5. gyakorlat Konfidencia intervallum számolás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5. gyakorlat Konfidencia intervallum számolás"

Átírás

1 5. gykorlt Kofdec tervllum zámolá. Feldt Cél: Normál elozlá gyor áttektée. Az IQ tezteket úgy állítják öze, hogy tezt eredméye éeége belül ormál elozlát kövee 00 ot átlggl é 5 ot zórál. A éeég háy zázlék dcekedhet 45 felett tellgec-háydol? =-NOR.ELOSZL(45;00;5;IGAZ) =-NORDIS(45; 00; 5; RUE) elyk z z IQ érték, melyre gz, hogy: - éeég 90%- eél lcoybb IQ-vl redelkezk. o =INVERZ.NOR(0,9;00;5) o =NORINV(0.9;00;5) - A éeég 90%- eél mgbb IQ-vl redelkezk. o =INVERZ.NOR(-0,9;00;5) o =NORINV(-0.9;00;5) A éeég háy zázlék redelkezk 00 é 0 között tellgec háydol? =NOR.ELOSZL(0;00;5;IGAZ)- NOR.ELOSZL(00;00;5;IGAZ) =NORDIS(0;A3;B3;RUE)-NORDIS(00;A3;B3;RUE) A éeég "közéő" 90%- ebbe z IQ-tervllumb helyezkedk el Aló htár: =INVERZ.NOR((-0,9)/;A3;B3) Felő htár: =INVERZ.NOR(-(-0,9)/;A3;B3) A éeégből véletlezerűe özeállított 5 fő coortok átlg IQ-k 90%- ebbe z tervllumb helyezkedk el Aló htár: =INVERZ.NOR((-0,9)/;A3;B3/GYÖK(5)) Felő htár: =INVERZ.NOR(-(-0,9)/;A3;B3/GYÖK(5)) - mgyrázt ormál eo. fv-e. - tdrdzálá elmeélée: levojuk várhtó értéket, é leoztuk zórál. Így egy 0 várhtó értékű, zóráú elozlá fv-t kuk ELÉLE Cetrál Htárelozlá étel: ok zoo elozláú, függetle vlózíűég változó özegéek elozlá jól közelíthető megfelelő ormál elozlál. Stdrdzálá utá hzálhtó N(0,) elozláfüggvéy táblázt! Kofdec-tervllum: oly tervllumot megd z elemű mt átlg értéke körül, mre teljeül, hogy várhtó érték dott vlózíűéggel (l. 95%) beleek. ehát éldául, kereük -t, mre: Ahol kofdec tervllum zgfkc ztje é z tervllum ugr.

2 Redezé utá: Beírv kéletét:. Feldt Imert σ zórá eeté oztv z átlg zóráávl, zz -el lklmzhtjuk Cetrál Htárelozlá ételt: Azz:, hol :. Ekkor λ értéke σ, é meretébe vzkerehető tábláztból, vgy z Excelbe z verz.torm() függvéyel. FELADA - Vlmely zol oldódó kávékvotot utomt tölt üvegekbe. Az tölté mechzmu é z dódó véletle hbákról mert, hogy töltőtömeg zórá g. A gé otoágák elleőrzéére vett 6 elemű (függetle zoo elozláú) mtáb z üvegekbe lévő kávégrulátum tömege (g): Kézíte 95 %-o megbízhtóággl tervllumbeclét várhtó átlgo töltőtömegre. egoldá: %, 6, 55,

3 λ értékét vgy tábláztból olvhtjuk k vgy z Excelbe =verz.torm(0,975) kélettel zámolhtjuk. Imeretle σ zórá eeté zórát mtából kell megbecül. Erre torzíttl beclét d tztlt korrgált zórá: Ezt beírv fet kéletbe σ helyére, már em lklmzhtó Cetrál Htárelozlá étel. Imert vzot, hogy ekkor vlózíűég változó (-) zbdágfokú Studet elozláú. Jelölje eek z elozlák z elozláfüggvéyét -. ehát fet eljárá yb módoul, hogy Stdrd Normál elozlá helyett Studet elozlá tábláztát kell hzál. (A két elozlá tuljdoágt tektve gyb holít egymához, így zámítá meete em változk). Ie: Jelölje ) :, ( t -et. A Stdrd Normál elozlál elletétbe ttztk köyvek em Studet elozlá tábláztát trtlmzzák, hem z elozlá verzéek (zz λt értékeek) tábláztát. Áltláb táblázt or htározz meg zbdágfokok zámát, é z ozlo edg kereett zgfkcztet. FELADA - Vzgáljuk meg z előző feldtot rr z eetre, h zórá em mert. egoldá: A feldt megoldáához zükége tztlt korrgált zórá zámítá. Ezt z Excelbe zámoljuk k zór.m függvéyel.

4 t, 0.95, , 6, t , 95% λt(0.95,5) értékét vgy tábláztból kerehetjük k vgy z Excelbe =verz.t( -0.95;5) kélettel zámolhtjuk k. 3. Feldt FELADA 00 véletlezerűe kválztott férf mgágát megmértük. Adjuk beclét ezek ljá egy átlgo férf mgágár %-o kofdec tervllumot megdv. egoldá: A C ozlob zámoljuk k z elemű mt átlgát, D ozlob edg zóráát, hol -et -től 00-g öveljük. C := Átlg, C4 := =átlg(b$4:b5), jobb ló cellrokb dulklkk D := zórá, D4 := =zór.m(b$4:b5), cellrok dulklkk E3:=, F3 := 0,5, G3 := 0,5, H3 := 0,75, I3 := 0,8, J3 := 0,85, K3 := 0,9, L3 := 0,95, 3 := 0,97, N3 := 0,98, O3 := 0,99, 3 := 0,99999 F4 := =verz.t( F$3 ; $A4 -) * $D4 / gyök($a4) Húzzuk le ezt F0-g. Ezutá F4:F0 trtomáyt húzzuk el jobbr z ozlog. Ekkor z F4:0 trtomáyb z ozlohoz trtozó zgfkcztű, orhoz trtozó elemzámú mtából kézett kofdec tervllum ugr v. FELADA - Ábrázoljuk grfku z átlg é kofdec tervllum változáát megfgyeléek zámák öveléével. Kézítük grfkot kofdec tervllum hozák megfgyeléek zámától, lletve zgfkczttől vló függééről. egoldá:. grfko: Ábrázoljuk várhtó értéket mt elemzámák függvéyébe. - Jelöljük k z A4:A0 trtomáyt, mjd Ctrl gombot yomv trtv C4:C0 trtomáyt. Az mert módo kézítük el grfkot. (Jvolt X-Y lot mított volll). - Jelöljük 95%-o zgfkcájú kofdec tervllumokt grfkoo. Az egér jobb gombjávl egyzer klkkeljük grfkoo z dtorr. A meüből válzuk z Adtorok formázá meüotot. Az Y hbávok fület kválztv klkkeljük Beállítá

5 ocór. A + jelet követő mezőbe írjuk be, hogy =3. Feldt!L4:L0 vgy mező utá gombr ktttv jelöljük k megfelelő ozloot tábláztból. Ugyezt írjuk be jelet követő mezőbe. K elemzámú mtár kofdec tervllum ugr geck gy, z Excel utomtku átállított z y tegely káláját, így emm érdemlegeet em lehet lát grfkoo. - Klkkeljük dulát z egér bl gombjávl z y tegelyre. A felugró blkb Skál fülö xmum-hoz írjuk 8-t mumhoz 68-t. Szée látzk, hogy hogy zűkül z átlg körül tervllum megfgyeléek zámák öveléével.. grfko: Ábrázoljuk %-o kofdec tervllum ugrát = 0.8, 0.9, 0.95, 0.98 értékekre megfgyeléek zámák függvéyébe. Jelöljük k A4:A0 trtomáyt é Ctrl gombot yomv trtv I4:I0, K4:K0, L4:L0 é N4:N0 trtomáyokt, mjd zokott módo kézítük el grfkot. A dgrm területé jobb gombl klkkelve válzzuk forrádt meüotot. Az Adtor fülö írjuk be Név mezőbe mdegyk dtorhoz z hozzá trtozó értéket. Állítuk z y tegely káláját úgy, hogy z értéke formácót láuk, e ck zt, hogy k elemzámú mt eeté kofdec tervllumok ugr gy. 3. grfko: Ábrázoljuk kofdec tervllum ugrát 5, 50, 75 é 00 elemű mt eeté függvéyébe. - Jelöljük k z F3:3, F7:7, F5:5, F77:77 é F0:0 trtomáyokt. A zokáo módzerrel kézítük el grfkot, jelmgyrázthoz írjuk be mt elemzámát. Itt zt tztljuk, hogy =-re =0.98-hoz kéet több gyágreddel gyobb értékek jöttek k. Ez em megleő, hze = zt jelet, hogy várhtó érték vlózíűéggel beleek z tervllumb. Igzából ehhez zgfkc zthez végtele gy tervllumot kée, hogy zámoljo z Excel, de ylvá közelíté-kerekíté hbák mtt ck egy gyo gy zámot d eredméyül végtele helyett. - Állítuk kálázát megfelelőre. Láthtjuk, hogy kofdec tervllum hozát befolyáolj zgfkc zt é megfgyeléek zám. Egy kíérlet tervezéekor előre el kell döte, hogy háy megfgyelét végzük. Célzerű végggodol, hogy kíérlettől mt váruk: Adott zgfkc zte z átlg legye egy dott tervllum-hozo belül. 4. Feldt FELADA Közvetle méréel mérték egy,5 kg-o moóor töltőtömegét. A méré eredméye tábláztb láthtó zámor..) Adj meg méré eredméyét z átlg é 95%-o zthez trtozó hbkorlát lkjáb!

6 b.) Fogdjuk el, hogy z.) otb kzámolt korrgált tztlt zórá jó beclée zórák. Eek ljá zámolj k, hogy háy mérét kell végeze hhoz, hogy reltív hbkorlát % lá üllyedje. egoldá: ) A. feldt mtájár, vázlto: ) átlg, G: =ÁLAG(C:C3) ) t. korr. zórá, G: =zór.m(c:c3) 3), G3: =drb(c:c3) 4), G4: =0,95 5) lmbd tudet, G6: =verz.t(-g4;g3-) 6), G8: =G6*G/gyök(G3) 7) válz: A moóoro doboz 95 %-o bztoággl,5 ± 0,043 kg-y moóort trtlmz. b) Eek kzámítá em yr egyzerű, hogy ck má átredezzük z = λ t = (λ t ) mert ugye λ t gzából függ z -től, tehát ez gzából egy emleár egyelet, mt meg kellee olduk. Ehelyett kább fvágó módzert köveük, róbálkozzuk ddg, míg meg em tláljuk megfelelő értéket. ehát kézítük egy három ozloo tábláztot, mbe külöböző -ekre kzámítjuk, hogy hogy változk lmbd tudet, ( t.korr. zórá feltételezé ljá változtl mrd) é z tervllum ugr. ), F4: 5; F5: 0; F6: 5; tb ) lmbd tudet, G4: =verz.t(-$g$4;f4-) ezt húzzuk le 3), H4: =G4*$G$/gyök(F4) ezt húzzuk le 4) válz: 38 mérét kell elvégez, hogy reltív hbkorlát % lá cökkeje. 5. Feldt FELADA Egy yg zkítózlárdágát kzárólg rocoláo kíérlettel lehet meghtároz. Egy egy kíérlet yg- é dőgéye, özeítve egy kíérlet 500 ft-b kerül. A tábláztb egy yg, jeleleg zkítógéel mért értéket muttj 0-zer megmételt mérére. ) Adjo 95%-o kofdec tervllum beclét z yg zkítózlárdágár 0 méré ljá! b) Fogdjuk el, hogy z.) otb kzámolt korrgált tztlt zórá em változk mt elemzám öveléével. Eek ljá zámolj k, hogy háy mérét kell még elvégeze hhoz, hogy hbkorlát 4 lá üllyedje. ekkor ezekek tovább méréekek költége? c) A zkítógéhez kcolt mtvételező egyég ceréjével méré bzoytlág zórá gymértékbe (felére) cökkethető. Feltételezve, hogy z új mtvételező egyéggel méréek tztlt korrgált zórá z ) otb kzámolt érték fele lez, djo beclét rr votkozó, hogy háy mérét kellee végez z új

7 mtvételező egyéggel, hogy hbkorlát 4 lá kerüljö. ekkor eek méré oroztk költége belezámítv, hogy z új mtvételező egyég ft-b kerül? d) ér meg jobb? Sok mérét végez rég beredezée, vgy beruház egy új mtvételező egyégbe é zzl elvégez méréeket? egoldá: ) t z előző feldtok. ) átlg, B30: =átlg(b8:b7) ) korr.t. zórá, B3: =zór.m(b8:b7) 3) lmbd tudet, B33: =verz.t(-0,95;9) 4), B34: =B33*B3/GYÖK(0) b) t 4/b) feldt megoldá. Arr kell egyedül fgyel luzb, hogy z tervllum ugrák kzámítákor z újbb méréek végzéekor z értéke 0-től felfele ő (,, ), ezzel kell zámol lmbdát é z -t, vzot z ár ozlo kzámítákor már ck z új méréek árát kell fgyelembe ve, tehát rég gé eeté (-0)*500-t kellee fzet ), F0: =0+G0 ) -0, G0:, G:, 3) lmbd, H0: =verz.t(-0,95;f0-) 4), I0: =H0*$B$3/GYÖK(F0) 5) ár, J: =G0*500 c) Az új gé eeté, =-ről dítuk tábláztot, =-él lmbd tudet-ek c értelme. ), 0:, : 3, ) lmbd, N0: =verz.t(-0,95;0-) 3), O0: =N0*$B$3//GYÖK(0) 4) ár, 0: = *500 d) ehát megér új géet ve. 6. Feldt Véletle hbák terjedée: Az x, x,, x meyégeket terhelő hbák legyeek redre ε, ε,, ε. Az y meyéget (m x, x,, x -ek függvéye) terhelő ε y hb ylor-orfejté utá ( leárál mgbb redű tgokt elhygolv): ε y = f ε x dkét oldl zóráát véve: σ y ( f ) σ x x = A reltív zóráégyzet ebből:

8 ( σ y y ) = ( f ) ( σ x x y ) k y = c x lkú függvéyek eeté ez tovább egyzerűödk: ( σ y y ) (k σ x ) x = FELADA Egy heger lkú mérőedéybe 000±5 kg/m 3 űrűégű fetéket töltük. A heger átmérője 00±0.5 mm, folydékozlo mgág 00±mm. Htározz meg betöltött feték tömegéek hbkorlátját. (A hbkorlát zórá kétzeree.) egoldá: ( σ m m ) ( σ D D ) + ( σ h h ) + ( σ ρ ρ ) σ m m ( σ D D ) + ( σ h h ) + ( σ ρ ρ ) A tömeg m = ρv = ρ d πh. A muklo B3-tól D3-g töltük k meyégek dott 4 értéket, ltt hbkorlátokt, mjd B5-től D5-g edg zóráokt (z dott hbkorlátok fele). Számoljuk k m átlgo értékét: B8=B3*C3^/4*I()*D3 A fet kélettel zámoljuk k σm et, mjd Δm hbkorlátot: B9==B8*SQR((*C5/C3)^+(D5/D3)^+(B5/B3)^) B0==*B9 ehát folydék tömege: m= 6,83±0,kg

5. gyakorlat Konfidencia intervallum számolás

5. gyakorlat Konfidencia intervallum számolás 5. gykorlt Kofideci itervllum zámolá. Feldt Cél: Normál elozlá gyor áttekitée. Az IQ tezteket úgy állítják öze, hogy tezt eredméye éeége belül ormáli elozlát kövee 00 ot átlggl é 5 ot zórál. A éeég háy

Részletesebben

ξ i = i-ik mérés valószínségi változója

ξ i = i-ik mérés valószínségi változója EGYENESILLESZTÉS: A LEGKISEBB NÉGYZETEK MÓDSZERE Kíérleteket elvégeztük. Dolgozzuk fel az adatokat! Cél: mért változók (T, p, I, U ) között kapcolat felderítée. 1. zóródá dagram {x, y } ábra. kvattatív

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

A várható érték vizsgálata u és t statisztika segítségével

A várható érték vizsgálata u és t statisztika segítségével A várható érték vizgálata u é t tatiztika egítégével Feltételezzük hogy ormáli elozláú alapokaágból vett véletle mita/miták alapjá vizgáljuk hogy az imeretle várható érték milye feltételezett értékel egyel

Részletesebben

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk Egy faktor zernt NOV Nevével ellentétben nem zóráok, hanem átlagok özehaonlítáára zolgál Több független mntánk van, elemzámuk,...,,, r y,...,, y, y,..., yr;,, r H : r NOV. élda (Box-Hunter-Hunter: Stattc

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

Mérések, hibák. 11. mérés. 1. Bevezető

Mérések, hibák. 11. mérés. 1. Bevezető 11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i

Részletesebben

fizikai-kémiai mérések kiértékelése (jegyzkönyv elkészítése) mérési eredmények pontossága hibaszámítás ( közvetlen elvi segítség)

fizikai-kémiai mérések kiértékelése (jegyzkönyv elkészítése) mérési eredmények pontossága hibaszámítás ( közvetlen elvi segítség) BEVEZEÉS Eladá célja: fzka-kéa éréek kértékelée jegyzkönyv elkézítée éré eredények pontoága hbazáítá közvetlen elv egítég éré technkák egerée alapvet fzka ennyégek pektrozkópa éréek elektrokéa éréek Ma

Részletesebben

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma

Részletesebben

Szoldatics József, Dunakeszi

Szoldatics József, Dunakeszi Kstérség tehetséggodozás Rekurzív soroztok Szoldtcs József, Dukesz Npjkb egyre több verseye jelek meg rekurzív sorozt. Ezek megoldásához d ötleteket ez z elődás, A feldtok csoportosítv vk megoldás módszerek

Részletesebben

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet) oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a

Részletesebben

Olimpiai szakkör, Dobos Sándor 2008/2009

Olimpiai szakkör, Dobos Sándor 2008/2009 Olimpii ször, Dobos Sádor 008/009 008 szeptember 9 Eze szörö Cev és Meelosz tételt eleveítettü fel, több gyorló feldttl, éháy lehetséges áltláosítássl További feldto: = 6 (=,, ) Htározzu meg z összes oly

Részletesebben

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr. Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy

Részletesebben

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése íbel culó zeezete egyeúlyozáá éáy édée íbel culó zeezete egyeúlyozáá éáy édée DR BENKŐJÁNO gátudoáy Egyete Gödöllő Mg Gépt Itézet gyoozgáú gépzeezete tevezéée foto lépée z egyelete, ezgéete üzeet bztoító

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

2. gyakorlat 2. Mérési adatok feldolgozása, mérési eredmény megadása. 2.1. Matematikai statisztikai alapismeretek (kiegészítés)

2. gyakorlat 2. Mérési adatok feldolgozása, mérési eredmény megadása. 2.1. Matematikai statisztikai alapismeretek (kiegészítés) . gyakorlat. Méréi adatok feldolgozáa méréi eredméy megadáa... Matematikai tatiztikai alapimeretek (kiegézíté) A matematikai tatiztika tárgya az hogy a tapaztalati adatokból következtee a telje okaág vagy

Részletesebben

Statisztika gyakorló feladatok

Statisztika gyakorló feladatok . Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.

Részletesebben

II. Lineáris egyenletrendszerek megoldása

II. Lineáris egyenletrendszerek megoldása Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0

Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0 Fizikkönyv ifj Zátonyi Sándor, 16 Trtlom Foglmk Törvények Képletek Lexikon Mozgá lejtőn Láttuk, hogy tetek lejtőn gyoruló mozgát végeznek A következőkben vizgáljuk meg rézleteen ezt mozgát! Egyene lejtőre

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

1. Gyors folyamatok szabályozása

1. Gyors folyamatok szabályozása . Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Háromszög n egyenlő területű szakaszra osztása, számítással és szerkesztéssel. Bevezetés

Háromszög n egyenlő területű szakaszra osztása, számítással és szerkesztéssel. Bevezetés Háromszög egyelő területű szkszr osztás, számítássl és szerkesztéssel Bevezetés Az építészet szkrodlomb elég gykr előfordul címbel feldt, főleg kötőelemek kosztáskor. Ezek lehetek szegek, csvrok, betétek,

Részletesebben

Ellenállás mérés hídmódszerrel

Ellenállás mérés hídmódszerrel 1. Lbortóriumi gykorlt Ellenállás mérés hídmódszerrel 1. A gykorlt célkitűzései A Whestone-híd felépítésének tnulmányozás, ellenállások mérése 10-10 5 trtománybn, híd érzékenységének meghtározás, vlmint

Részletesebben

ALGEBRA. 1. Hatványozás

ALGEBRA. 1. Hatványozás ALGEBRA. Htváyozás kitevő Péld: lp H kitevő természetes szám, kkor db téyező Bármely szám első htváy ömg Bármely ullától külöböző szám ulldik htváy egy. 0 ( 0) (0 0 em értelmezett) Htváyozás számológéppel:

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

Törésmechanika. Statikus törésmechanikai vizsgálatok

Törésmechanika. Statikus törésmechanikai vizsgálatok Törésmechnik (Gykorlti segédlet) A C törési szívósság meghtározás Sttikus törésmechniki vizsgáltok A vizsgáltokt áltlábn z 1. és. ábrán láthtó úgynevezett háromontos hjlító (TPB) illetve CT róbtesteken

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája?

FELADATOK MÉRÉSELMÉLET tárgykörben. 1. Egy műszer osztálypontossága 2.5, a végkitérése 300 V. Mekkora a mérés abszolút hibája? FELADATOK MÉÉSELMÉLET tárgykörbe. Egy műszer osztálypotosság., végktérése 3 V. Mekkor mérés bszolút hbáj? H Op v / %,*3/ 7, V. A fet műszer V-ot mér. Mekkor mérés reltív hbáj? H h v % 6,% h 3. Egy mérés

Részletesebben

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Ö ü ö ü Ö Ö ü ú ó ü ö ö Ö ó Ö ö ú ö ó ö ö ó ö ö ö í í ö ö ü ü ö í ü ö ö í ö í ó ü ö ö í ü í ö í ü ú ü ö Ö ü ö ű ó í ó ó ó ö í ü ó ó ó ö ö ó ö í ó ü ó ó ö ö ü ó ö ö ó ó ó ü ü ó ó ö ö ü í ö ű ö ű ö ö ű í

Részletesebben

í ö í í ú ű í í í ú í ű í Ü ö ö ö ü ö ö ö í ö ö ö ö Ö Á ö ö É ö ö ú ú ö ö ú ö í Á Á ö Ü Ú í ÁÁ ö í ö í í ú ű í ö ö í ú É í ű í ö ö É í í ű í ű í É í í ü ű ü ű í Á Á í ü í ü í ü ö ű ö É ü É ú Á Ó í í í

Részletesebben

A fenti egyenletek képezik a 3D, 7 paraméteres Helmert transzformáció algebrai megoldásának alapját.

A fenti egyenletek képezik a 3D, 7 paraméteres Helmert transzformáció algebrai megoldásának alapját. Geomtk Közleméyek XVII 4 NÉHÁNY ALENAÍV MEGOLDÁSI LEHEŐSÉG A D NEMLINEÁIS HASONLÓSÁGI DÁUM- ANSZFOMÁIÓ ALKALMAZÁSÁA A BUSA-WOLF MODELL VISZONYLAÁBAN Závot Józef Klmár Jáo Some ltertve olte for the oluto

Részletesebben

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János január

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János január MUNAGAZDASÁGTAN ézült a TÁMOP-4..-8//A/MR-9-4pályázat proekt keretébe Tartalomfelezté az ETE TáT Szocálpoltka Tazéké az ETE özgazdaágtdomáy Tazék, az MTA özgazdaágtdomáy Itézet é a Bala adó közreműködéével

Részletesebben

Jeges Zoltán. The mystery of mathematical modelling

Jeges Zoltán. The mystery of mathematical modelling Jege Z.: A MATEMATIKAI MODELLEZÉS... ETO: 51 CONFERENCE PAPER Jege Zoltán Újvidéki Egyetem, Magyar Tannyelvű Tanítóképző Kar, Szabadka Óbudai Egyetem, Budapet zjege@live.com A matematikai modellezé rejtélyei

Részletesebben

á á á ľ á ő ĺ ö á ľ ĺ ö ľő ć ő ö ľ á ľ ó á áľó ú á á á Ö ľ á á ő ö á á á ö á ö á ú á á á Ö á ő ľ ű ö á á ő ő ő ľ á ľ ü ő ü á áĺ Íő ü á á ú á á á á ő ü á á á ú á á á Ö á ó ű ö á áľő ő ő ö ľ á ľ ľ ü ő á

Részletesebben

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára Zárthely dolgozat 04 B.... GEVEE037B tárgy hallgató zámára Név, Neptu kód., Néháy oro rövd léyegre törő válazokat adjo az alább kérdéekre! (5pot) a) Számítógépe mérőredzerek elépítée (rajz) (33.o.) b)

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v.

Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v. Középzinű éreégi feladaor Fizika Elő réz 1. Melyik ebeég-idő grafikon alapján kézül el az ado ú-idő grafikon? v v v v A B C D m 2. A gokar gyoruláa álló helyzeből12. Melyik állíá helye? m A) 1 ala12 a

Részletesebben

Paraméteres eljárások, normalitásvizsgálat, t-eloszlás, t-próbák. Statisztika I., 2. alkalom

Paraméteres eljárások, normalitásvizsgálat, t-eloszlás, t-próbák. Statisztika I., 2. alkalom Paraméere eljáráok, normaliávizgála, -elozlá, -próbák Saizika I.,. alkalom Paraméere eljáráok Becülik a populáció egy paraméeré Alkalmazáuknak zámo feléele van (paraméerek é a válozó elozláa Cak normál

Részletesebben

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 2. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 02

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK

6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK 6. Lbortóriumi gykorlt KAPAITÍV SZINTÉRZÉKELŐK. A gykorlt célj A kpcitív szintmérés elvének bemuttás. A (x) jelleggörbe ábrázolás szigetelő és vezető olyékok esetén. Egy stbil multivibrátor elhsználás

Részletesebben

Programozási tételek felsorolókra

Programozási tételek felsorolókra Progrozás tételek elsorolókr Összegzés Feldt: Adott egy E-bel eleeket elsoroló t obektu és egy :E H üggvéy. A H hlzo értelezzük z összedás sszoctív bloldl ullelees űveletét. Htározzuk eg üggvéyek t eleehez

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

ó ó ü ľ ó ü ó ľ ü ń ó ó ó ö ę ź ź ö ö ö ö ę ę ö ó ľ ó ę ź ó ö ó ź Ĺ ź ó ť ú ü ű ö ó ź ó ö ó ö ľ ö ľ ń ó ľ ź ű ö ń ó ź ź ť ľ ó ľ ź ü ť ź ó ü ť ö ó źů ý ťü ľ ú ó ď ľ ľ ľ ľ ó ó ľ ń ľ ľ ö ó ľ ó ľ ö ź ó ľ ľ

Részletesebben

ľ ź ó ź ľ ľ ď ľ ú ó ľ ö đ ü ú ü ľ ú đ ź ľ Ĺ ű ľ ľ ó Ĺ ľ ó ľ ö Ł ź ú ö ó ľ ö ö đ ú ö ö ó ľ đ Ĺ ź ó ľ ľ ö ó ľ ó ó ó ź ú ű Ĺ ó ö ú ü ď ó ľ ľ ó ó ľ ľ ó ó

ľ ź ó ź ľ ľ ď ľ ú ó ľ ö đ ü ú ü ľ ú đ ź ľ Ĺ ű ľ ľ ó Ĺ ľ ó ľ ö Ł ź ú ö ó ľ ö ö đ ú ö ö ó ľ đ Ĺ ź ó ľ ľ ö ó ľ ó ó ó ź ú ű Ĺ ó ö ú ü ď ó ľ ľ ó ó ľ ľ ó ó ó ľ ź ľ ąź ľ ľů ü ľ Ĺ ľ ó ľ ó ľó ľ ę ü ó ź ó ó ó ź ö ö ó ó Ł ö ę Đ Ĺ ö ü ľ ö ľ ľó ľ óđ ą ö ľ ü ó ľ ľ ó ľ ľ ú ü ľ ó ľ ú ű ľ ľó ľ ó ą ľ ó ö ó ľ ó Ý Đ ľ ú ü ű ö ó ľ đ ó ď ö óđ ą ľ ź ó ź ľ ľ ď ľ ú ó ľ ö đ

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1

SMART, A TÖBBSZEMPONTÚ DÖNTÉSI PROBLÉMA EGY EGYSZERŰ MEGOLDÁSA 1 III. Évfolym. szám - 008. úius Gyrmti József Zríyi iklós Nemzetvédelmi Egyetem gyrmti.ozsef@zme.hu SRT, TÖBBSZEPONTÚ DÖNTÉSI PROBÉ EGY EGYSZERŰ EGODÁS bsztrkt cikk egy többszempotú dötési módszert mutt

Részletesebben

Mátrix-vektor feladatok Összeállította dr. Salánki József egyetemi adjunktus Begépelte Dr. Dudás László és Bálint Gusztáv

Mátrix-vektor feladatok Összeállította dr. Salánki József egyetemi adjunktus Begépelte Dr. Dudás László és Bálint Gusztáv Mátrx-vektor feldtok Összeállított dr. Slánk József egyetem djunktus Begépelte Dr. Dudás László és Bálnt Gusztáv 1. feldt Adottk z n elemű, b vektorok. Képezn kell c vektort, hol c = b / Σ( ), ( = 0,1,,

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Gyakorló feladatok a mozgások témaköréhez. Készítette: Porkoláb Tamás

Gyakorló feladatok a mozgások témaköréhez. Készítette: Porkoláb Tamás ELMÉLETI KÉRDÉSEK Gyakorló feladatok a mozgáok témaköréez 1. Mit mutat meg a ebeég? 2. Mit mutat meg a gyorulá? 3. Mit mutat meg az átlagebeég? 4. Mit mutat meg a pillanatnyi ebeég? 5. Mit mutat meg a

Részletesebben

6. MÉRÉS ASZINKRON GÉPEK

6. MÉRÉS ASZINKRON GÉPEK 6. MÉRÉS ASZINKRON GÉPEK A techikai fejlettég mai zívoalá az azikro motor a legelterjedtebb villamo gép, amely a villamo eergiából mechaikai eergiát (forgó mozgát) állít elő. Térhódítáát a háromfáziú váltakozó

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

STATISZTIKA. Terjedelem. Forgalom terjedelem. R=MAX(adatok) MIN(adatok) kvartilis eltérés : Qe

STATISZTIKA. Terjedelem. Forgalom terjedelem. R=MAX(adatok) MIN(adatok) kvartilis eltérés : Qe Terjedelem STATISZTIKA 6. gyakorlat Szóródá mutatók A zóródá terjedelme a tatztka or legagyobb é legkebb eleme között k külöbég. R ma m ggvéyek Függvéykategóra: Statztka RMAX(adatok) MI(adatok) Forgalom

Részletesebben

Budapesti Műszaki Főiskola Kandó Kálmán Villamosmérnöki Főiskolai Kar Automatika Intézet. Félévi követelmények és útmutató VILLAMOS GÉPEK.

Budapesti Műszaki Főiskola Kandó Kálmán Villamosmérnöki Főiskolai Kar Automatika Intézet. Félévi követelmények és útmutató VILLAMOS GÉPEK. Budpeti Műzki Főikol Kndó Kálmán Villmomérnöki Főikoli Kr Automtik ntézet Félévi követelmények é útmuttó VLLAMOS GÉPEK tárgyból Villmomérnök zk, Villmoenergetik zkirány, Távokttái tgozt 5. félév Özeállított:

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

II. ALGEBRA ÉS SZÁMELMÉLET

II. ALGEBRA ÉS SZÁMELMÉLET MATEMATIKA FELADATSOR 9. évolym Elézést tegezésért! I. HALMAZOK Számegyeesek, itervllumok. Töltsd ki táláztot! Mide sor egy-egy itervllum hároméle megdás szerepelje!. Add meg következő itervllumokt! A

Részletesebben

Az APEH 2009. évi ellenőrzési tevékenysége

Az APEH 2009. évi ellenőrzési tevékenysége Az APEH 2009. évi ellenőrzési tevékenysége Dr. Szikora János elnök Varga Lászlóné elnökhelyettes Polgár Péter igazgató Az APEH középtávú stratégiai terve 2008-2012. 1. STRATÉGIAI CÉL: Az adózók önkéntes

Részletesebben

Szemléletes lineáris algebra - összefoglaló I. mérnökhallgatónak. Segédanyag az NGB_SZ003_2, N_SZ45 és N_SZ14 tárgyakhoz

Szemléletes lineáris algebra - összefoglaló I. mérnökhallgatónak. Segédanyag az NGB_SZ003_2, N_SZ45 és N_SZ14 tárgyakhoz Szemléletes lieáis lgeb - összefoglló I. méöhllgtó Segédyg z NGB_SZ_, N_SZ5 és N_SZ tágyhoz összeállított: D. Szöéyi Milós főis. doces 8. Ttlom:. Lieáis té. Tájéozódás lieáis tébe Lieáis ombiáció Lieáis

Részletesebben

Folyamatos működésű anyagmozgató gépek, géprendszerek teljesítőképességének meghatározása

Folyamatos működésű anyagmozgató gépek, géprendszerek teljesítőképességének meghatározása Folymtos műödésű ygmozgtó gépe, gépredszere telesítőépességée meghtározás A folymtos műödésű ygmozgtó gépe ellemzése telesítőépesség meghtározás szempotából: helyhez ötött, telepített gépe, mozgtás útvolt,

Részletesebben

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL SZAKDOLGOZAT Készítette: Kovács Blázs Mtet BSc, tár szrá Tévezető: dr Wtsche Gergel, djutus ELTE TTK, Mtettítás és Módszert Közot Eötvös Lorád Tudoáegete Terészettudoá

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb: Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente

Részletesebben

Kidolgozott minta feladatok kinematikából

Kidolgozott minta feladatok kinematikából Kidolgozott minta feladatok kinematikából EGYENESVONALÚ EGYNLETES MOZGÁS 1. Egy gépkoci útjának az elő felét, a máik felét ebeéggel tette meg. Mekkora volt az átlagebeége? I. Saját zavainkkal megfogalmazva:

Részletesebben

Gyakorló feladatsor 9. osztály

Gyakorló feladatsor 9. osztály Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n

Részletesebben

Regresszióanalízis. Lineáris regresszió

Regresszióanalízis. Lineáris regresszió Regrezóanalíz Lneár regrezó REGRESSZIÓ 1 Modell: Valamely (pl. fzka) törvényzerûég értelméen az x független változó zonyo értékénél a függõ változó értéke Y ϕ (x). Y helyett y értéket mérünk, E(y x) Y,

Részletesebben

ő ľ ľü ľ ľ ü Ü Ü ľ ő ľ Ő ń ľü ľ íľ ő ő źů ő í í ü ö ü ľ ź ő ö ü ő ľő ő ö ü źů ź ź í ö ľ ź ő ľ ü ö ö ź ő đí ź ľ ő ö ű í í ö ü ö í í ú ü í ź ő ő í ú í ő Ó ő ü ú í í ú í ú ő ú ľ ő ü ő ü ű ő ő í ü ö ő í ą

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

[A MINŐSÍTETT MÉRŐESZKÖZÖK KEZELÉSÉNEK TÁRGYÁBAN KÉSZÍTETT FELMÉRÉS ÖSSZEGZÉSE]

[A MINŐSÍTETT MÉRŐESZKÖZÖK KEZELÉSÉNEK TÁRGYÁBAN KÉSZÍTETT FELMÉRÉS ÖSSZEGZÉSE] 2011. Egészségügyi Szkképző és Továbbképző Itézet [A MINŐSÍTETT MÉRŐESZKÖZÖK KEZELÉSÉNEK TÁRGYÁBAN KÉSZÍTETT FELMÉRÉS ÖSSZEGZÉSE] Részletek z értékelésből A miősített mérőeszközök kezelése részletek z

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

Megjegyzések a mesterséges holdak háromfrekvenciás Doppler-mérésének hibaelemzéséhez

Megjegyzések a mesterséges holdak háromfrekvenciás Doppler-mérésének hibaelemzéséhez H E L L E R MÁRTA DR. FERENCZ CSABA Megjegyzések esteséges holdk háofekvencás Dopple-éésének hbelezéséhez ETO 62.396.962.33.8.46: 629.783: 88.3.6 Mnt z á előző ckkünkből [] s set, kuttás bn és esteséges

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

Egyenáramú motor kaszkád szabályozása

Egyenáramú motor kaszkád szabályozása Egyeáramú motor kazkád zabályozáa. gyakorlat élja z egyeáramú motor modellje alajá kazkád zabályozó terezée. zabályozá kör feléítée Smulk köryezetbe. zmuláó eredméyek feldolgozáa.. Elmélet beezet a az

Részletesebben

II. EGYENLETEK ÉS EGYENLŐTLENSÉGEK

II. EGYENLETEK ÉS EGYENLŐTLENSÉGEK Egyenletek és egyenlőtlenségek 5 II EGYENLETEK ÉS EGYENLŐTLENSÉGEK Az idők folymán ngyon sok gykorlti problém merült fel, melynek megoldásához egyenletekre volt szükség A mi egyszerű és tömör mtemtiki

Részletesebben

é ü ú á á á Ö á Íĺ ő é á é ú á á á áľ é é ő óľ ľ Ö ő á ó á ü é é ő ü é á á á á á ű ő é á é ú á á ö á á ö ö ľ á é á ó ó á á á á á á á á ľ í ő ő ó á é ő é é é ý á ő á á ó ý é ő ő é é Á á é é ó á ő ó í é

Részletesebben

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b XVII ERDÉLYI MAGYAR MATEMATIKAVERSENY CSÍKSZEREDA 007 FEBRUÁR 8- NAP 9 OSZTÁLY Igzoljuk, hogy mide * \ {} eseté 5 ( ) Lckó József, Csíkszered Az b,, b számok eseté htározzuk meg z Ex ( ) x b x kifejezés

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Portfólióelméleti modell szerinti optimális nyugdíjrendszer

Portfólióelméleti modell szerinti optimális nyugdíjrendszer MŰHELY Közgazdaág Szemle, LVIII. évf., 011. zeptember (79 805. o.) Szüle Borbála Portfólóelmélet modell zernt optmál nyugdíjrendzer Az optmál nyugdíjrendzer elmélete ránt az utóbb években folyamato érdeklődé

Részletesebben

Á É Á É Ü É é í ü ü ü é é ö é é é é ö é ó ó é é í ó é é é é ü é ó ó éó ó ó é é é é é é é í ó Ü ö ö ű é ű í é ó é ó é ü é í ü é ü ü é é í ö ö é ü é í ü ü é é é ü ö é ó ó ö í ó é é ü ö é ö í é é é é ü é

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

A Szakács Jenő Megyei Fizika Verseny I. forduló feladatainak megoldása 1

A Szakács Jenő Megyei Fizika Verseny I. forduló feladatainak megoldása 1 A Szkác Jenő Megyei Fizik Vereny I. forduló feldtink egoldá. 0, c 0,7 /, /, 0, /. c )? d? ) Az elő ut ebeége: c +,7 /. pont A áodik ut ebeége: c 0, /. 3 pont Az elő ut ozgáánk ideje: 0 t 30. pont,7 A áodik

Részletesebben

Ě ŕ Ś đ ü ü ö ő ő ö ö ö ö ö ö ö ö ö ź ź ľ ą Ä ľ ľ ö ľ ľ ľ ľ Đ öľ ő ö ö ő ő ľ ő ő ý ľ ő ú ú ő ö ő ú ę ą ő ö ő ű ö ő ő Ü ö ö ľ ś ő ń ä ę ľ Ü ľ ő ü ő ú ľ ľ ö ö ő ü ő ú Á Á ľ ę ő ü ő Á ľ ő ő ü ľ Ę ő ü ö ú

Részletesebben

Az alakváltozással vezérelt kisciklusú fáradás törvényszerûségei Lehofer Kornél

Az alakváltozással vezérelt kisciklusú fáradás törvényszerûségei Lehofer Kornél Kisciklusú fársztás VIZSGÁLAI MÓDSZEREK Az lkváltozássl vezérelt kisciklusú fárdás törvéyszerûségei Lehofer Korél Abstrct Lws of the low cycle ftigue cotrolled by stri. hese lws re preseted kept i view

Részletesebben

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám

PÉLDA: Négyezer-hatszázöt 4 6 0 5 Jel Szám 3. TESZTFÜZET JAVÍTÓKULCS / 2 ELEMI SZÁMOLÁSI KÉSZSÉG Minden helyes megoldás esetén 1, ármilyen hiányosság vgy hi esetén 0 pontot kell dni. SZÁMÍRÁS A BETŰVEL MEGADOTT SZÁMOKAT ÍRD LE SZÁMJEGYEKKEL! 03

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Ventilátorok üzeme (16.fejezet)

Ventilátorok üzeme (16.fejezet) Vetilátoro üzee (16.fejezet) 1. Defiiálja vetilátoro tatiu é zyoá veedéét! Vázlato utaa eg az zyoá ooeeie változáát egy egyfoozatú terelőrá élüli a ilééél a járóeré utá diffúzorral ellátott iáli átléű

Részletesebben

Hosszmérés finomtapintóval 2.

Hosszmérés finomtapintóval 2. Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben