Irányításelmélet és technika II.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Irányításelmélet és technika II."

Átírás

1 Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék 2010 november 8.

2 Áttekintés Bevezetés 1 Bevezetés 2 Modell-Prediktív Szabályozók 3 Dinamikus Mátrix Szabályozás 4 Esettanulmány - hőcserélő Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 2 / 29

3 Bevezetés Bevezetés Nem egy módszer, hanem szabályozó család a rendszer jövőbeli válaszainak becslése egy prediktív modell segítségével a rendszerre adott bemenetek meghatározása egy költségfüggvény minimalizálásával a tervezési horizont minden időpillanatban a jövő felé tolódik MPC előnyei kevés irányításelméleti tudással rendelkező kezelő személyzet is megérti a lényegét sokféle folyamatra alkalmazható (késleltetett, nem minimumfázisú, stb.) MIMO rendszerekre is alkalmazható korlátozások kezelése is bevehető a tervezésbe Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 3 / 29

4 MPC stratégia Bevezetés 1 A következő N jövőbeli kimenet (y(t + k t), k = 1,..., N) becslése az eddigi bemenetek és kimenetek és a következő N bemenet (u(t + k t), k = 0,..., N 1 ismert!) felhasználásával 2 A jövőbeli bemenetek egy meghatározott költségfüggvény minimalizálásával határozhatók meg. A cél, hogy a jövőbeli y(t + k) kimenetek a lehető legközelebb legyenek a w(t + k) referenciához. 3 A kiszámolt u(t + k) bemeneti sorozat első elemét ráadjuk a rendszerre, és visszatérünk az első lépéshez. Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 4 / 29

5 MPC stratégia Bevezetés Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 5 / 29

6 MPC stratégia Bevezetés MPC autóvezetés: Referencia trajektória egy véges horizonton (látómező) Modell (az autó mentális modellje) Bemenetek (gáz, fék, kormány) Klasszikus módszerek csak a múltbeli hibát minimalizálják (pl. PI) Autóvezetés csak a visszapillantó tükröt használva Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 6 / 29

7 Áttekintés Modell-Prediktív Szabályozók 1 Bevezetés 2 Modell-Prediktív Szabályozók Célfüggvény Szabályozási algoritmus levezetése 3 Dinamikus Mátrix Szabályozás 4 Esettanulmány - hőcserélő Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 7 / 29

8 Modell-Prediktív Szabályozók Modell-Prediktív Szabályozók A modell-prediktív szabályozók minden típusánál megtalálható az alábbi három elem Célfüggvény Szabályozási algoritmus levezetése A fenti elemek különböző megválasztása különböző szabályozó típushoz vezet Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 8 / 29

9 Modell-Prediktív Szabályozók Folyamat modell jövőbeli ŷ(t + k t) kimenetek meghatározására Zavarás modell mérhető zavarás hatása nem mérhető bemenetek hatása Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 9 / 29

10 Folyamat modell Modell-Prediktív Szabályozók Impulzusválasz függvény y(t) = h i u(t i) i=1 Stabil, integrátort nem tartalmazó folyamat esetén elég ez első N minta N ( y(t) = h i u(t i) = H(z 1 )u(t) = h 1 z h N z N) u(t) i=1 Előny: ki lehet mérni Hátrány: általában N = 40 50, sok paraméter! ŷ(t + k t) = N h i u(t + k i t) = H(z 1 )u(t + k t) i=1 Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 10 / 29

11 Folyamat modell Modell-Prediktív Szabályozók Lépésválasz függvény, stabil és integrátort nem tartalmazó folyamatokra N y(t) = y 0 + g i u(t i) = y 0 + G(z 1 )(1 z 1 )u(t) i=1 u(t) = u(t) u(t 1) A konstans y 0 elhagyható, így a prediktív modell alakja N ŷ(t + k t) = g i u(t + k i t) = H(z 1 )u(t + k t) i=1 Kapcsolat az impulzusválasz függvénnyel h i = g i g i 1, g i = i j=1 Előny/hátrány: mint az impulzusválasz függvénynél Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 11 / 29 h j

12 Folyamat modell Modell-Prediktív Szabályozók Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 12 / 29

13 Folyamat modell Modell-Prediktív Szabályozók Átviteli függvény A(z 1 )y(t) = B(z 1 )u(t) A(z 1 ) = 1 + a 1 z 1 + a 2 z a na z na B(z 1 ) = b 1 z 1 + b 2 z b nb z n b A prediktív modell alakja ŷ(t + k t) = B(z 1 ) A(z 1 u(t + k t) ) Előny: instabil rendszerekre is alkalmazható, és kevés paraméterrel leírható Hátrány: az A és B polinomok a priori ismerete szükséges Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 13 / 29

14 Zavarás modell Modell-Prediktív Szabályozók CARIMA (Controlled Auto-Regressive and Integrated Moving Average) n(t) = C(z 1 )e(t) D(z 1 ) véletlenszerű időpontban véletlen változás (pl. anyagminőség-változás) leírására Brown mozgás szerű zavarás leírására becslése ˆn(t + k t) = F k (z 1 )n(t) ARIMA (Auto-Regressive and Integrated Moving Average) DMC-nél használatos becslése ˆn(t + k t) = n(t) n(t) = e(t) 1 z 1 Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 14 / 29

15 Modell-Prediktív Szabályozók Szabad- és kötött válasz A bemeneti jelsorozat szétbontása két sorozatra Szabad bemenetek u f (t) Kötött bemenetek u c (t) u(t) = u f (t) + u c (t) u f (t j) = u(t j), j = 1, 2,... u f (t + j) = u(t 1), j = 0, 1, 2,... u c (t j) = 0, j = 1, 2,... u c (t + j) = u(t + j) u(t 1), j = 0, 1, 2,... A becsült kimenet is felbontható két részre Szabad kimenet y f (t): a becsült kimenet, ha a bemenet u f (t) Kötött kimenet y c (t): a becsült kimenet, ha a bemenet u c (t) Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 15 / 29

16 Modell-Prediktív Szabályozók Szabad- és kötött válasz Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 16 / 29

17 Célfüggvény Modell-Prediktív Szabályozók Célfüggvény Általában a cél, hogy a jövőbeli y kimenet egybeessen a w referenciával, ugyanakkor a szabályozó energiát büntessük Általános alak: N 2 N u J(N 1, N 2, N u ) = δ(j) [ŷ(t + j t) w(t + j)] 2 + λ(j) [ u(t + j 1)] 2 j=n 1 j=1 Paraméterek: N 1 - minimum predikciós horizont N 2 - maximum predikciós horizont N u - szabályozási horizont δ(j), λ(j) súlytényező, általános alakja δ(j) = α N2 j α (0, 1) - a jelenhez közelebbi hibákat büntetjük α > 1 - a későbbi hibákat büntetjük Korlátozások: beavatkozó jelek és deriváltjaik végesek u min u(t) u max, t du min u(t) u(t 1) du max, t y min y(t) y max, t Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 17 / 29

18 Modell-Prediktív Szabályozók Szabályozási algoritmus levezetése Szabályozási algoritmus levezetése Keresendő az az u(t + k t), amely minimalizálja J-t Ehhez a jövőbeli ŷ(t + k t) kimenetet kell kifejezni múltbeli bemenetek és kimenetek segítségével. Analitikus megoldás négyzetes célfüggvény, lineáris modell esetében, korlátozások nélkül lehetséges Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 18 / 29

19 Áttekintés Dinamikus Mátrix Szabályozás 1 Bevezetés 2 Modell-Prediktív Szabályozók 3 Dinamikus Mátrix Szabályozás Mérhető zavarások Szabályozási algoritmus 4 Esettanulmány - hőcserélő Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 19 / 29

20 Dinamikus Mátrix Szabályozás Egységugrás válasz függvény modell y(t) = g i u(t i) ŷ(t + k t) = = i=1 g i u(t + k i) + ˆn(t + k t) = i=1 k g i u(t + k i) + i=1 g i u(t + k i) + ˆn(t + k t) i=k+1 Konstans zavarást feltételezve ˆn(t + k t) = ˆn(t t) = y m (t) ŷ(t t) k ŷ(t + k t) = g i u(t + k i) + g i u(t + k i) + y m (t) i=1 g i u(t i) = i=k+1 k g i u(t + k i) + f (t + k) i=1 i=1 Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 20 / 29

21 Dinamikus Mátrix Szabályozás A rendszer f (t + k) szabad válasza f (t + k) = y m (t) + (g k+i g i ) u(t i) Aszimptotikusan stabil rendszer esetén valamely N után feltehető, hogy g k+i g i 0, i > N, ezért N f (t + k) = y m (t) + (g k+i g i ) u(t i) i=1 i=1 m (= N u ) szabályozási lépést feltételezve kiszámíthatók a predikciók a horizonton (k = 1,..., p) ŷ(t + 1 t) = g 1 u(t) + f (t + 1) ŷ(t + 2 t) = g 2 u(t) + g 1 u(t + 1) + f (t + 2). ŷ(t + p t). =. p i=p m+1 g i u(t + p i) + f (t + p) Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 21 / 29

22 Dinamikus Mátrix Szabályozás Mátrixba rendezve (dinamikus mátrix) az együtthatókat g g 2 g G =..... g m g m 1... g g p g p 1... g p m+1 A predikciós egyenletek mátrixos alakja ŷ = G u + f Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 22 / 29

23 Mérhető zavarások Dinamikus Mátrix Szabályozás Mérhető zavarások A mérhető zavarások rendszerbemenetként adhatók a predikciós egyenletekhez: ŷ d = D d + f d ŷ d - mérhető zavarás hatása a kimenetre D - hasonló mátrix, mint G d - zavarás megváltozásainak vektora f d - a kimenet zavarástól nem függő komponense Abban az esetben, ha mérhető és nem mérhető zavarások is vannak, a szabad válasz az alábbi alakban írható fel f = f u + D d + f d + f n f u - a bemenetre adott válasz D d - a mérhető zavarásra adott válasz f d - a nem mérhető zavarásra adott válasz f n - a folyamat aktuális állapotára adott válasz A predikciós egyenlet így ŷ = G u + f alakba írható Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 23 / 29

24 Dinamikus Mátrix Szabályozás Szabályozási algoritmus Szabályozási algoritmus Cél: a kimenet a lehető legközelebb kerüljön a referenciához, esetleg a bemenetbeli változások büntethetők A legkisebb négyzetes célfüggvény alakja, ha csak a jövőbeli hibát nimimalizáljuk... p J = [ŷ(t + j t) w(t + j)] 2 j=1...és ha a bemenetbeli változásokat is büntetjük p m J = [ŷ(t + j t) w(t + j)] 2 + λ [ u(t + j 1)] 2 j=1 Abban az esetben, ha nincs korlátozás (bemenet, vagy kimenet), az analitikus megoldás j=1 u = (G T G + λi ) 1 G T (w f ) Az u vektornak csak az első eleme van valójában ráadva a rendszerre Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 24 / 29

25 Dinamikus Mátrix Szabályozás Szabályozási algoritmus Szabályozási algoritmus - korlátozások A megoldást jelentősen bonyolítja Bemeneti és kimeneti korlátozások az alábbi alakban adhatók az optimalizációhoz N C yiŷ(t j + k t) + C j ui u(t + k i) + cj 0, j = 1,..., N c i=1 Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 25 / 29

26 Áttekintés Esettanulmány - hőcserélő 1 Bevezetés 2 Modell-Prediktív Szabályozók 3 Dinamikus Mátrix Szabályozás 4 Esettanulmány - hőcserélő Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 26 / 29

27 Vízmelegítő Esettanulmány - hőcserélő Hőcserélő rendszer víztartály ki- és befolyással kimeneti hőmérséklet mérése szabályozható gázégő Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 27 / 29

28 Esettanulmány - hőcserélő Folyamat modell - lépésválasz függvény Lépésválasz függvény kimérése Egységugrás bemenet (gázszelep) A hőmérséklet válasz rögzítése Aszimptotikusan stabil rendszer (konvergál a kimenet) Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 28 / 29

29 Esettanulmány - hőcserélő Matlab - dmc.m függvény Szintaxis: p=dmc(p) p - struktúra bemenetek p.sr - egységugrás válasz p.u - aktuális bemenet p.v - korábbi bemenetek p.g - dinamikus mátrix p.f - mátrix a szabad válasz kiszámításához p.k - DMC erősítés p.r - referencia bemenet p.p - predikciós horizont p.m - szabályozási horizon p.y - aktuális kimenet p.la - a bemeneteket súlyozó λ faktor kimenetek p.u - a következő lépésbeli bemenet p.f - frissített szabad válasz Magyar A. (Pannon Egyetem) Irányításelmélet 2010 november 29 / 29

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I Folytonos idejű rendszerek leírása az állapottérben Állapotvisszacsatolást alkalmazó szabályozási körök Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11. Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Gyártórendszerek irányítási struktúrái

Gyártórendszerek irányítási struktúrái GyRDin-10 p. 1/2 Gyártórendszerek Dinamikája Gyártórendszerek irányítási struktúrái Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos@scl.sztaki.hu GyRDin-10 p. 2/2 Tartalom

Részletesebben

Ipari kemencék PID irányítása

Ipari kemencék PID irányítása Ipari kemencék PID irányítása 1. A gyakorlat célja: Az ellenállással melegített ipari kemencék modelljének meghatározása. A Opelt PID tervezési módszer alkalmazása ipari kemencék irányítására. Az ipari

Részletesebben

Irányítástechnika 2. előadás

Irányítástechnika 2. előadás Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok

Részletesebben

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Dekonvolúció, Spike dekonvolúció. Konvolúciós föld model

Dekonvolúció, Spike dekonvolúció. Konvolúciós föld model Dekonvolúció, Spike dekonvolúció Konvolúciós föld model A szeizmikus hullám által átjárt teret szeretnénk modelezni A földet úgy képzeljük el, mint vízszintes rétegekből álló szűrő rendszert Bele engedünk

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el? Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer

Programozási módszertan. Függvények rekurzív megadása Oszd meg és uralkodj elv, helyettesítő módszer, rekurziós fa módszer, mester módszer PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek

Részletesebben

Rendszertan. Visszacsatolás és típusai, PID

Rendszertan. Visszacsatolás és típusai, PID Rendszertan Visszacsatolás és típusai, PID Hangos Katalin Számítástudomány Alkalmazása Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium MTA Számítástechnikai és Automatizálási Kutató Intézete

Részletesebben

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA XI. Előadás Robot manipulátorok III. Differenciális kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom A forgatási mátrix időbeli deriváltja A geometriai

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF -

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF - Márkus Zsolt markus.zsolt@qos.hu Tulajdonságok, jelleggörbék, stb. 1 A hatáslánc részegységekből épül fel, melyek megvalósítják a jelátvitelt. A jelátviteli sajátosságok jellemzésére (leírására) létrehozott

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Dinamikus rendszerek paramétereinek BAYES BECSLÉSE. Hangos Katalin VE Számítástudomány Alkalmazása Tanszék

Dinamikus rendszerek paramétereinek BAYES BECSLÉSE. Hangos Katalin VE Számítástudomány Alkalmazása Tanszék Dinamikus rendszerek paramétereinek BAYES BECSLÉSE Hangos Katalin VE Számítástudomány Alkalmazása Tanszék 1 Bayes-becslések 1. A véletlen Bayes féle fogalma A "véletlen" Bayes féle értelmezése a megfigyelést

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Elektromechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Dinamikus modellek felállítása mérnöki alapelvek segítségével IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20

Részletesebben

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák Tartalom Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák 215 1 Tervezési célok Szabályozó tervezés célja Stabilitás biztosítása

Részletesebben

RENDSZEREK ÉS IRÁNYÍTÁSUK A HÁZTARTÁSBAN EGY FŐZÉSI PÉLDÁN. Prof. Katalin Hangos. MTA SZTAKI Számítástechnikai és Automatizálási Kutatóintézet

RENDSZEREK ÉS IRÁNYÍTÁSUK A HÁZTARTÁSBAN EGY FŐZÉSI PÉLDÁN. Prof. Katalin Hangos. MTA SZTAKI Számítástechnikai és Automatizálási Kutatóintézet RENDSZEREK ÉS IRÁNYÍTÁSUK A HÁZTARTÁSBAN EGY FŐZÉSI PÉLDÁN Prof. Katalin Hangos MTA SZTAKI Számítástechnikai és Automatizálási Kutatóintézet A rendszer- és irányításelmélet az időbeli viselkedés tudománya,

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

Bevezetés a neurális számításokba Analóg processzortömbök,

Bevezetés a neurális számításokba Analóg processzortömbök, Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Szabályozás Irányítástechnika PE MIK MI BSc 1

Szabályozás Irányítástechnika PE MIK MI BSc 1 Szabályozás 2008.03.29. Irányítástechnika PE MIK MI BSc 1 Nyílt hatásláncú rendszerek Az irányító rendszer nem ellenőrzi a beavatkozás eredményét vezérlő rendszerek ahol w(s) bemenő változó / előírt érték

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel

Részletesebben

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM Kernel módszerek idősor előrejelzés Mérési útmutató Készítette: Engedy István (engedy@mit.bme.hu) Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki

Részletesebben

Atlas Copco. Hûtveszárítók. FX 1-16 50 Hz

Atlas Copco. Hûtveszárítók. FX 1-16 50 Hz Atlas Copco Hûtveszárítók FX 1-16 50 Hz Abszolút teljesítôképesség, teljes felelôsség Az Ön üzletének szívében az Atlas Copco minôségi sûrítettlevegôt szolgáltat a legjobb mûködési teljesítmény elérésére.

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Szerelési, üzemeltetési útmutató

Szerelési, üzemeltetési útmutató PULSER triak szabályzó egy- vagy kétfázisú elektromos fűtőelemek folyamatos teljesítmény szabályozására Szerelési, üzemeltetési útmutató ÁLTALÁNOS LEÍRÁS A PULSER egy-, vagy két-fázisú elektromos fűtőelemek

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

Panorámakép készítése

Panorámakép készítése Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

TxRail-USB Hőmérséklet távadó

TxRail-USB Hőmérséklet távadó TxRail-USB Hőmérséklet távadó Bevezetés TxRail-USB egy USB-n keresztül konfigurálható DIN sínre szerelhető hőmérséklet jeladó. Lehetővé teszi a bemenetek típusának kiválasztását és konfigurálását, méréstartomány

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

Jelátalakítók vagy érzékelők beépített kiértékelő elektronikával. Túlterhelésálló és hosszú időn át stabil a kerámia mérőcellának köszönhetően.

Jelátalakítók vagy érzékelők beépített kiértékelő elektronikával. Túlterhelésálló és hosszú időn át stabil a kerámia mérőcellának köszönhetően. Jelátalakítók vagy érzékelők beépített kiértékelő elektronikával. Túlterhelésálló és hosszú időn át stabil a kerámia mérőcellának köszönhetően. Mérési tartomány 600 barig. Opcionális adapterekkel választható

Részletesebben

DELTA VFD-E frekvenciaváltó kezelési utasítás

DELTA VFD-E frekvenciaváltó kezelési utasítás DELTA VFD-E frekvenciaváltó kezelési utasítás RUN indítás STOP / RESET leállítás/törlés ENTER menü kiválasztás, értékek mentése MODE kijelzett érték kiválasztása, visszalépés A frekvenciaváltó csatlakoztatása:

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

Megerősítéses tanulás 9. előadás

Megerősítéses tanulás 9. előadás Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Ideiglenes példatár az Intelligens rendszerek I. kurzus 1. zárthelyi dolgozatához

Ideiglenes példatár az Intelligens rendszerek I. kurzus 1. zárthelyi dolgozatához Ideiglenes példatár az Intelligens rendszerek I. kurzus 1. zárthelyi dolgozatához Gerzson Miklós 2015. december 8. 2 Tartalomjegyzék Bevezetés 5 1. Kötelező kérdések 7 1.1. Kötelező kérdések a Kalman-féle

Részletesebben

A rendszerbe foglalt reléprogram, 1954 óta. Szilárdtest relék optocsatolóval, bekapcsolás a feszültség nullátmeneténél vagy nem szinkronizált módon

A rendszerbe foglalt reléprogram, 1954 óta. Szilárdtest relék optocsatolóval, bekapcsolás a feszültség nullátmeneténél vagy nem szinkronizált módon A rendszerbe foglalt reléprogram, 1954 óta 77-es sorozat Elektronikus (SSR) relék Szilárdtest relék optocsatolóval, bekapcsolás a feszültség nullátmeneténél vagy nem szinkronizált módon 77-es sorozat

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel

1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel 1.A matematikai mintavételezés T mintavételi idővel felfogható modulációs eljárásnak, ahol a hordozó jel eltolt Dirac impulzusokból áll. Adja meg a hordozó jel I (s) T Laplace-transzformáltját és annak

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 146/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

feszültség konstans áram konstans

feszültség konstans áram konstans Szélessávú Hírközlés és Villamosságtan Tanszék Űrtechnológia laboratórium Szabó József Egyszerű feszültség és áramszabályozó Űrtechnológia a gyakorlatban Budapest, 2014. április 10. Űrtetechnológia a gyakorlatban

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x

Részletesebben

Részletes szakmai beszámoló

Részletes szakmai beszámoló Részletes szakmai beszámoló 1. Diszlokációk kollektív tulajdonságainak elméleti vizsgálata 1. 1 Belső feszültség eloszlásfüggvénye A diszlokációk kollektív tulajdonságainak megértéséhez igen fontos az

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 5 MGS5 modul Hibaterjedési feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

PILÓTANÉLKÜLI REPÜLŐGÉP REPÜLÉSSZABÁLYOZÓ RENDSZERÉNEK ELŐZETES MÉRETEZÉSE. Bevezetés. 1. Időtartománybeli szabályozótervezési módszerek

PILÓTANÉLKÜLI REPÜLŐGÉP REPÜLÉSSZABÁLYOZÓ RENDSZERÉNEK ELŐZETES MÉRETEZÉSE. Bevezetés. 1. Időtartománybeli szabályozótervezési módszerek Szabolcsi Róbert Szegedi Péter PILÓTANÉLÜLI REPÜLŐGÉP REPÜLÉSSZABÁLYOZÓ RENDSZERÉNE ELŐZETES MÉRETEZÉSE Bevezetés A cikkben a Szojka III pilótanélküli repülőgép [8] szakirodalomban rendelkezésre álló matematikai

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben