E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével."

Átírás

1 E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek közötti átmenetintenzitások. Globális egyensúlyi egyenletek egy sorbanállási hálózat alapján kapott Markov-lánc esetén: π j q ji = π i q ij, j S j S i S S: Állapottér (A sorbanállási hálózat összes állapotának halmaza) q ij : Átmenetintenzitás az i és j átmenetek között p i : Az i állapot stacionárius valószínűsége E.187

2 Szavakban: összes beérkezés az i állapotba = összes távozás az i állapotból az i állapotba való átmenetintenzitások összege = az i állapotból való átmenetintenzitások összege Egyszerűsített globális egyensúlyi egyenletek: i S : π j q ji π i q ij =0 j i j i πq =0 Vagy a generátormátrixszal: p: A stacionárius valószínűségek vektora (π 1,..., π n ) q ii = j i q ij E.188

3 Q: Generátormátrix q ij átmenetintenzitásokkal Példa: Zárt csillaghálózat µ 1 µ 2 Jobok száma K = 3 Kiszolgálási intenzitások: 1/µ 1 = 5 sec és 1/µ 2 = 2.5 sec (exp. eloszlás) Stratégia: FCFS A Markov-lánc állapottere: {(3, 0), (2, 1), (1, 2), (0, 3)} Állapot: (k 1, k 2 ) k 1 job az 1-es és k 2 job a 2-es csomópontnál E.189

4 Stacionárius valószínűségek: π(k 1, k 2 ) E.4 Markov-láncok Állapotátmenet diagram vagy átmenetdiagram: µ 1 µ 1 µ 1 3,0 2,1 1,2 0,3 µ 2 µ 2 µ 2 Globális egyensúlyi egyenletek (Markov-egyenletrendszer): π(3, 0)µ 1 = π(2, 1)µ 2, π(2, 1)(µ 1 + µ 2 )=π(3, 0)µ 1 + π(1, 2)µ 2, π(1, 2)(µ 1 + µ 2 )=π(2, 1)µ 1 + π(0, 3)µ 2, π(0, 3)µ 2 = π(1, 2)µ 1. E.190

5 Generátormátrix: E.4 Markov-láncok Q= µ 1 µ µ 2 (µ 1 + µ 2 ) µ µ 2 (µ 1 + µ 2 ) µ µ 2 µ 2 A stacionárius valószínűségek vektora: π =(π(3, 0),π(2, 1),π(1, 2),π(0, 3)) Generátormátrix µ 1 = 0.2 és µ 2 = 0.4 esetén: Q= E.191

6 A πq = 0 egyenletrendszer megoldásával kapjuk meg a stacionárius valószínűségeket: π(3, 0) = , π(2, 1) = , π(1, 2) = , π(0, 3) = A stacionárius valószínűségekből kapjuk a marginális valószínűségeket: π 1 (0) = π 2 (3) = π(0, 3) = , π 1 (1) = π 2 (2) = π(1, 2) = 0.133, π 1 (2) = π 2 (1) = π(2, 1) = , π 1 (3) = π 2 (0) = π(3, 0) = Kihasználtságok: ρ 1 =1 π 1 (0) = , ρ 2 =1 π 2 (0) = E.192

7 Áteresztőképesség: E.4 Markov-láncok λ = λ 1 = λ 2 = ρ 1 µ 1 = ρ 2 µ 2 = A jobok átlagos száma: K 1 = 3 k=1 kπ 1 (k) =2.2667, K 2 = 3 k=1 kπ 2 (k) = Átlagos válaszolási idők: T 1 = K 1 λ 1 = , T 2 = K 2 λ 2 = E.193

8 Példa: M/M/1 - rendszer: E.4 Markov-láncok Az alapul vett Markov-lánc állapottere: {0, 1, 2, 3, 4,... } Átmenetdiagram: λ λ λ λ λ n µ µ µ µ µ E.194

9 A stacionárius valószínűségek vektora: E.4 Markov-láncok π = (π 0, π 1, π 2, π 3, π 4,... ) λ µ Generátormátrix: λ λ 0 0 µ (λ + µ) λ 0 Q= 0 µ (λ + µ) λ 0 0 µ (λ + µ) Globális egyensúlyi egyenletek (Markov-egyenletrendszer): 0= π 0 λ + π 1 µ, 0= π k (λ + µ)+π k 1 λ + π k+1 µ, k 1 E.195

10 A π 1 és π 2 stacionárius valószínűségek: π 1 = λ µ π 0, π 2 = λ λ µ µ π 0 Általánosan: π k = ( ) λ k π 0 µ A normalizáló feltétel használatával: π 0 =1 λ µ E.196

11 ρ = λ/µ helyettesítéssel: E.4 Markov-láncok π 0 =1 ρ M/M/1 - rendszer stacionárius valószínűségei: π k =(1 ρ)ρ k M/M/1 - rendszer kihasználtsága: ρ =1 π 0 A jobok átlagos száma M/M/1 - rendszer esetén: K = ρ 1 ρ E.197

12 Zárt csillaghálózat E 2 -eloszlású kiszolgálási idejű egyik kiszolgálóval: µ 11 µ 12 µ 2 Jobok száma: K = 2 Kiszolgálási idők: Kiszolgáló 2: exp. eloszlás, µ 2 = 0.4 Kiszolgáló 1: E 2 -eloszlás,ahol a két fázis aránya µ 11 = µ 12 = 0.4 A hálózat állapotát megadja a csomópontokban lévő jobok száma és az 1-es csomópontban lévő job l = 0, 1, 2 fázisa: (k 1, l; k 2 ) A hálózat stacionárius valószínűsége: p(k 1, l; k 2 ) E.198

13 Átmenetdiagram: µ 11 µ 12 µ 11 µ 12 2,1;0 2,2;0 1,1;1 1,2;1 0,0;2 µ 2 µ 2 µ 2 Globális egyensúlyi egyenletek (Markov-egyenletrendszer): π(2, 1; 0)µ 11 = π(1, 1; 1)µ 2, π(2, 2; 0)µ 12 = π(2, 1; 0)µ 11 + π(1, 2; 1)µ 2, π(1, 1; 1)(µ 11 + µ 2 )=π(2, 2; 0)µ 12 + π(0, 0; 2)µ 2, π(1, 2; 1)(µ 12 + µ 2 )=π(1, 1; 1)µ 11, π(0, 0; 2)µ 2 = π(1, 2; 1)µ 12. E.199

14 Generátormátrix: Q= µ 11 µ µ 12 µ µ 2 0 (µ 11 + µ 2 ) µ µ 2 0 (µ 12 + µ 2 ) µ µ 2 0 µ 2 E.4 Markov-láncok Generátormátrix a kiszolgálási intenzitások értékeivel: Q= E.200

15 A πq = 0 megoldásával vagy a globális egyensúlyi egyenletekkel: π(2, 1; 0) = , π(2, 2; 0) = , π(1, 1; 1) = , π(1, 2; 1) = , π(0, 0; 2) = Marginális valószínűségek: π 1 (0) = π 2 (2) = π(0, 0; 2) = , π 1 (1) = π 2 (1) = π(1, 1; 1) + π(1, 2; 1) = , π 1 (2) = π 2 (0) = π(2, 1; 0) + π(2, 2; 0) = A marginális valószínűségek használatával az összes többi hatékonyságjellemző számolható. E.201

16 Példa: Egyszerű zárt sorbanállási hálózat: E.4 Markov-láncok µ 2 µ 1 µ 3 Jobok száma K = 2 Kiszolgálási idők: exp. el.,: µ 1 = 4/sec, µ 2 = 1/sec és µ 3 = 2/sec Stratégia: FCFS E.202

17 Útvonalvalószínűségek: p 12 = 0.4, p 13 = 0.6 p 21 = p 31 = 1 A Markov-lánc állapottere: {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)} Állapot: (k 1, k 2, k 3 ) k 1 job az 1-es csomópontban, k 2 job a 2-es csomópontban és k 3 job a 3-as csomópontban Stacionárius valószínűségek: π(k 1, k 2, k 3 ) E.203

18 Átmenetdiagram: 2, 0, 0 µ 3 p 31 µ 1 p 21 µ 3 p 31 µ 1 p 13 µ 2 p 21 µ 1 p 12 0, 0, 2 1, 0, 1 1, 1, 0 0, 2, 0 µ 1 p 13 µ 1 p 12 µ 3 p 31 µ 2 p 21 µ 2 p 21 µ 1 p 13 0, 1, 1 E.204

19 Globális egyensúlyi egyenletek: (1) π(2, 0, 0)(µ 1 p 12 + µ 1 p 13 )=π(1, 0, 1)µ 3 p 31 + π(1, 1, 0)µ 2 p 21, (2) π(0, 2, 0)µ 2 p 21 = π(1, 1, 0)µ 1 p 12, (3) π(0, 0, 2)µ 3 p 31 = π(1, 0, 1)µ 1 p 13, (4) π(1, 1, 0)(µ 2 p 21 + µ 1 p 13 + µ 1 p 12 )=π(0, 2, 0)µ 2 p 21 + π(2, 0, 0)µ 1 p 12 + π(0, 1, 1)µ 3 p 31, (5) π(1, 0, 1)(µ 3 p 31 + µ 1 p 12 + µ 1 p 13 )=π(0, 0, 2)µ 3 p 31 + π(0, 1, 1)µ 2 p 21 + π(2, 0, 0)µ 1 p 13, (6) π(0, 1, 1)(µ 3 p 31 + µ 2 p 21 )=π(1, 1, 0)µ 1 p 13 + π(1, 0, 1)µ 1 p 12. E.205

20 A Globális egyensúlyi egyenletek megoldása: E.4 Markov-láncok Iteratív módszer: Globális egyensúlyi egyenletek: πq = 0 Skalárral történő szorzás: πq = 0 π hozzáadása mindkét oldalhoz: πq + π = π Egységmátrix kiemelése : π(q + I) = π Iteráció: π (j+1) = π (j) (Q + I) megválasztása aszerint, hogy az iteráció konvergens legyen : = 1/max q ii vagy = 0.99/max q ii E.206

21 Példa: Csillaghálózat: Generátormátrix: Q = E.4 Markov-láncok Skalár : = 1 max q ii = = Invariáns mátrix: (Q +I) = E.207

22 A kezdeti vektor tetszőlegesen választható: π (0) =(π(3, 0),π(2, 1),π(1, 2),π(0, 3)) (0) Normalizáló feltétel: π(3, 0) + π(2, 1) + π(1, 2) + π(0, 3) = 1 A kezdeti vektor: π (0) =(0.65; 0.35; 0; 0) E.208

23 Iteration π(3, 0) π(2, 1) π(1, 2) π(0, 3) Pontos értékek: E.209

24 Az iteratív módszer mindig alkalmazható, de nagyon sok számolási időt és memóriát igényel Más módszerek (gyorsabbak és kisebb memóriaigényűek): Stacionárius módszerek: Hatvány módszer Jacobi-módszer Gauß-Seidel-módszer Többszintű módszer Tranziens módszerek: Uniformizálás π(3, 0) = ,π(2, 1) = ,π(1, 2) = ,π(0, 3) = E.210

25 A Globális egyensúlyi egyenletek tranziens megoldása: Globális egyensúlyi egyenletek: πq = 0 csak a stacionárius eloszlásra érvényesek A tranziens állapot esetén: dπ(t) dt = π(t)q, π(0) = (π 0 (0),π 1 (0),...) A tranziens esetben az "állapotba érkezés" és az "ebből az állapotból távozás" közötti különbség az állapot állapotvalószínűségéből származtatható. Megoldás nagyon nehéz (Uniformizálás!). E.211

26 Példa: Születési folyamat (pl. beérkezések egy sorbanállási halózatba): λ λ λ Generátormátrix: Q= λ λ λ λ λ λ E.212

27 Egyensúlyi egyenletek: d dt π 0(t) = λπ 0 (t), d dt π k(t) = λπ k (t)+λπ k 1 (t), k 1 Kezdeti feltételek: π k (0) = { 1 k =0 0 k 1 E.213

28 A születési folyamat állapotvalószínűsége (Poisson-folyamat, Poisson eloszlás): π k (t) = (λt)k k! e λt, k 0 Annak valószínűsége, hogy t idő alatt k születés történt (k job érkezett) Annak valószínűsége, hogy t idő alatt történt születés(beérkezés) P( T A > t ): π 0 (t) =e λt Két születés (beérkezés) közötti idő eloszlása: P( T A t ) = 1 - π 0 (t) = 1 - e -λt A beérkezési időközök exponenciális eloszlásúak!! E.214

29 1 Poisson eloszlás λ = Probabilities π 0 (t) π 1 (t) π 2 (t) π 3 (t) λ =0.5 π 4 (t) t E.215

30 Poisson eloszlás λ = 1 E.4 Markov-láncok π 0 (t) λ =1.0 Probabilities π 1 (t) π 2 (t) π 3 (t) π 4 (t) t E.216

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }. . Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi

Részletesebben

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Bemenet modellezése (III.), forgalommodellezés

Bemenet modellezése (III.), forgalommodellezés Bemenet modellezése (III.), forgalommodellezés Vidács Attila 2007. október 31. Hálózati szimulációs technikák, 2007/10/31 1 Modellválasztás A modellezés kedvez esetben leegyszer södik a megfelel eloszlás

Részletesebben

Rádiós hozzáférő hálózatok elemzése és méretezése analitikus módszerekkel Rákos Attila Nokia Siemens Networks

Rádiós hozzáférő hálózatok elemzése és méretezése analitikus módszerekkel Rákos Attila Nokia Siemens Networks Rádiós hozzáférő hálózatok elemzése és méretezése analitikus módszerekkel Rákos Attila Nokia Siemens Networks 1 Nokia Siemens Networks Rádiós hozzáférő hálózatok szerepe Biztosítják a felhasználóknak a

Részletesebben

G Alkalmazások G Alkalmazások

G Alkalmazások G Alkalmazások G Alkalmazások Terminálrendszer: 5 1 2 Szalag m Terminál 1 CPU 3 Lemez 4 Nyomtató G.360 Rendszerparaméterek: CPU: Processzorok száma: 3 Átlagos kiszolgálási idő: 0.5 sec Szalag: Átlagos kiszolgálási idő:

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Véletlen szám generálás

Véletlen szám generálás 2. elıadás Véletlen szám generálás LCG: (0 < m, 0

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

10. Exponenciális rendszerek

10. Exponenciális rendszerek 1 Exponenciális rendszerek 1 Egy boltba exponenciális időközökkel átlagosan percenként érkeznek a vevők két eladó, ndrás és éla, átlagosan 1 illetve 6 vevőt tud óránként kiszolgálni mennyiben egy vevő

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga B csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

4. Előadás: Sorbanállási modellek, I.

4. Előadás: Sorbanállási modellek, I. 4. Előadás: Sorbanállási modellek, I. Wayne L. Winston: Operációkutatás, módszerek és alkalmazások, Aula Kiadó, Budapest, 2003 könyvének 20. fejezete alapján... A sorbanállási elmélet alapfogalmai A sorbanállási

Részletesebben

HETEROGÉN MOBILHÁLÓZATOK, MOBIL BACKHAUL ÉS GERINC HÁLÓZAT GYAKORLAT

HETEROGÉN MOBILHÁLÓZATOK, MOBIL BACKHAUL ÉS GERINC HÁLÓZAT GYAKORLAT HETEROGÉN MOBILHÁLÓZATOK, MOBIL BACKHAUL ÉS GERINC HÁLÓZAT GYAKORLAT Mobil és vezeték nélküli hálózatok (BMEVIHIMA07) 2015. április 3., Budapest Jakó Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Markov modellek 2015.03.19.

Markov modellek 2015.03.19. Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

Proxy Cache szerverek hatékonyságának vizsgálata. Performance Modeling of Proxy Cache Servers

Proxy Cache szerverek hatékonyságának vizsgálata. Performance Modeling of Proxy Cache Servers Proxy Cache szerverek hatékonyságának vizsgálata Performance Modeling of Proxy Cache Servers Doktori (PhD) értekezés Bérczes Tamás Témavezető: Prof. Dr. Sztrik János Debreceni Egyetem Természettudományi

Részletesebben

WINPEPSY ALKALMAZÁSA SORBANÁLLÁSI MODELLEKNÉL

WINPEPSY ALKALMAZÁSA SORBANÁLLÁSI MODELLEKNÉL WINPEPSY ALKALMAZÁSA SORBANÁLLÁSI MODELLEKNÉL SOLVING QUEUEING MODELS BY THE HELP OF WINPEPSY Kuki Attila, kuki@math.klte.hu Sztrik János, jsztrik@math.klte.hu Debreceni Egyetem, Információ Technológia

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

1. Geometria a komplex számsíkon

1. Geometria a komplex számsíkon 1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

A sorbanállási elmélet alapjai

A sorbanállási elmélet alapjai A sorbanállási elmélet alapjai Dr. Sztrik János Debreceni Egyetem, Informatikai Kar Lektorálta: Dr. Bíró József MTA doktora, egyetemi tanár 2 Jelen jegyzetet feleségemnek ajánlom, aki nélkül ez a munka

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam 01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Debreceni Egyetem Informatika Kar. Call Centerek matematikai modellezése

Debreceni Egyetem Informatika Kar. Call Centerek matematikai modellezése Debreceni Egyetem Informatika Kar Call Centerek matematikai modellezése Diplomamunka Témavezető: Prof. Dr. Sztrik János Egyetemi tanár, az MTA doktora Készítette: Balla Anett Programtervező matematikus

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2011 tavasz

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2011 tavasz Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2011 tavasz Dátum Téma beadandó Feb 10Cs Konvolúció (normális, Cauchy,

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el? Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 9. el?adás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Szubkonvex becslések automorf L-függvényekre

Szubkonvex becslések automorf L-függvényekre Szubkonvex becslések automorf L-függvényekre és alkalmazásaik Harcos Gergely Rényi Alfréd Matematikai Kutatóintézet http://www.renyi.hu/ gharcos/ 2012. február 14. Magyar Tudományos Akadémia Áttekintés

Részletesebben

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok.

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Láttuk, hogy a Wiener-folyamat teljesíti az úgynevezett funkcionális centrális határeloszlástételt. Ez az eredmény durván szólva azt fejezi

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Dr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék

Dr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés, Termelési és szolgáltatási döntések elemzése egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés 17.Ismertesse az anyagszükséglet-tervezés input információit,

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103) Dr. Hartmann Miklós Tudnivalók Honlap: http://www.math.u-szeged.hu/~hartm Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli, feltétele a Lineáris algebra gyakorlat teljesítése.

Részletesebben

Szivattyú indítási folyamatok problémája több betáplálású távhőhálózatokban

Szivattyú indítási folyamatok problémája több betáplálású távhőhálózatokban Szivattyú indítási folyamatok problémája több betáplálású távhőhálózatokban Dr. Halász Gábor 1 Dr. Hős Csaba 2 1 Egyetemi tanár, halasz@hds.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) Hidrodinamikai

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Markov láncok. jegyzet február 18. Honnan hová lehet eljutni? Hány lépésben? Van-e stacionárius kezdeti eloszlás? Hány?

Markov láncok. jegyzet február 18. Honnan hová lehet eljutni? Hány lépésben? Van-e stacionárius kezdeti eloszlás? Hány? Markov láncok jegyzet 2009. február 18. 1. Bevezetés Tekintsünk egy megszámlálható sok csúcspontú, irányított gráfot úgy, hogy minden élre egy nemnegatív szám van írva, és minden csúcs kimen éleire írt

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév Valószínűségelmélet Pap Gyula Szegedi Tudományegyetem Szeged, 2016/2017 tanév, I. félév Pap Gyula (SZTE) Valószínűségelmélet 2016/2017 tanév, I. félév 1 / 125 Ajánlott irodalom: CSÖRGŐ SÁNDOR Fejezetek

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Hálózati folyamatok oszcillációinak vizsgálata

Hálózati folyamatok oszcillációinak vizsgálata Eötvös Loránd Tudományegyetem Természettudományi kar MSc szakdolgozat Hálózati folyamatok oszcillációinak vizsgálata Bodó Ágnes Alkalmazott matematikus MSc Témavezető: Besenyei Ádám adjunktus Alkalmazott

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Operációs rendszerek II. Folyamatok ütemezése

Operációs rendszerek II. Folyamatok ütemezése Folyamatok ütemezése Folyamatok modellezése az operációs rendszerekben Folyamatok állapotai alap állapotok futásra kész fut és várakozik felfüggesztett állapotok, jelentőségük Állapotátmeneti diagram Állapotátmenetek

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Termelés- és szolgáltatásmenedzsment

Termelés- és szolgáltatásmenedzsment Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Nevezetes diszkre t eloszlá sok

Nevezetes diszkre t eloszlá sok Nevezetes diszkre t eloszlá sok Szűk elméleti összefoglaló Binomiális eloszlás: Jelölés: X~B(n, p) vagy X B(n, p) Tipikus használata: Egy kétféle kimenetelű (valami beteljesül vagy sem) kísérletet elvégzünk

Részletesebben

Problémamegoldás kereséssel. Mesterséges intelligencia március 7.

Problémamegoldás kereséssel. Mesterséges intelligencia március 7. Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Témakörök az osztályozó vizsgához. Matematika

Témakörök az osztályozó vizsgához. Matematika Témakörök az osztályozó vizsgához Idegenforgalmi és Informatikus osztályok (9.A/9.B) 1. A halmazok, számhalmazok, ponthalmazok 2. Függvények 3. A számelmélet elemei. Hatványozás. 0 és negatív kitevőjű

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J. Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Lineáris algebrai alapok

Lineáris algebrai alapok Lineáris algebrai alapok Will 2010 június 16 Vektorterek, mátrixok, lineáris egyenletrendszerek A lineáris programozási feladat, szimplex algoritmus Vektorterek Jellemzés: Vektorok tulajdonságai Két vektor

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS,

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

tudjuk-e osztani a Markov-lánc állapotterét annak alapján, hogy mely állapotból

tudjuk-e osztani a Markov-lánc állapotterét annak alapján, hogy mely állapotból Diszkrét idejű Markov-láncok vizsgálata. Tekintsünk egy diszkrét idejű X 0,X 1,... Markov-láncot P(j,k) = P(X n+1 = E k X n = j), n = 1, 2,..., átmenetvalószínűségekkel egy (Ω, A, P) valószínűségi mezőn,

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése

Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése Villamos autókból álló taxi flotta számára létesítendő töltőállomások modellezése 62. Vándorgyűlés, konferencia és kiállítás Siófok, 2015. 09. 16-18. Farkas Csaba egyetemi tanársegéd Dr. Dán András professor

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

DSL hozzáférési hálózatokban alkalmazott csomagütemezôk sorbanállási modellezése és analízise

DSL hozzáférési hálózatokban alkalmazott csomagütemezôk sorbanállási modellezése és analízise DSL hozzáférési hálózatokban alkalmazott csomagütemezôk sorbanállási modellezése és analízise KÔRÖSI ATTILA, SZÉKELY BALÁZS BME Matematikai Intézet, Sztohasztika Tanszék, {akorosi, szbalazs}@math.bme.hu

Részletesebben

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

Informatikai rendszerek modellezése Dr. Sztrik, János

Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Debreceni Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Nemzeti Fejlesztési Ügynökség

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei A MATLAB alapjai Atomerőművek üzemtanának fizikai alapjai - 2016. 03. 04. Papp Ildikó Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit - Változók listásása >>

Részletesebben