A várható érték vizsgálata u és t statisztika segítségével

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A várható érték vizsgálata u és t statisztika segítségével"

Átírás

1 A várható érték vizgálata u é t tatiztika egítégével Feltételezzük hogy ormáli elozláú alapokaágból vett véletle mita/miták alapjá vizgáljuk hogy az imeretle várható érték milye feltételezett értékel egyel elre rögzített valózíéggel, illetve egy adott (elre megválaztott) értékkel milye valózíéggel tekithet egyelek. A ormáli elozlá feltételezée ellerizhet tatiztikai próbákkal. Máik út közpoti vagy cetráli határelozlá tételé alapzik. Ez kimodja, ha elem véletle mitákat vezük egy M várható érték, zóráú okaágból, - az elozlára voatkozóa emmit em tételezük fel, - akkor a miták zámtai átlaga közelítleg ormáli elozláú ugyaazzal az M várható értékkel, é / () / zóráal. Ez tehát azt jeleti kié leegyzerítve hogy eleged agy elemzámú mita (például 0) eeté a miták zámtai átlagáak elozláa közelítleg ormáli lez. Az (x M) valózíégi változó 0 várható érték, zóráa pedig / () /. Mid az u-, mid a t-, tezt lehet egymitá é kétmitá. Ha egymitá, akkor egy valózíégi változó várható értékére voatkozó feltétételezét ellerzük, ha kétmitá, akkor valózíégi változó várható értékeiek egyezéét ellerizzük. A hipotézivizgálat elvégzée a ull-hipotézie kívül függ az ellehipotézitl i. A ull-hipotézi voatkozzo pl. egy zámérték é egy imeretle paraméter egyelégére: H 0 : M(α) a. Ha az ellehipotézi cupá a ull-hipotézi tagadáa, azaz H : M(α) a Ez azt jeleti hogy midegy hogy a várható érték kiebb vagy agyobb mit a. Ezért p zigifikacia-zitet úgy kell értelmezi hogy a változó elozláfüggvéyéek midkét végébl leváguk p/-ek megfelel területet, é az így kapott határokat jelöl kritiku értékkel kell özehaolítai a zámított próbatatiztikát. Ez az u. kétoldali próba. Ha az ellehipotézi M(ε) > a alakú, akkor a ullhipotézit cak akkor kell elvetük, ha a próbatatiztika a lerögzített kritiku értékél agyobb zám. Ezért ekkor az elozláfüggvéyek cak egyik oldalá kell kijelöli a kritiku értéket, p tehát az egyik oldalo levágott terület mértéke. Ez ú. egyoldali próba. Ha az ellehipotézi M(ε) < a Akkor az elbb elmodottak értelemzere megfordítva továbbra i érvéyeek. A megbízhatóági zit mide eetbe p. Egymitá u-próba

2 Imert elméleti zóráú ormáli elozláú okaágból vett elem mita átlaga alapjá akarjuk a várható értékre voatkozó ullhipotéziüket ellerizi, azaz az M várható értékre feltételezzük hogy egyel a 0 -al. Tehát Illetve Ha H 0 igaz, akkor az H 0 : M a 0 H 0 :a 0 - M 0. u x a 0 Statiztika, mit a tatiztikai mitából képzett valózíégi változó ormáli elozláú 0 várható értékkel é zóráal. Ha az ellehipotézi a H : M a 0, akkor kétoldali póbáról va zó, ellekez eetbe egyoldali próbáról bezélük. Ha a zámolt u érték a agyobb pozitív, vagy kiebb egatív zám aál a zámál ami a ormálelozlá régfüggvéyébl adott p zigifikacia-zit ( p megbízhatóági zit) mellett leolvaható akkor a ullhipotézit elvetjük., azaz ha akkor H 0 -t hamiak tekitjük. u > u krit Például egy folyóvízbe az ólomkocetrációt okzor megmérve,0 µg/l-ek találták, é ok (elvileg végtele) mérébl imert hogy 0,04 µg/l. Adott idbe 64 db. mitát véve é azokat megelemezve az ólomkocetrációt,985 µg/l-ek találjuk. Ellerizzük a hipotézit hogy az ólomtartalom várható értéke,0 µg/l! A várható érték tehát,0 µg/l, é mivel az ellehipotéziük H : M a 0, kétoldali próbát kell végezi. Az u érték: pedig 3,000. Az 5%-o zigifikaciazithez tarozó (p/ 0,05) kritiku érték pedig,96. Eek alapjá a ullhipotézit el kell veti! Mi lee az eredméy, ha a. a zórá em 0,04 haem 0,08 lee? b. kétoldali próba helyett egyoldali próbát alkalmazák, azaz a ulhipotézit a H : M( x ) < a 0 ellehipotéziel zembe vizgálák? c. a zigifikaciazitet (kétoldali póbáál) %-ra, azaz 0,0-re cökketeék?

3 Kétmitá u-próba Két okaág várható értékéek egyezéére voatkozó hipotézit akaruk ellerizi. Legye ξé η a valózíégi változó x é y a ξ-re é η-re vett é m elem miták aritmetikai középértékei, é a valódi imert zóráégyzet. A H 0 : M(ξ) M(η) ullhipotézit a ξ-re é η-re vett é m elem miták alapjá kívájuk ellerizi. A próbatatiztika az alábbi: u x y + m Ha H 0 igaz, akkor u elozláa N(0,) é adott ε-hoz a H : M(ξ) M(η) ellehipotézi mellet a kritiku tartomáy: / X k { u - u ε vagy u u ε } ε zigifikaciazite (kétoldali próba) Egymitá t-próba Ha a várható érték vizgálatáál em imert az elméleti zórá, akkor az alábbiak zerit kell eljári: Legye ξ ormáli elozláú változó, vegyük elem mitát é becüljük a zórát a korrigált tapaztalati zóráal (). Legye a várható érték M. ekkor a H 0 : M(ξ) a 0 ullhipotézi vizgálatára kotruáljuk meg az alábbi tatiztikát: t x a Ha a ullhipotézi igaz, akkor a t - tatiztika elozláa - zabadági fokú Studet elozlát követ. Ha az ellehipotézi az M(ξ) a 0, azaz midegy hogy a várható érték kiebb vagy agyobb-e mit az elírt érték akkor u. kétoldali próbát kell végezi, eek kritiku tartomáya: X k { t t ε vagy t t ε }. Adott ε zigifikaciazithez é zabadági fokhoz tartozó t ε kritiku értéket kiválaztva, ha a t - tatiztika a { -t ε, t ε } tartomáyo kívül eik akkor a ullhipotézit elvetjük. 0

4 Ha az ellehipotézi az M(ξ) > a 0, vagy az M(ξ) < a 0, akkor cak az az eet jeleti a ullpipotézi elvetéét ha t a kritiku értékél agyobb pozitív, vagy az elletettjéél kiebb egatív zám (egyoldali próbák). Egy cellulózüzembe 9 mitát vezek a zulfitlúgból, é megmérték a lúgoágát. Az alábbi lúgoági zámokat kapták:,7;,; 0,9;,4;,3;,0;,; 0,7;,6;. A techológiai elírá,-e lúgoági zámot határoz meg. Modhatjuk-e a 9 elem mita alapjá hogy a lúgoági zám megfelel az elíráak? Kijeletéüket 95%-o megbízhatóági zite kell megtei. Mivel a zórá imeretle ezt i a mitából kell becüli. Kétmitá t-próba é Welch-próba Ha em imerjük a zóráokat, é a feladat két valózíégi változó várható értéke egyezééek a vizgálata, a t próbát cak akkor alkalmazhatjuk, ha feltételezhetjük hogy a változó imeretle zóráa megegyezik. Ezt az F-próbával vizgálhatjuk. Ha a zóráok em egyezek meg a t-próba helyett a Welch próbával vizgálhatjuk a várható értékek egyezéére voatkozó hipotézit. Legye ξ é η ormáli elozláú függetle valózíégi változó zóráal, é vizgáljuk meg a H 0 M(ξ) M(η) ullhipotézit, a ξ-ra vett elem, é az η-ra vett elem miták alapjá. Jelöljük a ξ-re vett mita átlagát x -el, az η-ra vett mita átlagát y -al. Ha a ullhipotézi igaz, akkor a x y t / + / m valózíégi változó + m paraméter Studet elozlát követ, ahol a külöbég tadard deviációja, ( ) + ( m ) + m Az elbbi képleteket özevova é átalakítva az alábbi kifejezét kapjuk: t + m ( ) x y + ( m ) m( + m ) + m / Ha az ellehipotézi H : M(ξ) M(η), akkor t + m > t ε eeté aullhipotézit elvetjük. t ε az ε zigifikaciazithez é + zabadági fokhoz tartozó kritiku érték. Ha az ellehipotézi H : M(ξ) > M(η), akkor egyoldali próbáról va zó, é a ullhipotézit t ε < t + m eetbe kell elveti.

5 Welch-próba Ha ξ é η függetle ormáli elozláú valózíégi változók, é zórááak egyezéét em tételezhetjük fel, illetve az F-próba zerit, akkor a H 0 : M(ξ) M(η) ullhipotézi vizgálatára a kétmitá t-próba em alkalmazható. A kérdé eldötéére Welch az alábbi tatiztikát ajálja: x x t f / + m ahol x, illetve x a ξ-ra vett elem é η-ra vett m elem miták átlaga, é a ξ é η tapaztalati zóráégyzetei. A t f tatiztika közelítleg Studet elozlát követ f zabadági fokkal, ha H 0 igaz. F értéke az alábbi kifejezéel határozható meg: ahol f c ( c) + m m + m c Így ha f meghatározá utá a t elozlá táblázatából a megfelel zigifikaciazithez tartozó kritiku értékek leolvahatók. A próba hazálata azoo a t-próbáéval. Kofidecia itervallum kijelölée Az eddigiekbl már tudjuk hogy a zámtai átlag a várható érték becléére zolgálóm tatiztika, a zórát pedig a korrigált tapaztalati zóráégyzettel becülhetjük meg. Ezek azoba em modaak emmit em a becléek bizoytalaágáról, mert ezek u. potbecléek. Az itervallumbeclé iformációt ad arra voatkozóa i, hogy az adott próbatatiztika a valódi érték milye köryezetébe kell hogy ee az adott valózíéggel. Az ezzel kapcolato eljárá a kofidecia (vagy megbízhatóági) itervallum kijelölée. A kofidecia itervallum az a tartomáy ahová a valódi értékek eie kell. Kofidecia itervallumot mid az u-, mid a t-tatiztika alkalmazáával kijelölhetük. Imert zóráú, ormáli elozláú okaágból vett mita eeté ugyai az u-tatiztika kifejezéébl kiidulva az alábbi képlethez jutuk: azaz X a 0 u a0 X ± u ε ε

6 Az utóbbi egyelet zerit a okaág várható értéke a mitaátlag u ugarú köryezetébe kell hogy ee, ε zigifikaciazittel, azaz -ε megbízhatóággal. Ha a okaág zóráa imeretle, é azt i a mita alapjá becüljük, akkor az egymitá t- tatiztika képletébl kell kiiduluk a kofidecia itervallum kijelölééél: azaz X a t 0, ε a X ± t S S 0, vagyi a okaág várható értéke - ε megbízhatóági zite a mitaátlag köryezetébe kel hogy ee. ± t S Az imételt méréekbl zármazó eredméy korrekt megadááak módja az alábbi: Legye a méred változó x, mérjük meg -zer, zámítuk ki a zámtai átlagot ( x ) é a tadard deviációt ()! Ekkor x ± t(, ε ) ahol t (-,ε) az ε zigifikaciazithez é - zabadági fokhoz tartozó kritiku érték. (Termézetee midig kétoldali próbáról va zó!)

2. gyakorlat 2. Mérési adatok feldolgozása, mérési eredmény megadása. 2.1. Matematikai statisztikai alapismeretek (kiegészítés)

2. gyakorlat 2. Mérési adatok feldolgozása, mérési eredmény megadása. 2.1. Matematikai statisztikai alapismeretek (kiegészítés) . gyakorlat. Méréi adatok feldolgozáa méréi eredméy megadáa... Matematikai tatiztikai alapimeretek (kiegézíté) A matematikai tatiztika tárgya az hogy a tapaztalati adatokból következtee a telje okaág vagy

Részletesebben

ξ i = i-ik mérés valószínségi változója

ξ i = i-ik mérés valószínségi változója EGYENESILLESZTÉS: A LEGKISEBB NÉGYZETEK MÓDSZERE Kíérleteket elvégeztük. Dolgozzuk fel az adatokat! Cél: mért változók (T, p, I, U ) között kapcolat felderítée. 1. zóródá dagram {x, y } ábra. kvattatív

Részletesebben

Mérések, hibák. 11. mérés. 1. Bevezető

Mérések, hibák. 11. mérés. 1. Bevezető 11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Paraméteres eljárások, normalitásvizsgálat, t-eloszlás, t-próbák. Statisztika I., 2. alkalom

Paraméteres eljárások, normalitásvizsgálat, t-eloszlás, t-próbák. Statisztika I., 2. alkalom Paraméere eljáráok, normaliávizgála, -elozlá, -próbák Saizika I.,. alkalom Paraméere eljáráok Becülik a populáció egy paraméeré Alkalmazáuknak zámo feléele van (paraméerek é a válozó elozláa Cak normál

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

5. gyakorlat Konfidencia intervallum számolás

5. gyakorlat Konfidencia intervallum számolás 5. gykorlt Kofdec tervllum zámolá. Feldt Cél: Normál elozlá gyor áttektée. Az IQ tezteket úgy állítják öze, hogy tezt eredméye éeége belül ormál elozlát kövee 00 ot átlggl é 5 ot zórál. A éeég háy zázlék

Részletesebben

Független komponens analízis

Független komponens analízis Elektroiku verzió. Az eredeti cikk az ElektroNET (ISSN: 9-705X) 00 évf. 3 zám, 0 oldalá jelet meg. Függetle kompoe aalízi A függetle kompoe aalízi (Idepedet Compoet Aalyi, ICA) egy vizoylag új jelfeldolgozái

Részletesebben

5. gyakorlat Konfidencia intervallum számolás

5. gyakorlat Konfidencia intervallum számolás 5. gykorlt Kofideci itervllum zámolá. Feldt Cél: Normál elozlá gyor áttekitée. Az IQ tezteket úgy állítják öze, hogy tezt eredméye éeége belül ormáli elozlát kövee 00 ot átlggl é 5 ot zórál. A éeég háy

Részletesebben

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára Zárthely dolgozat 04 B.... GEVEE037B tárgy hallgató zámára Név, Neptu kód., Néháy oro rövd léyegre törő válazokat adjo az alább kérdéekre! (5pot) a) Számítógépe mérőredzerek elépítée (rajz) (33.o.) b)

Részletesebben

STATISZTIKA. Terjedelem. Forgalom terjedelem. R=MAX(adatok) MIN(adatok) kvartilis eltérés : Qe

STATISZTIKA. Terjedelem. Forgalom terjedelem. R=MAX(adatok) MIN(adatok) kvartilis eltérés : Qe Terjedelem STATISZTIKA 6. gyakorlat Szóródá mutatók A zóródá terjedelme a tatztka or legagyobb é legkebb eleme között k külöbég. R ma m ggvéyek Függvéykategóra: Statztka RMAX(adatok) MI(adatok) Forgalom

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma

Részletesebben

6. MÉRÉS ASZINKRON GÉPEK

6. MÉRÉS ASZINKRON GÉPEK 6. MÉRÉS ASZINKRON GÉPEK A techikai fejlettég mai zívoalá az azikro motor a legelterjedtebb villamo gép, amely a villamo eergiából mechaikai eergiát (forgó mozgát) állít elő. Térhódítáát a háromfáziú váltakozó

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

É Ö É É Ú ü É Ü É ü Ü ü

É Ö É É Ú ü É Ü É ü Ü ü É Ö É É Ú ü É Ü É ü Ü ü ü É ü ü ü ü Ü ü Ü Ü ü Ü ü ü ü ü ü ű ű ü ü ű ü ü ü ü ü ü Ü ü ű Ö ü ü Ö ű ü Ö ü ü ü Ö ü ü Ö ü ü Ö ü Öü Ú Ö ü ü Ö Ö ű ü ü ű ü ü Ö ü É ü ü ü É ű ü ü ü ü ü Ö ü ű ü Ö ü ü Ö ű ű ü ü ü

Részletesebben

STATISZTIKA. H 0 : Kefir zsírtartalma 3% hektolitertömege 80 kg. u = = = = Tesztelhetjük, hogy a valósz. konfidencia intervallum nagyságát t is.

STATISZTIKA. H 0 : Kefir zsírtartalma 3% hektolitertömege 80 kg. u = = = = Tesztelhetjük, hogy a valósz. konfidencia intervallum nagyságát t is. Egymiá u-róba STATISZTIKA 0. Előad adá Köéérék-öehaolíó eek Teelhejük, hogy a való íűégi váloók éréke megegyeik-e e egy kokré érékkel. Megválahajuk a kofidecia iervallum agyágá i. H 0 : µ µ 0 Feléel: el:

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

fizikai-kémiai mérések kiértékelése (jegyzkönyv elkészítése) mérési eredmények pontossága hibaszámítás ( közvetlen elvi segítség)

fizikai-kémiai mérések kiértékelése (jegyzkönyv elkészítése) mérési eredmények pontossága hibaszámítás ( közvetlen elvi segítség) BEVEZEÉS Eladá célja: fzka-kéa éréek kértékelée jegyzkönyv elkézítée éré eredények pontoága hbazáítá közvetlen elv egítég éré technkák egerée alapvet fzka ennyégek pektrozkópa éréek elektrokéa éréek Ma

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Statisztika gyakorló feladatok

Statisztika gyakorló feladatok . Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.

Részletesebben

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással Gyengeavak izociáció állanójának meghatározáa potenciometriá titráláal 1. Bevezeté a) A titrálái görbe egyenlete Egy egybáziú A gyengeavat titrálva NaO mérőolattal a titrálá bármely pontjában teljeül az

Részletesebben

A rekurzív módszer Erdős Gábor, Nagykanizsa

A rekurzív módszer Erdős Gábor, Nagykanizsa Maga zitű matematikai tehetéggodozá A rekurzív módzer Erdő Gábor, Nagykaiza Gyakra találkozuk olya feladatokkal, amelyekbe agy zámok zerepelek: pot, zámkártya, tb. Az ilye eetekbe kézefekvő ötlet, hogy

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk Egy faktor zernt NOV Nevével ellentétben nem zóráok, hanem átlagok özehaonlítáára zolgál Több független mntánk van, elemzámuk,...,,, r y,...,, y, y,..., yr;,, r H : r NOV. élda (Box-Hunter-Hunter: Stattc

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü ü ű ü ű ü ü ü ü Á ü ü ű ű ü ü ü Á ű ü ü ü ű Ü É É Á Á Á Á É Á Á Ő É É É Á É Á É Á É Á ű É É Á Á É É É Á É Á É Á É Á Á ü ű ű ü ü ü ü ü üü ü ü ü ü ü ü ű ü ü ű ü ü ü ü ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ü ű ü

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet) oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a

Részletesebben

Stabilitás. Input / output rendszerek

Stabilitás. Input / output rendszerek Stabilitá Iput / output redzerek 006.09.4. Stabilitá - bevezeté egyzerűített zemlélet példa zavará utá a magára hagyott redzer vizatér a yugalmi állapotába kvázitacioáriu állapotba kerül végtelebe tart

Részletesebben

Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é é é é ű é é é é é é é é Á é é é é é ú ú é é é é é é é ú é é é é é é é é é é é ő é é é é é é é é ű é

Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é é é é ű é é é é é é é é Á é é é é é ú ú é é é é é é é ú é é é é é é é é é é é ő é é é é é é é é ű é é é é Í Ó é é ü ő é é é ű ő ő ű é ő Í Ó ő ü é ő é ü é ő é é é é é é ú é ú Í Á é é é é é ű é é é é é é ú é ő é é é é ú é é é é é é é é é é é é é ő é é ő Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é

Részletesebben

ö ű é é é é é é ü é é é é ű é é ü é é é é é ó ó é Í é í é é é é ó ö é ö ö ö ó é é í é é é é Ő é é é ü ü é é é ö ö ö é ü é é í é ó ü é é ü é ó é ó ó é

ö ű é é é é é é ü é é é é ű é é ü é é é é é ó ó é Í é í é é é é ó ö é ö ö ö ó é é í é é é é Ő é é é ü ü é é é ö ö ö é ü é é í é ó ü é é ü é ó é ó ó é ö é ü ö ö Ö ú é ü ü é é é ó é é é é é ó é é Ö ö é é ó é é ó é é í é é ö ó ó ó ö ö ü é é ü é í ü é ö í é é é é é ü é ó é ü ö í í ó í ü Í é é é ü é é é ü é é ü ö ö ó ó é é í é é é é é é é Ö í ó é í ö é é

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

É ű ű ú ú ú Ü ú Ö ű ü ü ü

É ű ű ú ú ú Ü ú Ö ű ü ü ü ű ű É ű ű ú ú ú Ü ú Ö ű ü ü ü Ü Ö ü ú ű ű ü ű ú Ú Ú ú ü ú ú ű ú ú ú ű ú ű ú ű ű ű ű ü Ü ú ú ű ü ű ü ű ű Ü É ü ú ű ü ú ü É Ő ű ü Ü ü ü ü ü ű Ü Ü ű ü Ü ü É ü Ü É Í É Ü Ö Ó Ö ú Ö Ú Ú Ü ú ú ú Ü ű ű ü ÉÉ ű

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v.

Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v. Középzinű éreégi feladaor Fizika Elő réz 1. Melyik ebeég-idő grafikon alapján kézül el az ado ú-idő grafikon? v v v v A B C D m 2. A gokar gyoruláa álló helyzeből12. Melyik állíá helye? m A) 1 ala12 a

Részletesebben

9. GYAKORLAT STATISZTIKAI PRÓBÁK SPSS-BEN FELADATOK

9. GYAKORLAT STATISZTIKAI PRÓBÁK SPSS-BEN FELADATOK 9. GYAKORLAT STATISZTIKAI PRÓBÁK SPSS-BE FELADATOK A feladatokhoz mentük aját gépünkre a példa adatokat tartalmazó fájlokat a tanzéki honlapról: www.hd.bme.hu/mota/m/p1.av www.hd.bme.hu/mota/m/p2.av www.hd.bme.hu/mota/m/p3.av

Részletesebben

ö é ü ö é é ü é í ü é é ü é é é é é é ö é é é í é ö é ö ö ö é ü ü é é é é é é ü é í í é é ü ö é é é é é ü é é é ú ú ö é Ó é ü é ü ü é é ö é Ö é ö é é

ö é ü ö é é ü é í ü é é ü é é é é é é ö é é é í é ö é ö ö ö é ü ü é é é é é é ü é í í é é ü ö é é é é é ü é é é ú ú ö é Ó é ü é ü ü é é ö é Ö é ö é é Á Ö É Ö Á É Ó Ü É ö í ü é é ö é Ö é ö é é é é é é ú ö é ö í é é é ü é í ö ű ö é í ú ö Á é é é é ö é é é ö é é í é é é ö é é ü é íé é ü é í é í é é é é é ű ú é ü ú é é é ö ö ű é é é é ö é é é é ö é ü ö

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK MIKOLCI EGYETEM Gazdaágtudoá Kar Üzlt Iorácógazdálodá é Módzrta Itézt Üzlt tatzta é Előrlzé Tazé TATIZTIKAI KÉPLETGYŰJTEMÉNY É TÁLÁZATOK (Dolgozatíráál, zgá ca gé bgzé élül hazálható!). VIZONYZÁMOK, KÖZÉPÉRTÉKEK-ZÓRÓDÁ

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Készítette a Meracus Consulting a MEME megbízásából. Budapest, 2012. március 30.

Készítette a Meracus Consulting a MEME megbízásából. Budapest, 2012. március 30. A Magyar Elektroiku Műorzolgáltatók Egyeülete (MEME) tagjaiak iterete elérhető, lekérhető médiazolgáltatáaiak elemzée a kikorúak védelméek zempotjából Kézítette a Meracu Coultig a MEME megbízáából Budapet,

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű

ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű ű Ö É ű É Ö ű ű ű ű ű ű ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű Ú Ú Ú Ü É É É É ű É Ú É ű É Ó Ö É É ű ű ű É ű Ö Ö ű Ö Ú ű ű ű Ú ű ű ű Ö ű ű ű É ű ű ű Ó Ü É É Ú Ú Ü Ü Ö Ó ű Ü Ü ű ű É Ó Ó ű ű Ü Ö Ó Ö Ü Ü ű

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Ú Ú Ü Ü ű ű ű É Ú É ű

Ú Ú Ü Ü ű ű ű É Ú É ű É Ó ű ű Ö Ú Ú Ü Ü ű ű ű É Ú É ű É ű ű ű Ü ű É ű Ű Ö ű ű ű Ú Ú É É Ó Ó Ú ű ű É Ú É Ü Ü Ú ű Ú Ó É Ü ű É ű ű ű Ö ű ű ű Ö Ö Ú ű Ü Ú Ö ű Ü ű Ü ű ű Ü Ö ű ű ű Ú Ü Ú Ó ű ű É É ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű ű

Részletesebben

Ó Ó ú ú ú ú ú É ú

Ó Ó ú ú ú ú ú É ú É Ö É ű ú É Ó É ú ú ú Ó Ó ú ú ú ú ú É ú Ó Ó ú É ú É ú Ó Ö É Ó Ó ú É ú Ö Ó Ó ú ú É É É ú Ó Ó É ú ú ú ú ú ú ú ú ú ú É Ú É Ó Ó ú ú Ó Ó Ö Ö É É É ú É É ú ú É É Ó Ó É Ű ú É Ó Ó Ű Ú ú ú É Ú Ú É Ú Ó Ó Ó É É É

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

Ó Ó É ü É ü ü

Ó Ó É ü É ü ü É Ó É Ú ü ű ú ú ü ü ü Ó Ó É ü É ü ü Ó ü ü ü É ü ü Ó É É ü ü ü ü ü ü ü ü ü ü ü ü ü Ó Ó ü ü ü ü ü ü ü É ü ü É ü ü ü ü ü ü Ó ü ü ü ü ü ü ü ü É Ó ü ü É Ó Ó ü ü ü ü ü É ü ü ü É ü ü ü ü ü Ó Ó ú ü ü ü ü ü ü Ó

Részletesebben

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest Lektorálta: Zukál Edre Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések

Részletesebben

Idő-ütemterv hálók - II.

Idő-ütemterv hálók - II. Előadá:Folia1.doc Idő-ütemterv hálók - II. CPM - CPM létra : Továbbra i gond az átlaolá, a nyitott háló é a meg-nem-zakítható tevékenyég ( termeléközeli ütemtervek ) MPM time : ( METRA Potential' Method

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü

ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü Ö ü ö ő ú ö ü ű ö ö ö ö ő ő ö ő ü ö ö ő ö ö ü ú ö ü ő ő ö ú ő ü ü ü ű ű ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü ő ü ü ő ő ü ü ő ő ú ő ú ő ü ü ő ü ő ú ü Ü ő ő ö ő ü ő ü

Részletesebben

Ingatlanok értékelése hozamszámítással 1-2. 1

Ingatlanok értékelése hozamszámítással 1-2. 1 Piaci érték: Igatlaok értékelése hozamszámítással 1-2. 1 Elıadás Igatlavagyo-értékelı és közvetítı Szakképzés, Igatlakezelı Szakképzés A-. modul Az az ár, amelyért az igatla méltá- yosa,, magájogi szerzıdés

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

1. Gyors folyamatok szabályozása

1. Gyors folyamatok szabályozása . Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Í í ó í Í í í é í ó ő ő ö í é ő ő é é í ü é é ö é é é ú ő ö é é é ő é ő í é í ő é é é é é é í é é é é ú í ó í í ó í é é é í é ú í é í é ü é é í ő ő ő

Í í ó í Í í í é í ó ő ő ö í é ő ő é é í ü é é ö é é é ú ő ö é é é ő é ő í é í ő é é é é é é í é é é é ú í ó í í ó í é é é í é ú í é í é ü é é í ő ő ő ó í Ö É í ó ő é ü é é í é é ó Í ő ö é Í ö é ű í é ö ő Í í ó ö ü ö ö í ó ő ő é ű é í é é é é é é ő é é í í ő ü ő é é é ö ö ő é é é é ö ö ü é é ő é é ü é ö ö é é ö ö é ü ó ő ő é ö é é é ö ö é ő é é í é é

Részletesebben

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö Á Á É é ö ö é ő ő ő é ö é é ő é é é é ő í é é é ó é é é ü ő ő ó é ő é ű ö ö ú é ü ö é é é é ó é é ü ő ö é ő é ő ü ő ő ö ö í é ő ó ó ő é ő é ó é é ő é ó é ű é é ü ö é Í ö é í é ő ó ö é ő é ú í ö é é é ö

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során Elektrokémiai fémleválasztás Felületi érdesség: defiíciók, mérési módszerek és érdesség-változás a fémleválasztás sorá Péter László Elektrokémiai fémleválasztás Felületi érdesség fogalomköre és az érdesség

Részletesebben

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/ 5 öveli a traszformátorok öveli a traszformátorok A techológia előyei A költségek csökketéseek folyamatos kéyszere és a zavartala eergiaellátás ehézségei szükségessé teszik a traszformátorok tervezett

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése

3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése 3.1.1. Rugalmas elektroszórás 45 3.1.1. Rugalmas elektroszórás; Recoil- és Doppler-effektus megfigyelése Aray, ikkel, szilícium és grafit mitákról rugalmasa visszaszórt elektrook eergiaeloszlását mértem

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Laplace transzformáció

Laplace transzformáció Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra

Részletesebben

Jeges Zoltán. The mystery of mathematical modelling

Jeges Zoltán. The mystery of mathematical modelling Jege Z.: A MATEMATIKAI MODELLEZÉS... ETO: 51 CONFERENCE PAPER Jege Zoltán Újvidéki Egyetem, Magyar Tannyelvű Tanítóképző Kar, Szabadka Óbudai Egyetem, Budapet zjege@live.com A matematikai modellezé rejtélyei

Részletesebben

VIII. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár

VIII. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár Reinorce Concrete Structure I. / Vabetonzerkezetek I. VIII. Lecture VIII. / VIII. Előaá Reinorce Concrete Structure I. Vabetonzerkezetek I. - Vabeton kereztmetzet kötött é zaba tervezée hajlítára - Dr.

Részletesebben

Stabilitás Irányítástechnika PE MI_BSc 1

Stabilitás Irányítástechnika PE MI_BSc 1 Stabilitás 2008.03.4. Stabilitás egyszerűsített szemlélet példa zavarás utá a magára hagyott redszer visszatér a yugalmi állapotába kvázistacioárius állapotba kerül végtelebe tart alapjelváltás Stabilitás/2

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben