvény és állapottér reprezentációk közötti kapcsolatok

Részletesebben

Tartalom. 1. Számítógéppel irányított rendszerek 2. Az egységugrásra ekvivalens diszkrét állapottér

Tartalom. 1. Számítógéppel irányított rendszerek 2. Az egységugrásra ekvivalens diszkrét állapottér Tartalom 1. Számítógéppel irányított rendszerek 2. Az egységugrásra ekvivalens diszkrét állapottér 2015 1 Számítógéppel irányított rendszerek Számítógéppel irányított rendszer blokkvázlata Tartószerv D/A

Részletesebben

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi

Bevezetés az állapottér-elméletbe Dinamikus rendszerek állapottér reprezentációi Tartalom Bevezetés az állapottér-elméletbe Irányítható alak Megfigyelhetőségi alak Diagonális alak Állapottér transzformáció 2018 1 A szabályozáselmélet klasszikus, BODE, NICHOLS, NYQUIST nevéhez kötődő,

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I Folytonos idejű rendszerek leírása az állapottérben Állapotvisszacsatolást alkalmazó szabályozási körök Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki

Részletesebben

Kalman-féle rendszermodell Méréselmélet PE MIK MI, VI BSc 1

Kalman-féle rendszermodell Méréselmélet PE MIK MI, VI BSc 1 alman-féle rendszermodell.4.. Méréselmélet PE MI MI, VI BSc álmán Rudolf Rudolf Emil alman was born in Budapest, Hungar, on Ma 9, 93. He received the bachelor's degree (S.B.) and the master's degree (S.M.)

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Számítógép-vezérelt szabályozás- és irányításelmélet

Számítógép-vezérelt szabályozás- és irányításelmélet Számítógép-vezérelt szabályozás- és irányításelmélet 2. gyakorlat Feladattípusok két függvény konvolúciója ÿ + aẏ + by = e at, y(), ẏ() típusú kezdetiérték feladatok megoldása (Laplace transzformációval)

Részletesebben

Dinamikus rendszerek paramétereinek BAYES BECSLÉSE. Hangos Katalin VE Számítástudomány Alkalmazása Tanszék

Dinamikus rendszerek paramétereinek BAYES BECSLÉSE. Hangos Katalin VE Számítástudomány Alkalmazása Tanszék Dinamikus rendszerek paramétereinek BAYES BECSLÉSE Hangos Katalin VE Számítástudomány Alkalmazása Tanszék 1 Bayes-becslések 1. A véletlen Bayes féle fogalma A "véletlen" Bayes féle értelmezése a megfigyelést

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

1.1 Számítógéppel irányított rendszerek

1.1 Számítógéppel irányított rendszerek Számítógépes irányításelmélet 4. Számítógéppel irányított rendszerek A fejezetnek az a célja, hogy bevezesse a számítógéppel irányított rendszerek alapfogalmait. Bemutatja a folytonos jel mintavételezését,

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Számítógépvezérelt szabályozások elmélete

Számítógépvezérelt szabályozások elmélete Számítógépvezérelt szabályozások elmélete Folytonos idejű rendszerek Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék Számítógépvezérelt szabályozások

Részletesebben

Irányítástechnika 2. előadás

Irányítástechnika 2. előadás Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok

Részletesebben

IRÁNYÍTÁSTECHNIKA II.

IRÁNYÍTÁSTECHNIKA II. IRÁNYÍTÁSTECHNIKA II. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

Jelek és rendszerek - 12.előadás

Jelek és rendszerek - 12.előadás Jelek és rendszerek - 12.előadás A Z-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Diszkrét idej rendszerek analízise az id tartományban

Diszkrét idej rendszerek analízise az id tartományban Diszkrét idej rendszerek analízise az id tartományban Dr. Horváth Péter, BME HVT 06. október 4.. feladat Számítuk ki a DI rendszer válaszát, ha adott a gerjesztés és az impulzusválasz! u[k = 0,6 k ε[k;

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Ha ismert (A,b,c T ), akkor

Ha ismert (A,b,c T ), akkor Az eddigiekben feltételeztük, hogy a rendszer állapotát mérni tudjuk. Az állapot ismerete szükséges az állapot-visszacsatolt szabályzó tervezéséhez. Ha nem ismerjük az x(t) állapotvektort, akkor egy olyan

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

Méréselmélet példatár

Méréselmélet példatár Méréselmélet példatár I. rész Gerzson Miklós Méréselmélet példatár I. rész Pécs 2015 A tananyag a TÁMOP-4.1.1.F-14/1/KONV-2015-0009 azonosító számú, "A gépészeti és informatikai ágazatok duális és moduláris

Részletesebben

Méréselmélet példatár

Méréselmélet példatár Gerzson Miklós Méréselmélet példatár Pécs 2015 A tananyag a TÁMOP-4.1.1.F-14/1/KONV-2015-0009 azonosító számú, "A gépészeti és informatikai ágazatok duális és moduláris képzéseinek kialakítása a Pécsi

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Jelek és rendszerek - 1.előadás

Jelek és rendszerek - 1.előadás Jelek és rendszerek - 1.előadás Bevezetés, alapfogalmak Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Mérnök

Részletesebben

pont) Írja fel M struktúrában a parametrikus bizonytalansággal jellemzett

pont) Írja fel M struktúrában a parametrikus bizonytalansággal jellemzett Irányításelmélet MSc (Tipikus példák) Gáspár Péter 1. Egyértelmű-e az irányíthatósági állapottér reprezentáció? Egyértelműe a diagonális állapottér reprezentáció? 2. Adja meg az állapotmegfigyelhetőség

Részletesebben

Soros felépítésű folytonos PID szabályozó

Soros felépítésű folytonos PID szabályozó Soros felépítésű folytonos PID szabályozó Főbb funkciók: A program egy PID szabályozót és egy ez által szabályozott folyamatot szimulál, a kimeneti és a beavatkozó jel grafikonon való ábrázolásával. A

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010 november

Részletesebben

KIBERNETIKA. egyetemi jegyzet. dr. Gerzson Miklós Nagyváradi Anett. Pécsi Tudományegyetem Pollack Mihály Műszaki Főiskolai Kar

KIBERNETIKA. egyetemi jegyzet. dr. Gerzson Miklós Nagyváradi Anett. Pécsi Tudományegyetem Pollack Mihály Műszaki Főiskolai Kar KIBERNETIKA egyetemi jegyzet dr. Gerzson Miklós Nagyváradi Anett Pécsi Tudományegyetem Pollack Mihály Műszaki Főiskolai Kar Pécs, 2004 Tartalomjegyzék 1. Bevezetés 1 1.1. Célkitűzés.............................

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

Számítógéppel irányított rendszerek elmélete. A rendszer- és irányításelmélet legfontosabb részterületei. Hangos Katalin. Budapest

Számítógéppel irányított rendszerek elmélete. A rendszer- és irányításelmélet legfontosabb részterületei. Hangos Katalin. Budapest CCS-10 p. 1/1 Számítógéppel irányított rendszerek elmélete A rendszer- és irányításelmélet legfontosabb részterületei Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék Folyamatirányítási

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Funkcionálanalízis. Gyakorló feladatok március 22. Metrikus tér, normált tér és skalárszorzat tér

Funkcionálanalízis. Gyakorló feladatok március 22. Metrikus tér, normált tér és skalárszorzat tér Funkcionálanalízis Gyakorló feladatok 2017 március 22 Metrikus tér, normált tér és skalárszorzat tér N1 Metrikát deniálnak-e R-en az alábbi függvények: (a) d(x, y) = x y (b) d(x, y) = x y (c) d(x, y) =

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35 Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n

Részletesebben

A vegetatív működés modelljei

A vegetatív működés modelljei Tartalom 1 Motiváció 2 Decentralizált irányítási modellek 3 Működőképesség és stabilitás 4 Összehasonlítás 5 Következtetések Az Anti-Equilibriumtól a Hiányig Az Anti-Equilibriumban ígért konstruktív kritika:

Részletesebben

Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén

Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén 1. fejezet Analízis 1.1. Normált-, Banach- és Hilbert-terek. Zártés teljes ortonormált rendszer. Fourier-sor. Riesz-Fischer tétel Hilbert-térben. Szeparábilis Hilbert terek izomorfiája. 1.1.1. Normált-,

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

Felvételi vizsga. BME Villamosmérnöki és Informatikai Kar

Felvételi vizsga. BME Villamosmérnöki és Informatikai Kar V Név, azonosító: pont(90): Felvételi vizsga Mesterképzés, villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar 2009. június 8. MEGOLDÁSOK A dolgozat minden lapjára, a kerettel jelölt részre írja

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek 7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,

Részletesebben

Kuczmann Miklós. Jelek és rendszerek

Kuczmann Miklós. Jelek és rendszerek Kuczmann Miklós Jelek és rendszerek Készült a HEFOP 3.3.-P.-4-9-/. pályázat támogatásával Szerzők: Lektor: Kuczmann Miklós Keviczky László, akadémikus c Kuczmann Miklós, 6. TARTALOMJEGYZÉK 3 Tartalomjegyzék.

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Mintavétel: szorzás az idő tartományban

Mintavétel: szorzás az idő tartományban 1 Mintavételi törvény AD átalakítók + sávlimitált jel τ időközönként mintavétel Mintavétel: szorzás az idő tartományban 1/τ körfrekvenciánként ismétlődik - konvolúció a frekvenciatérben. 2 Nem fednek át:

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

Irányítástechnika II. előadásvázlat

Irányítástechnika II. előadásvázlat Irányítástechnika II. előadásvázlat Dr. Bokor József egyetemi tanár, az MTA rendes tagja BME Közlekedés- és Járműirányítási Tanszék 2018 1 Tartalom Irányítástechnika II. féléves tárgytematika Az irányításelmélet

Részletesebben

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma. Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák

Részletesebben

Fourier sorok február 19.

Fourier sorok február 19. Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható

Részletesebben

Felvételi vizsga. BME Villamosmérnöki és Informatikai Kar június 8.

Felvételi vizsga. BME Villamosmérnöki és Informatikai Kar június 8. Név, azonosító: V pont(90) : Felvételi vizsga Mesterképzés, villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar 2009. június 8. A dolgozat minden lapjára, a kerettel jelölt részre írja fel nevét,

Részletesebben

Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból

Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból 1 Átviteli tényező számítása: Lineáris rendszer: Pl1.: Egy villanymotor 100V-os bemenő jelre 1000 fordulat/perc kimenő jelet ad.

Részletesebben

1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel

1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel 1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel eltolt Dirac impulzusokból áll. Adja meg a hordozó jel I (s) T Laplace-transzformáltját és annak

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05

Részletesebben

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok GyRDin-02 p. 1/20 Gyártórendszerek Dinamikája Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék

Részletesebben