3 1, ( ) sorozat általános tagjának képletét, ha

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "3 1, ( ) sorozat általános tagjának képletét, ha"

Átírás

1 Gyakolatok és feladatok. Hatáozd eg a kvetkező, ekuzíva ételezett soozatok általáos tagját: a), = = " ³, ; (felvételi feladat,99., Teesvá), b),, =, = " ³ ; (felvételi feladat, 99., Teesvá) c) =, = 4 = - " ³ ;, - d), - =, = =, 6 " ³ ; =, =, = " ³. e),. Hatáozd eg a kvetkező soozatok általáos tagjáak képletét: a) 5 6 = -, =, = ; b) = -, =, = ; c) = 4-4, = 6, = ; + + d) = - + +, =, =.. Bizoyítsd be, hogy az ( ) soozat tagjai teljesítik az ³ = a + b ekuziót, + + báely Î eseté, akko a b + b - a b - - = Hatáozd eg az ( ) ³ soozat általáos tagjáak képletét, ha 5 = +, " ³ Bizoyítsd be, hogy végtele sok olya egész szá létezik, aelyből kiidulva az = ± + + ekuziót teljesítő soozat tagjai egész száok sszes (az előjeleket ide lépésbe tetszőlegese egválaszthatjuk)! (Radó Feec Elékvesey.) 6. Hatáozd eg az sszes olya egész szásoozatot, aely teljesíti az + = " Î sszefüggéseket! Bizoyítsd be, hogy az =,, - ³ soozat peiodikus (ha ételezett)!, ( ) k -, k -, 8. Bizoyítsd be, hogy az, Î( - kk, (, =, " ³ ekuziót teljesítő soozat peiodikus! 9. Hatáozd eg az = -, " ³, Î- [, ] soozat általáos tagját! - -. Hatáozd eg =,,, =, " ³ soozat általáos tagját. (Becze Mihály) az,

2 - -. Hatáozd eg az =-,, = " ³ soozat általáos tagját! - 4. Az Î N - soozat teljesíti az =, = - (- ) " ³ sszefüggéseket. Bizoyítsd be, hogy, =,-, " ³! (éettségi,998, Izael). Bizoyítsd be, hogy az ( ) =, = 4 =, 8, " ³,, sszefüggésekkel ételezett soozat ide tagja teészetes szá! 4. Egy eeletes házat háy külbző ódo szíezhetük ki fehée és feketée, ha két feketée szíezett eelet e keülhet egyás flé, és ide eeletek vagy fehéek, vagy feketéek kell leie? 5. Vizsgáld eg az, = a,, Î soozat kovegeciáját! (előbb vizsgáljátok eg, i lehet az első tag ahhoz, hogy a soozat jól-ételezett legye) 6. Vizsgáld eg az, = l(, ), Î soozat kovegeciáját!.. Másodedű lieáis ekuziók Ételezés. Másodedű lieáis ekuzióak evezzük az = a + b + +, " Î ekuziót, ahol abî, (vagy abî, ). Vizsgáljuk eg egy sajátos esetet. Feladat. Hatáozzuk eg az = -, =, = 5 soozat általáos tagját. + + Megoldás. A soozat további tagjai = 9, = 7, =, = 65. Látható, hogy a soozat ide tagja -gyel agyobb it egy kettőhatváy, potosabba az = + sszefüggés sejthető. Ez igazolható a ateatikai idukció segítségével is, i azoba egpóbáluk olya ódszet adi, aely lehetővé teszi az általáos eset egoldását is. E célból átedezzük az adott ekuziót a kvetkező ódo: - = Így az y = - + jelléssel az adott ekuzió y = y alakba íható, tehát az + y soozat ³ - egy étai haladváy. Eszeit y = y =, tehát az - + = ekuzióból kellee eghatáozi az ( ) ³ soozat általáos tagját. Ha felíjuk ezt a ekuziót ede az.,.,...,, étékeke, ajd tagokét sszeadjuk a kapott egyelőségeket, akko az.. = egyelőséghez jutuk. Ebből kvetkezik, hogy... = +. Eek a godolateetek az előye, hogy tetszőleges kezdőétékek eseté is haszálható (a egsejtés lehet, hogy ás kezdőétékek eseté e hozzáféhető). Tetszőleges és eseté y ( ) - = - és így = (. )( ), tehát ( ) ( ) - = - + -, " Î. Vizsgáljuk eg, hogy y = - + alakú helyettesítéssel (akácsak az előbb) ilye feltételek ellett tudjuk átalakítai az adott = a + b + + () ekuziót y = y alakú + ekuzióvá. Az y y = ekuzió + - = ( - ) + + +

3 alakba íható, ahoa = + -, tehát a egfelelő és egválasztása az + + ìï + = a ï í egyeletedsze egoldásáa vezetődik vissza. Így az és az - a - b = ï b =- ïî egyelet gykei. Ezt az egyeletet a () ekuzió kaakteisztikus egyeletéek evezzük. Mivel a kaakteisztikus egyeletek idig va két egoldása (esetleg egybeesők vagy kopleek), az előbbi feladat egoldása a kvetkezőképpe általáosítható: - = - -, - tehát ha ezt a ekuziót ede az,.,.,..., étékeke felíjuk, a k -adikat szoozzuk el és tagokét sszeadjuk a kapott egyelőségeket, akko az æ- - k -- k - = ( - ) å çè ø sszefüggéshez jutuk, it ez az alábbiakból kitűik. - = - - Ha = = = ( - ) - + æ- - k -- k - = ( - ) å çè ø æ k k ¹, akko az - = ( - ) å azoosság alapjá çè ø = c + c, ahol c = és c = k k - å, tehát ( k k ) Ha = =, akko = ( -) = + alakú. k - - Ha a kaakteisztikus egyelet együtthatói valósak de a gykei e valós száok, akko a soozat általáos tagjáak alakja egyszeűsíthető hisz = s( cos j± i si j), tehát, ( cos si ) = s k k+ k k. Az előbbi eseteket sszefoglalva kijelethetjük a kvetkező tételt: Tétel.. Ha az - a - b = kaakteisztikus egyelet gykei ¹ Î, akko az a b = ekuzió általáos tagja = c + c alakú.. Ha az - a - b = kaakteisztikus egyelet gykei =, akko az = a + b + + ekuzió általáos tagja = ( k + k ) alakú.. Ha az - a - b = kaakteisztikus egyelet gykei = Ï, akko az a b = ekuzió általáos tagja = ( k cos k+ k si k ) alakú, ahol j az edukált aguetua. A kostasokat idháo esetbe egadott tagokból hatáozzuk eg.

4 Eedéyek, útutatások. A soozat első éháy tagját kiszáoljuk kokéta és egpóbáljuk észevei a egfelelő képletet. a) =, ³ ; b), c) =,, ³ d) =, ³ ;,,,,...,. 4.. = =, ³, e) =, ³.. Másodedű, álladó együtthatójú ekuziók. Ha e tudják, akko igazoli lehet az általáos tag előállításáa voatkozó tételt.. Elégséges igazoli, hogy az y = - a - b soozata teljesül, hogy y b y = Az y = soozata lieáis a ekuzió. 5. Midkét előjel eseté =. A -as feladat alapjá látható, hogy az u = 4u - u soozat tagjai teljesítik ezt az sszefüggést, ha u + u - 4uu =. Tejesszük ki ezt a soozatot egatív ideeke is az u = 4u - u sszefüggést haszálva ( + + eseté). Másészt az = sszefüggés szietikus + + és + -e ézve, ezét = ± u soozatot ( = és u = Î Ez azt jeleti, hogy ha tekitjük a gzített, -ből iduló u ), akko az ( ) soozat tagjai az előjelek egválasztásától függetleül az Î u Î soozat tagjai kzül keülek ki (ebbe a soozatba előe lépük, ha + előjelet választottuk és hátafele ha előjelet választottuk). Eiatt elégséges igazoli, hogy végtele sok olya és egész szá va, aelye =. Ez ekvivales az - - = (Pell típusú) egyelettel és eek végtele sok egoldása előállítható az a b = b és = a + b ). = eseté Î{ - } 6., + = +, a, b Î kifejtésből (. Ez alapjá a páos ideű tagok észsoozata kostas vagy kostas -. = -e = és így + =, ha ³. Az étéke tetszőleges lehet (csak e - ) Lehet kokét étékekkel is póbálkozi az elejé és aztá a ekuzió alapjá kiszáoli,, -at az függvéyébe.,, 4, 8 9. Az = y soozat eseté a ekuzió y = 4y - y, " ³, y Î- [, ] alakú, vagyis ha y cos a =, akko y cos ( a ) =. - -

5 p u. = ta. A ekuzió alapjá, ha = tau, akko ta 4 + =, tehát 6 -. =, ³.. Mateatikai idukcióval. 6,. A gykt kiküszblve, szeit átedezve és felíva a ásodfokú egoldását az,,, p = ta. + =, = 4 = - 8, " ³ sszefüggéshez jutuk. Ez alapjá = + -, tehát ide tagja egész szá (et = 9 is az) Ha az eelet lehetséges szíezéseiek száa, akko =, = és = + et ha az első szit fehé, akko a tbbit ódo lehet kiszíezi és ha az első + - szit fekete, akko a ásodik fehé és a tbbit - ódo lehet szíezi A gafikus képe kellee ábázoli a soozat tagjait pókháló ódszeel (cobweb ethod) és oa leolvasható a soozat viselkedése.

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

V. Az egyváltozós valós függvények analízisének elemei

V. Az egyváltozós valós függvények analízisének elemei Az egyváltozós valós függvéyek aalíziséek elemei Soozat hatáétéke egye a, és b egye a -, és b - Ige egye a -, és b - Nem egye a -, és b - 6 Nem egye a -, és b - 7 Nem egye a _- i, és b 8 Ige egye a _-

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

KITŰZÖTT FELADATOK A X. OSZTÁLY SZÁMÁRA

KITŰZÖTT FELADATOK A X. OSZTÁLY SZÁMÁRA Kitűzött feladatok a X. osztály számára 7 KITŰZÖTT FELADATOK A X. OSZTÁLY SZÁMÁRA. Legye A egy véges halmaz, amelyre A. Határozd meg az A elemeiek számát úgy, hogy létezze f : A A P(A) bijektiv függvéy.

Részletesebben

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t.

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t. Ászpóke csapat Kalló Beát, Nagy Baló Adás Nagy Jáos, éges Máto Fazekas tábo 008. Igaz-e, hogy ha az f, g: Q Q függvéyek szigoúa ooto őek és étékkészletük a teljes Q, akko az f g függvéy étékkészlete is

Részletesebben

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK Kitűzött feladatok Ijektivitás és egyéb tulajdoságok 69 1. KITŰZÖTT FELADATOK Határozd meg az összes szigorúa mooto f:z Z függvéyt, amely teljesíti az f ( xy) = f ( y), x, y Z összefüggést és létezik k

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

II. INTEGRÁLÁSI MÓDSZEREK

II. INTEGRÁLÁSI MÓDSZEREK Itegrálási módszerek 5 II INTEGRÁLÁSI MÓDSZEREK A parciális itegrálás módszere Ha az f, g : D (D em degeerált itervallumok egyesítése) függvéyek deriválhatók a D halmazo, akkor tudjuk, hogy a szorzatuk

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Függvények határértéke 69. III. Függvények határértéke

Függvények határértéke 69. III. Függvények határértéke Függvéyek határértéke 69 A határérték értelmezése III Függvéyek határértéke Ebbe a fejezetbe taulmáyozi fogjuk a függvéy határértékét egy potba A feladat így fogalmazható meg: Ha adott az f : D valós változójú

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

2. LOGIKAI FÜGGVÉNYEK MEGADÁSI MÓDSZEREI. A tananyag célja: a többváltozós logikai függvények megadási módszereinek gyakorlása.

2. LOGIKAI FÜGGVÉNYEK MEGADÁSI MÓDSZEREI. A tananyag célja: a többváltozós logikai függvények megadási módszereinek gyakorlása. . LOGIKI ÜGGVÉNYEK EGÁSI ÓSZEREI taayag célja: a többváltozós logikai függvéyek egadási ódszereiek gyakorlása. Eléleti iseretayag: r. jtoyi Istvá: igitális redszerek I.... pot. Eléleti áttekités.. i jellezi

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

ö ő ó í í ő ő í í ú ó í ő ü ö ö ő í ő ó í ó ó í ö ő í ó ú ó í í í í ö ő ő ő ő ö Ö ü ó ö ü ö ö ö ő í ő ö ő í ö í í ü ö í ú ü ő ö ö ó ö ő í ő ö ő ö ö ő

ö ő ó í í ő ő í í ú ó í ő ü ö ö ő í ő ó í ó ó í ö ő í ó ú ó í í í í ö ő ő ő ő ö Ö ü ó ö ü ö ö ö ő í ő ö ő í ö í í ü ö í ú ü ő ö ö ó ö ő í ő ö ő ö ö ő ö ő ű ö ö ő ó ű ü ő ü ő ö ő ö ö ő ö ö ő ó ű ö ü ő í ő ö ő í ű ő ö í ö ö Ö ő ű ú ö ő ő ö ö ő ü ü ü ö ő ú ú ő ő ó ő ö í ő ő í ó ö ő ő ö í ó ö ö ő ő ö ö í í ó ú ő ő ö í ó ö í ó ö ü ö ő ó í í ő ő í í ú ó í

Részletesebben

Ö í ó í ű í Ö ó ú ű í ú ű Í ú Ó Ú ű ó í Ő Ő ű í í í Í ú ú í ú í Í Ó ó ú ó ó í Á ű Í Ű í Ő Á ó Ö ű ó ű

Ö í ó í ű í Ö ó ú ű í ú ű Í ú Ó Ú ű ó í Ő Ő ű í í í Í ú ú í ú í Í Ó ó ú ó ó í Á ű Í Ű í Ő Á ó Ö ű ó ű Ö Ő Ö ü Ö ü ó Á Á ó ó ó í ü ó í í ű í ó ü í ü ó ű í Ö í í ü í Ö í ó í ű í Ö ó ú ű í ú ű Í ú Ó Ú ű ó í Ő Ő ű í í í Í ú ú í ú í Í Ó ó ú ó ó í Á ű Í Ű í Ő Á ó Ö ű ó ű ó ó ó ó í ű ó ü ü í Ő í ó ó í Ő ú Ő í

Részletesebben

ő ü ü ü ü ő Ö ő ő ő ü ő ő ő ü ü ő ü ő ő ü ü ő ü ő ü ú Á ú ő ü ő ő ő ü ő ü ú ú Ö ő ü ű ü ő ő Ö ú ő ő ő ő ü

ő ü ü ü ü ő Ö ő ő ő ü ő ő ő ü ü ő ü ő ő ü ü ő ü ő ü ú Á ú ő ü ő ő ő ü ő ü ú ú Ö ő ü ű ü ő ő Ö ú ő ő ő ő ü Á Á ü ő ú ő ő ő Ö ú ő ő ő ő ü ő ő ő ő ő ü ü ü ü ő Ö ő ő ő ü ő ő ő ü ü ő ü ő ő ü ü ő ü ő ü ú Á ú ő ü ő ő ő ü ő ü ú ú Ö ő ü ű ü ő ő Ö ú ő ő ő ő ü ő ő ő ő ő ü ü ő ü ő ü ü ü ő ő ő ú ű ő ő ő ú ú ő ő ü ű ú ő

Részletesebben

ü ö ö ö ü Ü ö Ö Ö ü ü ü ö ö ö Ü Ö Ö ö ö Í ö ö ö ö ö ö üü ö ö ö ö ú ö ö ö ö ö ö ö ö ü ú ö Ö Ö ö ö ö ö Ö Á ö ö ö ü ö ö

ü ö ö ö ü Ü ö Ö Ö ü ü ü ö ö ö Ü Ö Ö ö ö Í ö ö ö ö ö ö üü ö ö ö ö ú ö ö ö ö ö ö ö ö ü ú ö Ö Ö ö ö ö ö Ö Á ö ö ö ü ö ö ő ű ö ö ú ú ü ö ö ö ü Ü ö Ö Ö ü ü ü ö ö ö Ü Ö Ö ö ö Í ö ö ö ö ö ö üü ö ö ö ö ú ö ö ö ö ö ö ö ö ü ú ö Ö Ö ö ö ö ö Ö Á ö ö ö ü ö ö ő ö ö Ö ö ö ö ö ö ö ö ö ö ö ú ö ö ö Á ú ú ö ö ú ú ö Á ú ö ö ú ö ö ö ö ö

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

VILLAMOS ENERGETIKA Vizsgakérdések (BSc. 2011. tavaszi félév)

VILLAMOS ENERGETIKA Vizsgakérdések (BSc. 2011. tavaszi félév) 1 VILLAMOS ENERGETIKA Vizsgaérdése (BSc. 2011. tavaszi félév) 1. Isertesse a villaoseergia-hálózat feladatr szeriti felosztását a jellegzetes feszültségsziteet és az azohoz tartozó átvihető teljesítéye

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Analízis feladatgy jtemény II.

Analízis feladatgy jtemény II. Oktatási segédayag a Programtervez matematikus szak Aalízis I. tatárgyához (003004. taév szi félév) Aalízis feladatgy jteméy II. Összeállította Szili László 003 Tartalomjegyzék I. Feladatok 3. Valós sorozatok.......................................

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl). ) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye

Részletesebben

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA 1 MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA Tuzso Zoltá Akár a régebbi, akár az alteratív XI. osztályos algebra taköyveket lapozva, akár példatárakba vagy matematikai verseyeke gyakra találkozuk egyél magasabb

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

A Cauchy függvényegyenlet és néhány rokon probléma

A Cauchy függvényegyenlet és néhány rokon probléma A Cauchy függvéyegyelet és éháy roko probléma Tuzso Zoltá, Székelyudvarhely A függvéyegyeletek egyik alapegyelete a Cauchy függvéyegyelet, amely a következő: Melyek azok az f : R R folytoos függvéyek,

Részletesebben

ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú

ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú ú É ú ü ú ü Í ü ú Ú ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú Í ú É Í Á Á Í É Á Á Á Í Á Ó Á Á É Á Á É É ű Á É É ú É É Á Á ú Á ü Á Á Á Á Ú É ü ú ú É É ú Ú Á Á É Á É Ó Ú ú Ú Í

Részletesebben

Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö Ö Á Ó Ü Ó Ó Ö Ó Ó Ó Ö Ö Í Ó Ö Ó Ó Ó É Ü ű Ó ú

Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö Ö Á Ó Ü Ó Ó Ö Ó Ó Ó Ö Ö Í Ó Ö Ó Ó Ó É Ü ű Ó ú Á É É É Ü Á Ü Ü ű Í Ó Ü ű Ó Í Ú Ü Ó ű ú Ü ű ö Ó ö ű ű Ó Ó Ó Ő ű Ó Ö ö Ó Ö Ü Í Ü Ó Ü Á Í Ó ü Ú Ó ű ú Ó úü Ó Ú ü Í ű Í Ő Ó Ó Ó Ó Ü ú Í Í Í Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö

Részletesebben

ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í

ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í Á É ö úú í ö ö í ű í ú ű Ő ű ű ű Ú ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í í ö ö í í í ö ö ü í ö ö ü í í ö í í í í ö ű í ö í í ü í ü ü í Í ű ü í ű

Részletesebben

ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í

ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í Á Á É ó Á ö ú ú ö ö Í ó ö ö í Á ó Á ü ú ü ö ó ú í ó ú í ó ű í ú ó Á ó Á ü ú ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í ö ö í ó ó í í ü ü í ó Á ü ü ü Í ö í ü ó í ű ö ó ó ó ö í ö ó í ó ü ó í

Részletesebben

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár dr. CONSTANTIN NĂSTĂSESCU egyetemi taár a Romá Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi taár I. VALÓS SZÁMOK. VALÓS GYÖKÖKKEL RENDELKEZŐ MÁSODFOKÚ EGYENLETEK II. A MATEMATIKAI LOGIKA ELEMEI.

Részletesebben

Ó Ó Í ő Ó Í ő Ó ő Ó ő Í Ó ő ő ő

Ó Ó Í ő Ó Í ő Ó ő Ó ő Í Ó ő ő ő Ó Ó Ó Ó ő Í ő ő ő Á Ó ő É Ü Á Ó Ó Í Ő Ó ú Ó Ó Í ő Ó Í ő Ó ő Ó ő Í Ó ő ő ő Í Ó ő Í É Íő ő ő ő Ó ő ö ő ö Ó Ó Í ő ő ö Ő Ó ő ő ö ö Í Í Ó Í ÖÍ Ö ő Ó Ó ő ö Ó ő Ó ő Ó Ó Á Ó ő Ó ő ő Ó ő ő Í ő Í ő ö É ö Ó Ó Ó ő

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

í Í ő ü í ő í í ő í í ö í ű ü ő ő ű ő ö ü í ő ő í í í ú í ő ú ú í ú ü ú ö ő ö í ő ú Á Í ő ü ö ö ü ö ő ő ő ű ű ö ö ö ő ő ű ő ü ü ő ü ő ő í ú ú ű í ő ű

í Í ő ü í ő í í ő í í ö í ű ü ő ő ű ő ö ü í ő ő í í í ú í ő ú ú í ú ü ú ö ő ö í ő ú Á Í ő ü ö ö ü ö ő ő ő ű ű ö ö ö ő ő ű ő ü ü ő ü ő ő í ú ú ű í ő ű ö ű í ú ö ú ő ú í ú í Á ú ö í Í Í ö ű í ö í í ű ö ő ő ö ö í ő ö ü ö ő ú ő ő ű í ú ú ő ű ö ő ű ö ö í í ő ö ö ű ö ű ő ú í í ő ü í Í ő ü í ő í í ő í í ö í ű ü ő ő ű ő ö ü í ő ő í í í ú í ő ú ú í ú ü ú ö ő

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú

ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú ú ú Á ö ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú ő ö ü ö ö ö ü ő ö ü ö ő ú ö ö Ú ő ö ö ő ö ű ő ő ű ü ü ő ő ő ő ő ő ő ő ő ü ű ű ü ő ü ü ő ö ú ű ö ö ő ü ő ü ü ő

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

A logaritmus függvény bevezetése és alkalmazásai

A logaritmus függvény bevezetése és alkalmazásai Eötvös Loád Tudomáyegyetem Temészettudomáyi Ka A logaitmus függvéy bevezetése és alkalmazásai Szakdolgozat Készítette: Témavezető: Lebaov Dóa Mezei Istvá Adjuktus Matematika Bs Alkalmazott Aalízis és Matematikai

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

É Í Ő É É Á í Ü ő í ő í ő ő Í ő ő ő í ú í í ő í ő

É Í Ő É É Á í Ü ő í ő í ő ő Í ő ő ő í ú í í ő í ő É Í É É Í Ő É ő ő É Í Ő É É Á í Ü ő í ő í ő ő Í ő ő ő í ú í í ő í ő Í Ó É É í ü ő É É Á ő ő É ű ő Á ő í ű ő ü ő ő ü ő ő í ő ő ő ú í ő ő ő í ü É Í É É ő í ő ő ő ő ő í í ő í ő í ú ú ú É Í Ő É í ő í ú Á ő

Részletesebben

ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü

ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü Í ö ü ó ü ó ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü ó ö Í ó ö ó ü ó ó ó ö ö ü ü ö Ó Í Í ü ö ö ö ó ü ó ü ö Ö ö ü Ü ö ö ü ó Í ö ö ö ó Ü ö ö ö ó ó ó ó ü ó Ü ö Ü ó Á Á ö ö ö ó ó ó ó ó ó ö ó ű ó ö ö ö ö ü ú

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü é ü é í é é é é í é ü é é ü ü é ü ű é é é ű ü é ü ü é ű é ü é éú é ü é ü ű é ü é éú é é é

é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü é ü é í é é é é í é ü é é ü ü é ü ű é é é ű ü é ü ü é ű é ü é éú é ü é ü ű é ü é éú é é é é Ö é ü é é é ü é í é Ó é Ö é Ú Á é í í ü é é é é ü ü é é é ü é é é ü é ü é í ü é é ü é ü í ü é ü ű é ü ú ü é Í ú ú é ü é é é é í ü é é ü é é é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü

Részletesebben

ö ö ö ü ö ü ű ö Ö ü ü ü ü ú ö ú ö ö ű Á ö ú ü ü ö ü ö

ö ö ö ü ö ü ű ö Ö ü ü ü ü ú ö ú ö ö ű Á ö ú ü ü ö ü ö ö Ó Í Á ű ü ö ö ü ű ö ö ű ü ú ű Ó ű ü ü ö ü ö ű ű ö ö ö ü ö ü ű ö Ö ü ü ü ü ú ö ú ö ö ű Á ö ú ü ü ö ü ö ö ü ö Á ö ü Ú ö ŐÁ Í ö ú ű Ö Ő Ö ö ö ö Ő Ú Á ü Á ö ö ö ö Í ö ü ú ö ö ü ű ü Á Ó ö Ő ö Á Ő ű ö ö ö

Részletesebben

ú ü ő ú ú ü ő

ú ü ő ú ú ü ő É É ú ü ő ú ú ü ő ú ú ú ő ő ú ü ő Ö Ö Ó Ó É É ő É É É É É É É É É ő É É É É ű ű ő ő ú ú ü ú ő ő ő ü ő ú ő É ő ő ü ű ő ő ő ü ü ő ü ő ü ő Ö ő ő ű ü ő ő ő ő ő ő ő ő ü ú ü ő ü ü ő ü ü ő ő ü ő ő ő ő ü ő ő ő

Részletesebben

ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í

ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í ú ö ű ö ő ö í Á Ü ú Á Á Á ö É É í É É Á ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í ö í Á Á Á ö É É í É Á Á Á Á ö ö ú ö ű ö ő ö ö ő í ö í ö í ő ö ü

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 016. február 11

Részletesebben

ó ú ő ö ö ó ó ó ó ó ő ő ö ú ö ő ú ó ú ó ö ö ő ő ö ö ó ú ő ő ö ó ő ö ö ö ö ö ö ó Á É ű ó ő ő ű ó ó ö ö ő ó ó ú ő Ű ö ö ó ó ö ő ö ö ö ö ő Ú ú ó ű ó ó ő

ó ú ő ö ö ó ó ó ó ó ő ő ö ú ö ő ú ó ú ó ö ö ő ő ö ö ó ú ő ő ö ó ő ö ö ö ö ö ö ó Á É ű ó ő ő ű ó ó ö ö ő ó ó ú ő Ű ö ö ó ó ö ő ö ö ö ö ő Ú ú ó ű ó ó ő Á É É É Ö ó É Á ó É Ü Ü ő Ü ő ö ö ó ő ó ö ö Ö Ú ú ö ö ö ó ó ó ó ö ö ő ő ó ó ő ö ö ö ö ó ö É ö Ö É ó ö ó ú ö ö ó ó ó ó ú ú ö ú ő ó ó ö ó ö ű ö É ö ö ő ó ö ó ö ó ö ő ó ú ő ö ö ó ó ó ó ó ő ő ö ú ö ő ú ó ú

Részletesebben

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba

Részletesebben

Á Á ő ő ó ő ő ű ó ü ü ó ü ó Ü ú ú ó ó ő ú ő ó ő ő ó ű ó ú ú ő ő ü ő ú ó ú ű ó ő ő ó ű ó Í ú ú Ü ú Ü ó ó ü ű ó ó ő ű ó ő ő ó ű ú ú ő ő ü ő ú ű ó ó ú ű

Á Á ő ő ó ő ő ű ó ü ü ó ü ó Ü ú ú ó ó ő ú ő ó ő ő ó ű ó ú ú ő ő ü ő ú ó ú ű ó ő ő ó ű ó Í ú ú Ü ú Ü ó ó ü ű ó ó ő ű ó ő ő ó ű ú ú ő ő ü ő ú ű ó ó ú ű ó ú ó Á Á Á ő ő ó ő ő ű ó ü ü ó ü ó Ü ú ú ó ó ő ú ő ó ő ő ó ű ó ú ú ő ő ü ő ú ó ú ű ó ő ő ó ű ó Í ú ú Ü ú Ü ó ó ü ű ó ó ő ű ó ő ő ó ű ú ú ő ő ü ő ú ű ó ó ú ű ó ő ő ó ű ó ű ú ű ó ú ú Ü ú Í ü ó Ő Ú Á ÓÁ

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Í Ü Ő Ő Á Ó Á Ő Ú Á Á ó ú í Í Á Ö Á í í Í Ő Ű ú ú Á Í í í Í Í ü ó ö ö í ó ó Í ó í ú ö ö Á Á Á Á í ó í ö ó ó ó ö ö ű ú í íí ó Í ú í ö ó ú í í ó ó ó ó ó ű ó ó ú ö ó í óá ű ó í í Á ú Á í í ó Á ü ö ó ó ó ü

Részletesebben

ö é é ú ö ú Ü ő ű ó ő é ó ú ó ó é é é ó ö é ó é ó é ő ő é ü é ó é ó ő ű é Ó é ü é ó é ü ó ó é ü ó é ő é

ö é é ú ö ú Ü ő ű ó ő é ó ú ó ó é é é ó ö é ó é ó é ő ő é ü é ó é ó ő ű é Ó é ü é ó é ü ó ó é ü ó é ő é Á Á ö Á É Á É ú Á Á ö é é ú ó Á é ú é ó ú ő é é ú é ü é ó ó ó ő é ó ó ó é ó é é ó ó é é ó é ü ü ü ő ó é é Ó ő é é ö ö ő é é é é é ú ő ő é é ó ü ú ő é ö é ő ö ü é ő é é ú ő é ü é ü Ú é ö ö é é ü ó ö é é

Részletesebben

következô alakúra: ax () = 4 2 P 1 . L $ $ + $ $ 1 1 2$ elsô két tagra a számtani és mértani közép közötti egyenlôtlenséget, kapjuk hogy + cos x

következô alakúra: ax () = 4 2 P 1 . L $ $ + $ $ 1 1 2$ elsô két tagra a számtani és mértani közép közötti egyenlôtlenséget, kapjuk hogy + cos x Tigonoetius egenlôtlensége II ész 7 90 a) a in = ezt ao veszi fel ha = Hozzun özös nevezôe alaítsu át a övetezô alaúa: a () = sin cos sin cos + = sin + sin bin = ezt ao veszi fel ha = Mivel b ()> 0 a egadott

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Ú ű Á ű

Ú ű Á ű Ú ű Á ű ű ű ű ű Ü Ü Ü Ü Ü Ü Ü Ú Ü Ü Ü Ü Ü ű ű Ú ű ű ű ű Ü ű Ö ű ű Ó Ő ű Ö ű Ö Ü Ő ű ű Ü ű ű Á Á Á Á Á ű Á Ú Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á ű Á Á Á ű ÁÁ ű Á Á Á ű Á ű Á Á Á Á ű Á Á Á Á Á Á Á Á Á Á ű

Részletesebben

Folytonos függvények közelítése polinomokkal

Folytonos függvények közelítése polinomokkal Folytoos függvéyek közelítése poliomokkal Szakdolgozat Paksi lászló matematika BSc, Matematika taái szakiáy Témavezető: Gémes Magit, műszaki gazdasági taá Aalízis Taszék Eötvös Loád Tudomáyegyetem Temészettudomáyi

Részletesebben

Bevezetés az algebrába komplex számok

Bevezetés az algebrába komplex számok Bevezetés az algebrába komplex számok Wettl Ferec Algebra Taszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december 6.

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

Lineáris egyenletrendszerek. Összeállította: dr. Leitold Adrien egyetemi docens

Lineáris egyenletrendszerek. Összeállította: dr. Leitold Adrien egyetemi docens Lieáris egyeletredszerek Összeállított: dr. Leitold Adrie egyetei doces Li. egyeletredszerek /2 Lieáris egyeletredszerek áltláos lkj Áltláos (részletes) lk: egyelet iseretle:,, Jelölések: 2 2 2,, 2 2 2,,

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű

ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű í ö ö ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű ö ö ö ú ü ö ö í í í ö Á ö ö ö ö ö ö ö í ö ö ö ö ö ö ú Ő ö ö ö í ú ú ö ö í ö ö í ű í ö ö ö ö Á ü ö ü ö ü ű ö ö ö í ö í ü í ű í í ö ö Á

Részletesebben

ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó ü ú ü ü ö í ó Ő Ü ó

ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó ü ú ü ü ö í ó Ő Ü ó ö ö Á É ü Ő Ö í ü í ü í ó ó ó í í ó í ö ú ü ü ö ö ű ó í ó ó ü ú ü ü ö í ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó

É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó Í Í Í Í ó ó ó ú ó ő É ú ö ü ú Á Ú ő ö ó ó ó ó ő ő ó ü ő Á ö ű ü É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó ő ó ú Á ő ü Á ő ú Í É ö Í ö Á Í Á ő ó ő ó ó Á ó ó ó ó ó Íő Á ü ö ó ó ő ó ó Í ö ó ő ú ó Í ö ő ö ó

Részletesebben

ú ü ü ú

ú ü ü ú Ú Á É Á É Í Á ú ú ú ú ü ü ú ú ű Á É Í Á Í Á É Í Á Á É Í Á Ó É Ú Ú Í Á Á É É É Ö Á Á É É É Á Í Í Á Á Á É Í Á Á É Ú Í Á Á É É É Ú ú ü ú ú ű ú ú ü ú Í Í Á É Í Á Ö É Ö Ú Ű Í Á Á É É ú ü ü ü Í ű ű Ü Á É Í Á

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü

ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü ü ö ü ü ü ö ö ö ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü ö Ö ö ü ü ű ü ö ö ö Ü ű Ü ű Í Í ü ú ü ö ú ö ö ö Á ö ű ö Ö ö ö Ö ö ü ö ö ü ö ü ü ö Í ű ü ü ö ö ö ö ö ö ö ű ö ö ö Ö ö ü ö ö ö ú

Részletesebben

ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő ő Ö ő ü űő Ö ú ő ü ú ö ő ö ü ő ü ö ő ö ő Ő ő ü ő ö ü ő ü ö ő ő ű ö ő ö ö ö ü ö ú

ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő ő Ö ő ü űő Ö ú ő ü ú ö ő ö ü ő ü ö ő ö ő Ő ő ü ő ö ü ő ü ö ő ő ű ö ő ö ö ö ü ö ú ő ö ü ő ő Ó ő ü ü ő Ü ő ő ő ő ő ö ő É ö ő ő ö ö ü ő ü ü ő ő ő ü ü ő ő ü ő ü ö ő ő ő ö ö Ö ő ő ö ő ő Ó ö ö ü ű ő ő ü ő ő ő ő ü ő ő ü ü ö ő ő ü Ó ő ő ü ú ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe

Részletesebben

Ö í ó ű í íű ű ó ó ó ó ó ó ó ó ü ó ó Ö ó ü ó ü ó ú ú ú Ö ó ó ó í ó ü úú ü í ó ó ó í Ó Ó ó í Ö í ó ú í ú í ó ü ü ú í í ú í ü ú í

Ö í ó ű í íű ű ó ó ó ó ó ó ó ó ü ó ó Ö ó ü ó ü ó ú ú ú Ö ó ó ó í ó ü úú ü í ó ó ó í Ó Ó ó í Ö í ó ú í ú í ó ü ü ú í í ú í ü ú í Ö ü Ü Ö Ö ü ü ü ó ó ó ü í í ó í Ö í Á í Ü Ó í ó Ö í Í ü ú Ö í ó ű í íű ű ó ó ó ó ó ó ó ó ü ó ó Ö ó ü ó ü ó ú ú ú Ö ó ó ó í ó ü úú ü í ó ó ó í Ó Ó ó í Ö í ó ú í ú í ó ü ü ú í í ú í ü ú í ó ó í í ú í ü ó

Részletesebben

ű Í ő ű ü ő ő ú ő ű ü

ű Í ő ű ü ő ő ú ő ű ü Ó Á É ú ű ű ő ú ő ü ő ü ő ü Ö ű ő ű ő ő ő ű ű Í ő ő ű ű ő Í Í ő Í ő ő ő ú ü ű Í ű ú Í ű Í ő Í Í Í ú ú ű ú ű Í ő ű ü ő ő ú ő ű ü ú ő ű Í ű ű ű ü ő ő ő ő ü ü ő ő Íű ő ő ű ő ü ő ű ü ü ő ő ő ü ő ü ő ő ő ú

Részletesebben

í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í ű í ű ö ö ö í ű ö ö ű ü ö ö ö í ú ü ű ö ú í ö ö í ü ö ö í í í í í í

í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í ű í ű ö ö ö í ű ö ö ű ü ö ö ö í ú ü ű ö ú í ö ö í ü ö ö í í í í í í É Á Ú Ö É É É É Ü É ú ö í ü ö ú ö í Ü ü ü ö ö Ő ú í ú ö í ü Á í ű Í í í ú ü ö í í ű í Í ű ü ű í ü ü í ű ú ö Á ö ö ú ö í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í

Részletesebben

SPORTPÉNZÜGYEK. r m. A pénz időértéke.

SPORTPÉNZÜGYEK. r m. A pénz időértéke. SPORTPÉNZÜGYEK A péz időétéke. A ai pézösszeg azét étékesebb, it egy későbbi időpotba esedékes pézösszeg, et a befektető eek évé jövedelee, kaata tehet szet Kaat: A péz áa Haszálója azét fizet, et a pézt

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Í Ó É É É É Ó Ó ú ú Ó Ő Í Ó Ö Ó

Í Ó É É É É Ó Ó ú ú Ó Ő Í Ó Ö Ó ÍÍ Ó É Ó Ó ú Ó Ó Ó ú Ó É Í Ó É É É É Ó Ó ú ú Ó Ő Í Ó Ö Ó É ú Ö Ö Ó É Ó ú ú Á Ó Í Ó Á Ő Ó Ó ú Ó Ó Ó Ó Ó Ó ú Ó Í Í Ó Ő É Ó ú Ő Ő É Ó Ö Ó Ó Ó É Ó Ó É Ú Í Ö ú ú Ö Ö Ó ú ú Ó Ó Ó Ó Ó Ó Í Ó ú Ú Ó ú Í Ó Ó Ó Ó

Részletesebben

SZENT ISTVÁN EGYETEM BELSŐÉGÉSŰ MOTOROK MŰKÖDÉSI MIKROFOLYAMATAINAK ANALÍZISE A GÉPÜZEMELTETÉS CÉLJÁBÓL. Doktori értekezés tézisei.

SZENT ISTVÁN EGYETEM BELSŐÉGÉSŰ MOTOROK MŰKÖDÉSI MIKROFOLYAMATAINAK ANALÍZISE A GÉPÜZEMELTETÉS CÉLJÁBÓL. Doktori értekezés tézisei. SZENT ISTVÁN EGYETEM BELSŐÉGÉSŰ MOTOROK MŰKÖDÉSI MIKROFOLYAMATAINAK ANALÍZISE A GÉPÜZEMELTETÉS CÉLJÁBÓL Doktoi étekezés tézisei Bátfai Zoltá Gödöllő 001. A doktoi pogam Címe: Agáeegetika és Köyezetgazdálkodás

Részletesebben

6. Számsorozat fogalma és tulajdonságai

6. Számsorozat fogalma és tulajdonságai 6. Számsorozat fogalma és tulajdoságai Taulási cél: A számsorozat fogalmáak és elemi tulajdoságaiak megismerése. A mootoitás, korlátosság vizsgálatáak elsajátítása. Nevezetes sorozatok határértékéek megismerése.

Részletesebben