2. gyakorlat 2. Mérési adatok feldolgozása, mérési eredmény megadása Matematikai statisztikai alapismeretek (kiegészítés)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. gyakorlat 2. Mérési adatok feldolgozása, mérési eredmény megadása. 2.1. Matematikai statisztikai alapismeretek (kiegészítés)"

Átírás

1 . gyakorlat. Méréi adatok feldolgozáa méréi eredméy megadáa... Matematikai tatiztikai alapimeretek (kiegézíté) A matematikai tatiztika tárgya az hogy a tapaztalati adatokból következtee a telje okaág vagy elleőrizedő gyártátétel má eetekbe a gyártái (zolgáltatái) folyamat elméleti valózíűégi elozlááak imeretle jellemzőire. Mide méréi eredméy tartalmaz hibát a valódi méretet cak közelítjük becüljük több keveebb hibával. A méréi eredméyt befolyáoló meyiégek lehetek például a mérőezköz hőméréklete (hozméré) a ehézégi gyorulá (egye mérlegekél) frekvecia légyomá portartalom tb. A várható (valódi) érték beclééél a okzor imételt méré célja a véletle hibák cökketée. A méréek többzöri imétléével kapott eredméyeket méréi orozatak evezzük. A méréi orozat elemei elemi eeméyek. A várható (valódi) érték tehát a véletle hibáktól mete eredméy. Vége zámú méréél a valódi méretet potoa em lehet meghatározi de lehetége olya itervallum (tartomáy) megadáa mely tetzőlege valózíűéggel tartalmazza a várható értéket. A változatla körülméyek között mért méréi orozat zámú méréből áll. A mért értékeket jelöljük a következőképpe:. i. Az eredméy a várható érték általuk legvalózíűbbek tartott beclée valamit körülötte egy itervallum mely tetzőlege valózíűéggel tartalmazza a várható értéket. A várható érték legjobb beclée a orozat átlaga vagy egye eetekbe a mediá vagy a móduz. Átlag: = = i i= ahol: - a méréi orozat átlaga - méréek záma - a mért értékek Az átlag körüli zóródát véletle hatáok okozzák redzere é durva hiba em lép fel. Az átlag az a zám amelytől az egye mért értékek külöbégéek özege zéru. Vagyi ha az átlagtól agyobb értékek midegyikéből kivojuk az átlagot é a külöbégeket özeadjuk akkor ez a zám egyelő az átlag é a áláál kiebb értékek külöbégéek özegével. Az átlag az a zám amely biztoítja azt hogy a tőle vett külöbégek égyzetözege miimáli. Emiatt alkalma az átlag a valódi várható érték becléére ezért evezik a legvalózíűbb értékek. Mediá: a orozat középő eleme (vagy páro zámú mért érték eetébe a két középő elem zámtai közepe) jele: Me. A mediá két rézre oztja a mitát az aló réz mediája a 5%-o aló kvartili a felő réz mediája a 75%-o felő kvartili. agyobb meyiégű adat birtokába meghatározhatók a percetiliek (zázalék). A percetili érték egy olya zázaléko érték ami kifejezi hogy a vizgált egyedekek legfeljebb mekkora háyadára jellemzõ az adott érték. Móduz: a legagyobb gyakoriággal (legtöbbzör) előforduló elem jele: Mo. A mért adatok zóródáa. A zóródá legikább jellemezhető a terjedelemmel (jele: R) vagy a becült zóráal (jele: vagy ). Terjedelem: R= ma mi ahol: ma - a legagyobb mért érték mi - a legkiebb mért érték R - a terjedelem. Szórá beclée má éve becült zórá:

2 A zóráégyzet (variacia) beclée: σˆ = = ± i i= ˆσ = = i i= ahol: vagy σˆ - a becült zórá (tadard eltéré) Az téyező evezője a orozat zabadágfoka. A zabadágfokot úgy kapjuk meg hogy a orozat tagzámából levojuk azokat a orozat elemeiből zármaztatott tagokat amelyeket felhazáltuk. A zórá zámítááál elemű mitáál - az oztó mivel a zámítá orá az átlagot felhazáltuk. Az átlag zóráa A külöböző időpotokba vagy má zemélyek illetve körülméyek között azoo daraboko végzett méréek átlagértékei általába em azooak. Ezért célzerű megadi olya véletle helyzetű itervallumot amely agy valózíűéggel tartalmazza a becüli kívát paramétert pl. ormáli elozlá eetébe a μ várható értéket. Eek határai az ú. kofidecia határok. Ezeket azokból az adatokból kell meghatározi amelyből az átlagot becülték. Az zámú méréi eredméy középértékéek (átlagáak) zóráa egyelő az egye értékek zórááak i -ed rézével azaz = ahol: - az átlagérték zóráa i - az egye értékek zóráa - a méréek záma Aak valózíűége hogy egy változóak az átlagtól való eltérée a zórá -zoroáál agyobb legye kiebb mit λ azaz P( λ ) λ Máképpe fogalmazva: az ± λ tartomáyo belül megtalálható az öze eeméy - λ zeree. Tetzőlege elozlá eeté például az ± 3 itervallumba megtalálható legalább az öze méré 8/9-ed réze 889 %-a. ormáli elozláál ez a biztoág agyobb (9973%). A ormáli elozlát két paraméter határozza meg: a μ várható érték é a σ zórá. ormáli vagy má éve Gau-elozláak evezük mide olya elozlát amelyek űrűégfüggvéye μ f() = e σ σ π ahol μ - az a várható érték amely felé az értékek átlaga ( ) közelít ha a méréek záma a végtelehez tart ( ) é σ - zórá amely felé a ˆ becült tapaztalati zórá közelít ha a méréek záma a végtelehez tart ( ). A ormáli elozlá űrűégfüggvéye - -től tart + -ig maimuma a μ várható értékél va zimmetriku az ifleió potok távolága a μ várható értéktől (a függőlege tegelytől) - σ é + σ. A zórá a várható érték é az elozlá ifleió potja közötti távolággal egyelő. Ha a görbe alatti

3 területet özegezzük é ezt ábrázoljuk a koordiátaredzerbe a - -től idulva kapjuk a függvéy F() elozlágörbéjét. Az f () űrűégfüggvéy alatti terület a (- + ) itervallumba -gyel egyelő. Ez azt jeleti hogy F( )=. A ormáli elozlá űrűégfüggvéye A ormáli elozlá elozlágörbéje A μ várható értékű é σ zóráú elozlát ( μ σ) jelöli a zakirodalomba. Az ehhez tartozó F() elozláfüggvéy értékeit táblázatból kell meghatározi. A táblázatot a zakköyvek tartalmazzák. A táblázatot az u. tadardizált ormáli elozlára adják meg amelyek várható értéke μ = 0 zóráa pedig = jelölée (0) elozláfüggvéyét pedig Φ() jelöli. Az (mσ) elozlát úgy vezetjük viza a tadardizált elozlára hogy bevezetjük az m u = σ helyetteítét é ekkor F () = Φ m ez lez a tadardizált ormáli elozlá elozláfüggvéye. Bármely ormáli elozlá eetébe eek táblázatából az elozláfüggvéy értéke meghatározható. Ebből a táblázatból az i meghatározható hogy milye valózíűéggel eik a megfigyelé (méré) eredméye az (m - k.σ; m + k.σ) zakazba (k zorzó téyező). Az tegely értékeiek függvéyébe a területeket táblázat tartalmazza épp úgy mit a ormáli elozlá értékeit. A következő ábra zemlélteti ezeket a valózíűégeket; az értékek: k=-re 0686 (686%) k=-re (9544%) k=3-ra (9973%).

4 .. Méréi adatok feldolgozáa feladat A feladat célja: A méréi adatok feldolgozááak gyakorláa. Elméleti imeretek A méretet megbízhatóa megbecüli cak több méré eredméyéből lehet. A kíérletorozat vagy gyártá eredméyéek meghatározáa kiértékeléi feladat mely matematikai tatiztikai feldolgozára ad lehetőéget. Két módzert hazálak: a kimiták módzerét melyek legagyobb mitaagyága 0 db a agymiták módzerét melyek legkiebb mitaagyága 40 db. A kimita módzer zerit meghatározzuk a méréi eredméyek tatiztikai jellemzőit: A mita átlaga = i i= ahol: - átlag é a mita elemeiek agyága A mita zóráégyzete: = i ebből a zórá: = i= A megbízhatóági határokat a következőképpe határozzuk meg. A kofidecia-itervallum (megbízhatóági tartomáy) a ormáli elozláú változó várható értéke körüli tartomáyt ad meg meghatározott valózíűéggel. Ez azt jeleti hogy a mért érték megbízhatóági határai mekkorák az előírt megbízhatóági zit eeté. Ha a megbízhatóági korlátokat é vel jelöljük é az -p jelölét megbízhatóági zitek (valózíűégek) evezzük akkor Imert zórá eeté a korlátok: σ az aló határ α = u p σ a felő határ α = +u p ahol: az imert zórá értéke é az u p téyező értékeit a táblázat tartalmazza: Valózíűégi zit Hibaaráy Az u p téyező értéke 90 % % % % 0 39 Imeretle zórá eeté két módo határozhatjuk meg a korlátokat.. Imerjük a tapaztalati zórá () értékét ekkor az a imeretle várható értékéek megfelelő kofidecia itervallum t a + az aló határ α = t a felő határ α = + t ahol t a Studet-faktor agyága a táblázatba található: t

5 A ormáli elozlá várható értékéek itervallumát az (-p) megbízhatóági zit é f = - érték függvéyébe meghatározó Studet-faktor f = p f = -p A mitaterjedelem alapjá i meghatározható az -p megbízhatóági zithez az a várható érték kofidecia-itervalluma ha q R a +q R az aló határ: a felő határ: α = q R α ; = +q R A q téyező értékeit az átlag kofidecia-itervallumáak zámítáához a táblázat tartalmazza. a mitaagyág q téyező ha a megbízhatóági zit a mitaagyág q téyező ha a megbízhatóági zit Kofidecia itervallum a ormáli elozláú változó zóráára a tapaztalati zórá alapjá. Megadjuk az -p megbízhatóági zitet majd az tapaztalati zórá értékét a mitából kizámítjuk. Az 4.7 táblázat a téyezőket adja meg a ormáli elozláú változó zórááak aló é felő kofidecia határához az - p megbízhatóági zit é az f = függvéyébe. Az - p é az f = értékekhez (zabadágfok) a táblázatból a é téyezőket kikereük. A téyezők egítégével tudjuk a kofidecia itervallum A aló é F felő határait a következő képlettel meghatározi: σ A = Ψ é σ F = Ψ A zóráégyzetekre érvéye kofidecia-itervallumot ezek égyzetre emeléével kapjuk: σ A σ σ F

6 -p f

7 ÓE BGK AGI Hozmérétechika abor. gyakorlati feladatlap A gyakorlat tárgya: Méréi eredméy megadáa hibaterjedé zámítá feladat A gyakorlat időpotja:.feladat A feladat célja: A méréi eredméy megadá gyakorláa A feladat leíráa: év évf.:... Állítuk öze mérőhaábból a.méretet a legkeveebb elem felhazáláával a táblázat adataiak felhazáláával! Írjuk be a táblázatba a méret özeállítáához felhazált mérőhaábok évlege méreteit () ha imerjük a redzere hibákat (H) é a mérőhaábok megegedett eltéréeit a táblázat felhazáláával ( a valódi hoz bizoytalaága a helye érték bizoytalaága)! i [mm] = = 3 = 4 = 5 = H i i Számítuk ki a mérőhaáb-kombiáció redzere hibáját a hozát é a hoz bizoytalaágát! A mérőhaáb-kombiáció redzere hibája: H = H + H + H 3 + H 4 + H 5 = A valódi hozt helyetteítő helye érték vagy a korrigált érték: = ( ) + H =.. A korrigált érték bizoytalaága a hibaterjedéi törvéy zerit zámítva: = ± = A mérőhaábok megegedett eltéréei a középmérettől é a párhuzamoágtól évlege méret [mm] potoági oztályú mérőhaáb megegedett eltérée [m] felett -ig Középmérettől Párhuzamoágtól Középmérettől Párhuzamoágtól Középmérettől Párhuzamoágtól Középmérettől Párhuzamoágtól Adjuk meg a mérőhaáb-kombiáció özeállítááak eredméyét a mértékegyég feltütetéével! X = =

8 . feladat Módzer: külöbég méré Elv: optomechaiku Méré módja: éritkezée Mérőezköz: optiméter ( m) A méréi folyamat leíráa A mukadarab méretéek megállapítáa közelítő méréel kegyele mikrométerrel. A közelítő méret imeretébe mérőhaáb-kombiáció özeállítáa. A mérőezköz ullára állítáa a mérőhaáb-kombiáció egítégével. Az özeállított mérőhaáb-kombiáció mérée 0-zer. A mért értékek a következők: 0; ; 0; -; ; ; ; 0; -; 0 m. A mukadarab méretéek mérée 0-zer. A mért értékek a következők: ; 3; -; ; -3; 0; ; 3; ; 3 m. A méréi eredméy megadáa. A mukadarab közelítő mérete kegyele mikrométerrel mérve: =.. mm. A zükége mérőhaáb-kombiáció mérete: =.mm. A mérőhaáb-kombiáció tagjai: =..mm =..mm 3 =..mm 4 =..mm 5 =..mm. Írja be az alábbi táblázatba a mért értékeket eltéréeket a beállított 0-tól m Méréek záma (k) Átlag Mérőhaáb eltéré a 0 helyzettől Mukadarab eltéré a 0 helyzettől A mért értékek tatiztikai feldolgozáa A mérőhaáb-kombiáció mért értékeiek zóráégyzete k 0 i i A mukadarab mért értékeiek tapaztalati zóráégyzete k 0 i i Az egye bizoytalaágok jellegük zerit redzere é véletle hibák melyek rézbizoytalaágokat tartalmazak. ahol mh a mukadarab mérééek bizoytalaága a mérőhaáb-kombiáció mérééek bizoytalaága mh a mérőhaáb-kombiáció méretéek bizoytalaága.

9 ahol valamit K é K - a mérőműzer (optiméter) legagyobb bizoytalaága a műzerhez tartozó hazálati leírá alapjá a telje méréi tartomáyba = 0 m; K é K a mukadarab illetve a mérőhaáb méré megbízhatóági (kofidecia) itervalluma: K t k ahol t a Studet elozlá paramétere (k-) = 9 zabadági fokzám eeté értéke 6; 95%-o valózíűégi zite. K t k Tehát mh H T ahol H = H + H + H 3 + H 4 + H 5 Jelöléek: Tehát valamit ahol: H = E + F =.. H = E + F =.. H 3 = E 3 + F 3 =.. H 4 = E 4 + F 4 =.. H 5 = E 5 + F 5 =.. H a mérőhaáb-kombiáció bizoytalaága (hibakorlátja) melyet a gyárilag megadott két bizoytalaág (E é F ) alapjá zámítuk E a mérőhaáb megegedett eltérée a középmérettől (ld.. oldal) F a mérőhaáb megegedett eltérée a párhuzamoágtól (ld.. oldal) H T a hőméréklet eltéréből adódó hiba ha a mukadarab é a mérőhaáb hőtágulái együtthatói ill. hőmérékletei em azooak. Számítáa: ahol Tehát T =. T. T a 0 o C-tól mért külöbég külöbég a hőtágulái együtthatók között. Példákba T elhayagolható mértékű. mh mh A méréi eredméy: X = + = hallgató aláíráa gyakorlatvezető aláíráa

10 Özefoglaló kérdéek. Mi a okzor imételt méré célja?. Mi a méréi orozat? 3. Tartalmaz-e véletle hibát a valódi érték? 4. Vége zámú méréél mi tartalmazza a várható értéket? 5. A várható érték beclééek módzerei. 6. Mit jelet: kvartili? 7. Mit jelet percetili? 8. Mivel jellemezhető a zórá? 9. Hogya becüljük a variaciát? 0. Hogya özegezzük a redzere hibákat ha imerjük agyágukat é előjelüket?

A várható érték vizsgálata u és t statisztika segítségével

A várható érték vizsgálata u és t statisztika segítségével A várható érték vizgálata u é t tatiztika egítégével Feltételezzük hogy ormáli elozláú alapokaágból vett véletle mita/miták alapjá vizgáljuk hogy az imeretle várható érték milye feltételezett értékel egyel

Részletesebben

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára Zárthely dolgozat 04 B.... GEVEE037B tárgy hallgató zámára Név, Neptu kód., Néháy oro rövd léyegre törő válazokat adjo az alább kérdéekre! (5pot) a) Számítógépe mérőredzerek elépítée (rajz) (33.o.) b)

Részletesebben

ξ i = i-ik mérés valószínségi változója

ξ i = i-ik mérés valószínségi változója EGYENESILLESZTÉS: A LEGKISEBB NÉGYZETEK MÓDSZERE Kíérleteket elvégeztük. Dolgozzuk fel az adatokat! Cél: mért változók (T, p, I, U ) között kapcolat felderítée. 1. zóródá dagram {x, y } ábra. kvattatív

Részletesebben

Mérések, hibák. 11. mérés. 1. Bevezető

Mérések, hibák. 11. mérés. 1. Bevezető 11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i

Részletesebben

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet) oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a

Részletesebben

STATISZTIKA. Terjedelem. Forgalom terjedelem. R=MAX(adatok) MIN(adatok) kvartilis eltérés : Qe

STATISZTIKA. Terjedelem. Forgalom terjedelem. R=MAX(adatok) MIN(adatok) kvartilis eltérés : Qe Terjedelem STATISZTIKA 6. gyakorlat Szóródá mutatók A zóródá terjedelme a tatztka or legagyobb é legkebb eleme között k külöbég. R ma m ggvéyek Függvéykategóra: Statztka RMAX(adatok) MI(adatok) Forgalom

Részletesebben

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatákutató é Fejleztő Intézet TÁMOP-3.1.1-11/1-01-0001 XXI. zázadi közoktatá (fejlezté, koordináció) II. zakaz FIZIKA 1. MINTAFELADATSOR KÖZÉPSZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatákutató é Fejleztő

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók

Részletesebben

5. gyakorlat Konfidencia intervallum számolás

5. gyakorlat Konfidencia intervallum számolás 5. gykorlt Kofdec tervllum zámolá. Feldt Cél: Normál elozlá gyor áttektée. Az IQ tezteket úgy állítják öze, hogy tezt eredméye éeége belül ormál elozlát kövee 00 ot átlggl é 5 ot zórál. A éeég háy zázlék

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma

Részletesebben

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Kidolgozott minta feladatok kinematikából

Kidolgozott minta feladatok kinematikából Kidolgozott minta feladatok kinematikából EGYENESVONALÚ EGYNLETES MOZGÁS 1. Egy gépkoci útjának az elő felét, a máik felét ebeéggel tette meg. Mekkora volt az átlagebeége? I. Saját zavainkkal megfogalmazva:

Részletesebben

FELÜLETI HŐMÉRSÉKLETMÉRŐ ÉRZÉKELŐK KALIBRÁLÁSA A FELÜLET DŐLÉSSZÖGÉNEK FÜGGVÉNYÉBEN

FELÜLETI HŐMÉRSÉKLETMÉRŐ ÉRZÉKELŐK KALIBRÁLÁSA A FELÜLET DŐLÉSSZÖGÉNEK FÜGGVÉNYÉBEN FELÜLETI HŐMÉRSÉKLETMÉRŐ ÉRZÉKELŐK KALIBRÁLÁSA A FELÜLET DŐLÉSSZÖGÉNEK FÜGGVÉNYÉBEN Andrá Emee* Kivonat Az OMH kifejleztett egy berendezét a kontakt, felületi hőméréklet érzékelők kalibráláára é a méréi

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

A rekurzív módszer Erdős Gábor, Nagykanizsa

A rekurzív módszer Erdős Gábor, Nagykanizsa Maga zitű matematikai tehetéggodozá A rekurzív módzer Erdő Gábor, Nagykaiza Gyakra találkozuk olya feladatokkal, amelyekbe agy zámok zerepelek: pot, zámkártya, tb. Az ilye eetekbe kézefekvő ötlet, hogy

Részletesebben

Stabilitás. Input / output rendszerek

Stabilitás. Input / output rendszerek Stabilitá Iput / output redzerek 006.09.4. Stabilitá - bevezeté egyzerűített zemlélet példa zavará utá a magára hagyott redzer vizatér a yugalmi állapotába kvázitacioáriu állapotba kerül végtelebe tart

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással Gyengeavak izociáció állanójának meghatározáa potenciometriá titráláal 1. Bevezeté a) A titrálái görbe egyenlete Egy egybáziú A gyengeavat titrálva NaO mérőolattal a titrálá bármely pontjában teljeül az

Részletesebben

5. gyakorlat Konfidencia intervallum számolás

5. gyakorlat Konfidencia intervallum számolás 5. gykorlt Kofideci itervllum zámolá. Feldt Cél: Normál elozlá gyor áttekitée. Az IQ tezteket úgy állítják öze, hogy tezt eredméye éeége belül ormáli elozlát kövee 00 ot átlggl é 5 ot zórál. A éeég háy

Részletesebben

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk Egy faktor zernt NOV Nevével ellentétben nem zóráok, hanem átlagok özehaonlítáára zolgál Több független mntánk van, elemzámuk,...,,, r y,...,, y, y,..., yr;,, r H : r NOV. élda (Box-Hunter-Hunter: Stattc

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középzint Javítái-értékeléi útutató 06 ÉRETTSÉGI VIZSGA 006. noveber 6. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fizika középzint

Részletesebben

Hűtő-, és fagyasztókészülékek ActiveGreen technológiával

Hűtő-, és fagyasztókészülékek ActiveGreen technológiával tapaztalat, ami zámít Liebherr, mit a hűtő-fagyaztó kézülékek zakértője már több mit 50 éve következetee tervez é gyárt olya termékeket, amelyek új é meggyőző megoldáokkal büzkélkedhetek. Vevőik bizalma

Részletesebben

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János január

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János január MUNAGAZDASÁGTAN ézült a TÁMOP-4..-8//A/MR-9-4pályázat proekt keretébe Tartalomfelezté az ETE TáT Szocálpoltka Tazéké az ETE özgazdaágtdomáy Tazék, az MTA özgazdaágtdomáy Itézet é a Bala adó közreműködéével

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

STATISZTIKA. Terjedelem. R=MAX(adatok) MIN(adatok) rtékek a sokaság g elemeinek k. méri. Leggyakrabban a számtani. 4. Előad

STATISZTIKA. Terjedelem. R=MAX(adatok) MIN(adatok) rtékek a sokaság g elemeinek k. méri. Leggyakrabban a számtani. 4. Előad Változéoyág g (zóródá) ) STATISZTIKA 4. Előad adá Szóródá mutató A özépért rtée a oaág g elemee értéagyágbel gbel ülöb béget eltaarjá.. A változv ltozéoyág g az azoo tulajdoágú, de eltérő értéagyágú adato

Részletesebben

TestLine - Fizika 7. osztály mozgás 1 Minta feladatsor

TestLine - Fizika 7. osztály mozgás 1 Minta feladatsor TetLine - Fizika 7. oztály mozgá 1 7. oztály nap körül (1 helye válaz) 1. 1:35 Normál áll a föld kering a föld forog a föld Mi az elmozdulá fogalma: (1 helye válaz) 2. 1:48 Normál z a vonal, amelyen a

Részletesebben

Mindennapjaink. A költő is munkára

Mindennapjaink. A költő is munkára A munka zót okzor haználjuk, okféle jelentée van. Mi i lehet ezeknek az egymától nagyon különböző dolgoknak a közö lényege? É mi köze ezeknek a fizikához? A költő i munkára nevel 1.1. A munka az emberi

Részletesebben

TANULMÁNY A BETONBURKOLATOK HÚZÓSZILÁRDSÁGÁNAK FÁRADÁSÁRÓL TANULMÁNY BETONBURKOLATOK HAJLÍTÓ-HÚZÓSZILÁRDSÁGÁNAK FÁRADÁSA ISMÉTELT TERHELÉS HATÁSÁRA

TANULMÁNY A BETONBURKOLATOK HÚZÓSZILÁRDSÁGÁNAK FÁRADÁSÁRÓL TANULMÁNY BETONBURKOLATOK HAJLÍTÓ-HÚZÓSZILÁRDSÁGÁNAK FÁRADÁSA ISMÉTELT TERHELÉS HATÁSÁRA /36 TANULMÁNY BETONBURKOLATOK HAJLÍTÓ-HÚZÓSZILÁRDSÁGÁNAK FÁRADÁSA ISMÉTELT TERHELÉS HATÁSÁRA Budapet, 2007. auguztu 5. é zeptember 30. között kézült. Dr. Liptay Andrá műzaki zakértő 0Szakmai témák/betonzilárdág

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Laplace transzformáció

Laplace transzformáció Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra

Részletesebben

ALKALMAZOTT MŰSZAKI HŐTAN

ALKALMAZOTT MŰSZAKI HŐTAN TÁMOP-4...F-4//KONV-05-0006 Duáli é modulári képzéfejlezté ALKALMAZOTT MŰSZAKI HŐTAN Prof. Dr. Kezthelyi-Szabó Gábor TÁMOP-4...F-4//KONV-05-0006 Duáli é modulári képzéfejlezté Többfáziú rendzerek. Többfáziú

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Független komponens analízis

Független komponens analízis Elektroiku verzió. Az eredeti cikk az ElektroNET (ISSN: 9-705X) 00 évf. 3 zám, 0 oldalá jelet meg. Függetle kompoe aalízi A függetle kompoe aalízi (Idepedet Compoet Aalyi, ICA) egy vizoylag új jelfeldolgozái

Részletesebben

Maradékos osztás nagy számokkal

Maradékos osztás nagy számokkal Maradéko oztá nagy zámokkal Uray M. Jáno, 01 1 Bevezeté Célunk a nagy termézete zámokkal való zámolá. A nagy itt azt jelenti, hogy nagyobb, mint amivel a zámítógép közvetlenül zámolni tud. A termézete

Részletesebben

Forgó mágneses tér létrehozása

Forgó mágneses tér létrehozása Forgó mágnee tér létrehozáa 3 f-ú tekercelé, pólupárok záma: p=1 A póluoztá: U X kivezetéekre i=io egyenáram Az indukció kerület menti elozláa: U X kivezetéekre Im=Io amplitúdójú váltakozó áram Az indukció

Részletesebben

Statisztika gyakorló feladatok

Statisztika gyakorló feladatok . Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.

Részletesebben

Jeges Zoltán. The mystery of mathematical modelling

Jeges Zoltán. The mystery of mathematical modelling Jege Z.: A MATEMATIKAI MODELLEZÉS... ETO: 51 CONFERENCE PAPER Jege Zoltán Újvidéki Egyetem, Magyar Tannyelvű Tanítóképző Kar, Szabadka Óbudai Egyetem, Budapet zjege@live.com A matematikai modellezé rejtélyei

Részletesebben

2015.06.25. Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv.

2015.06.25. Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv. Magyar Mérnöki Kamara ELEKTROTECHNIKAI TAGOZAT Kötelező zakmai továbbképzé 2015 Villámvédelem #5. Elzigetelt villámvédelem tervezée, biztonági távolág zámítáa Villámvédelem 1 Tervezéi alapok (norma zerint

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

fizikai-kémiai mérések kiértékelése (jegyzkönyv elkészítése) mérési eredmények pontossága hibaszámítás ( közvetlen elvi segítség)

fizikai-kémiai mérések kiértékelése (jegyzkönyv elkészítése) mérési eredmények pontossága hibaszámítás ( közvetlen elvi segítség) BEVEZEÉS Eladá célja: fzka-kéa éréek kértékelée jegyzkönyv elkézítée éré eredények pontoága hbazáítá közvetlen elv egítég éré technkák egerée alapvet fzka ennyégek pektrozkópa éréek elektrokéa éréek Ma

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László

PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ Írta Dr. Huzsvai László Debrece 2012 Tartalomjegyzék Bevezetés...1 Viszoyszámok...1 Középértékek (átlagok)...2 Szóródási mutatók...4 Idexek...7 Furfagos kérdések...8 Bevezetés

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Mérnökirodai szolgáltatásunk keretében további felvilágosítással, szakmai tanácsadással is állunk tisztelt ügyfeleink rendelkezésére.

Mérnökirodai szolgáltatásunk keretében további felvilágosítással, szakmai tanácsadással is állunk tisztelt ügyfeleink rendelkezésére. Tiztelt Ügyfelünk! A DIRECT-LINE Nemeacél Kft. egy olyan kiadványorozatot indít útjára, amelyben megkíérli özefoglalni azokat a legfontoabb imereteket, amelyek a rozdamente anyagok kerekedelme, gyártáa

Részletesebben

Az aszinkron (indukciós) gép.

Az aszinkron (indukciós) gép. 33 Az azinkron (indukció) gép. Az azinkron gép forgóréz tekercelée kalická, vagy cúzógyűrű. A kalická tekercelé általában a (hornyokban) zigeteletlen vezetőrudakból é a rudakat a forgóréz vatet két homlokfelületén

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Koppány Krisztián, SZE Koppány Krisztián, SZE

Koppány Krisztián, SZE Koppány Krisztián, SZE 6. előadá Háztartáok tényezőpiaci döntéei A munkavállalói é az intertemporáli optimalizáció mikroökonómiai alapmodellje Alapvető özefüggéek Fogyaztái kiadá HÁZTARTÁS Jövedelem Munkaidő Megtakarítá (elhalaztott

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt zint 08 É RETTSÉGI VIZSGA 0. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utaítáai zerint,

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0

Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0 Fizikkönyv ifj Zátonyi Sándor, 16 Trtlom Foglmk Törvények Képletek Lexikon Mozgá lejtőn Láttuk, hogy tetek lejtőn gyoruló mozgát végeznek A következőkben vizgáljuk meg rézleteen ezt mozgát! Egyene lejtőre

Részletesebben

Aktív lengéscsillapítás. Másodfokú lengrendszer tesztelése.

Aktív lengéscsillapítás. Másodfokú lengrendszer tesztelése. Aktív lgécillapítá. Máodfokú lgrdzr tztlé.. A gyakorlat célja Jármvk aktív lgé cillapítááak modllzé máodfokú lgrdzrkét. Szoftvrfjlzté a rdzr való idj tztléér, a tztrdméyk kiértéklé.. Elmélti bvzt. A máodfokú

Részletesebben

7. számú mérés Kétcsatornás FFT analizátor alkalmazása

7. számú mérés Kétcsatornás FFT analizátor alkalmazása 7. zámú méré Kétcatorá FFT aalzátor alalmazáa Auzta redzere átvtel jellemzőe mérée lazu módzereel, M orozatoal, Kétcatorá Gyor Fourer aalzátorral aboratórum gyaorlat Mérö Fzuo zámára Özeállította: dr.

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Készítette a Meracus Consulting a MEME megbízásából. Budapest, 2012. március 30.

Készítette a Meracus Consulting a MEME megbízásából. Budapest, 2012. március 30. A Magyar Elektroiku Műorzolgáltatók Egyeülete (MEME) tagjaiak iterete elérhető, lekérhető médiazolgáltatáaiak elemzée a kikorúak védelméek zempotjából Kézítette a Meracu Coultig a MEME megbízáából Budapet,

Részletesebben

Portfólióelmélet. Portfólió fogalma. Friedman portfólió-elmélete. A befektetés három jellemzője. A kockázat általános értelmezése (Kindler József)

Portfólióelmélet. Portfólió fogalma. Friedman portfólió-elmélete. A befektetés három jellemzője. A kockázat általános értelmezése (Kindler József) ofólió fogalma ofólióelméle Ké zóeede Lai zó oae hodai, vii Fólió ügy, ia Olaz zó icéek ézácája ofólió ág éelmezée vagyoágyak özeége ofólió zűk éelmezée külöböző, őzdé jegyze éékaíok özeége Fiedma ofólió-elmélee

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

6. MÉRÉS ASZINKRON GÉPEK

6. MÉRÉS ASZINKRON GÉPEK 6. MÉRÉS ASZINKRON GÉPEK A techikai fejlettég mai zívoalá az azikro motor a legelterjedtebb villamo gép, amely a villamo eergiából mechaikai eergiát (forgó mozgát) állít elő. Térhódítáát a háromfáziú váltakozó

Részletesebben

Családi állapottól függõ halandósági táblák Magyarországon

Családi állapottól függõ halandósági táblák Magyarországon Caládi állapottól függõ halandóági táblák Magyarorzágon A házaágok várható tartama, túlélée MÓDSZERTANI TANULMÁNY Központi Statiztikai Hivatal Hungarian Central Statitial Offie Központi Statiztikai Hivatal

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

FIZIKA EMELT SZINTŰ KÍSÉRLETEK 2011

FIZIKA EMELT SZINTŰ KÍSÉRLETEK 2011 FIZIKA EMELT SZINTŰ KÍSÉRLETEK 011 Segédlet emelt zintű kíérletekhez KÉSZÍTETTE: CSERI SÁNDOR ÁDÁM FIZIKA EMELT SZINTŰ KÍSÉRLETEK 011 Tartalom: 1. Súlyméré... 3. Játékmotor teljeítményének é hatáfokának

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Paraméteres eljárások, normalitásvizsgálat, t-eloszlás, t-próbák. Statisztika I., 2. alkalom

Paraméteres eljárások, normalitásvizsgálat, t-eloszlás, t-próbák. Statisztika I., 2. alkalom Paraméere eljáráok, normaliávizgála, -elozlá, -próbák Saizika I.,. alkalom Paraméere eljáráok Becülik a populáció egy paraméeré Alkalmazáuknak zámo feléele van (paraméerek é a válozó elozláa Cak normál

Részletesebben

Portfólióelméleti modell szerinti optimális nyugdíjrendszer

Portfólióelméleti modell szerinti optimális nyugdíjrendszer MŰHELY Közgazdaág Szemle, LVIII. évf., 011. zeptember (79 805. o.) Szüle Borbála Portfólóelmélet modell zernt optmál nyugdíjrendzer Az optmál nyugdíjrendzer elmélete ránt az utóbb években folyamato érdeklődé

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Tevékenység: Tanulmányozza, mi okozza a ráncosodást mélyhúzásnál! Gyűjtse ki, tanulja meg, milyen esetekben szükséges ráncgátló alkalmazása!

Tevékenység: Tanulmányozza, mi okozza a ráncosodást mélyhúzásnál! Gyűjtse ki, tanulja meg, milyen esetekben szükséges ráncgátló alkalmazása! Tanulányozza, i okozza a ráncooát élyhúzánál! Gyűjte ki, tanulja eg, ilyen eetekben zükége ráncgátló alkalazáa! Ráncooá, ráncgátlá A élyhúzá folyaatára jellező, hogy egy nagyobb átérőjű ík tárcából ( )

Részletesebben

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont A Mikola Sándor Fizikavereny feladatainak egoldáa Döntı - Gináziu oztály Péc feladat: a) Az elı eetben a koci é a ágne azono a lauláát a dinaika alaegyenlete felhaználáával záolhatjuk: Ma Dy Dy a 6 M ont

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN

KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest Lektorálta: Zukál Edre Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések

Részletesebben

Az új építőipari termelőiár-index részletes módszertani leírása

Az új építőipari termelőiár-index részletes módszertani leírása Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató

Részletesebben

Hipotézis-ellenırzés (Statisztikai próbák)

Hipotézis-ellenırzés (Statisztikai próbák) Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat

Részletesebben

A következő angol szavak rövidítése: Advanced Product Quality Planning. Magyarul minőségtervezésnek szokás nevezni.

A következő angol szavak rövidítése: Advanced Product Quality Planning. Magyarul minőségtervezésnek szokás nevezni. Mi az az APQP? Az APQP egy mozaik zó. A következő angol zavak rövidítée: Advanced Product Quality Planning. Magyarul minőégtervezének zoká nevezni. Ez egy projekt menedzment ezköz, é egyben egy trukturált

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

FAIPARI ALAPISMERETEK

FAIPARI ALAPISMERETEK Faipari alapismeretek középszit 0812 ÉRETTSÉGI VIZSGA 2011. október 17. FAIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fotos tudivalók

Részletesebben

Hosszmérés finomtapintóval 2.

Hosszmérés finomtapintóval 2. Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

A rögzített tengely körül forgó testek kiegyensúlyozottságáról kezdőknek

A rögzített tengely körül forgó testek kiegyensúlyozottságáról kezdőknek A rögzített tengely körül forgó tetek kiegyenúlyozottágáról kezdőknek Bevezeté A faiparban nagyon ok forgó mozgát végző gépelem, zerzám haználato, melyek rende működéének feltétele azok kiegyenúlyozottága.

Részletesebben

Hidraulikatömítések minősítése a kenőanyag rétegvastagságának mérése alapján

Hidraulikatömítések minősítése a kenőanyag rétegvastagságának mérése alapján JELLEGZETES ÜZEMFENNTATÁSI OBJEKTUMOK ÉS SZAKTEÜLETEK 5.33 Hidraulikatömítéek minőítée a kenőanyag rétegvatagágának mérée alapján Tárgyzavak: tömíté; tömítőrendzer; hidraulika; kenőanyag; méré. A jó tömíté

Részletesebben

Mottó: "Ne rakj minden tojást ugyanabba a kosárba!." (angol közmondás) Mi a hosszú távú befektetés? Az elrontott rövid távú. (spekuláns tapasztalat)

Mottó: Ne rakj minden tojást ugyanabba a kosárba!. (angol közmondás) Mi a hosszú távú befektetés? Az elrontott rövid távú. (spekuláns tapasztalat) Mottó: "Ne akj de toját ugyaabba a koába!." (agol közodá) M a hozú távú befekteté? z elotott övd távú. (ekulá taaztalat) 4. Fejezet otfóló-elélet fejezet célja, beutat:. eutat a hozazáítá fajtát. Ietet

Részletesebben

Azért jársz gyógyfürdőbe minden héten, Nagyapó, mert fáj a térded?

Azért jársz gyógyfürdőbe minden héten, Nagyapó, mert fáj a térded? 3. Mekkora annak a játékautónak a tömege, melyet a 10 N m rugóállandójú rugóra akaztva, a rugó hozváltozáa 10 cm? 4. Mekkora a rugóállandója annak a lengécillapítónak, amely 500 N erő hatáára 2,5 cm-rel

Részletesebben

A RENDSZERSZINTÉZIS ÚJ ELVEI

A RENDSZERSZINTÉZIS ÚJ ELVEI A RENDSZERSZINTÉZIS ÚJ ELVEI Arató Péter ÖSSZEFOGLALÓ A mikroelektronika gyor fejlődée egyre bonyolultabb, intelligen, (Intellectual Property Unit, IP) kézen kapható funkcionáli egyégeket kínál építőelemekként

Részletesebben

Kiszorítják-e az idősebb munkavállalók a fiatalokat a közszférában?

Kiszorítják-e az idősebb munkavállalók a fiatalokat a közszférában? Közgazdaági Szemle, LX. évf., 2013. júliu auguztu (837 864. o.) Cere-Gergely Zombor Kizorítják-e az időebb munkavállalók a fiatalokat a közzférában? Eredmények a magyarorzági nyugdíjkorhatár-emelé időzakából

Részletesebben

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS Összefüggésvizsgálat, paraméterbecslés A kísérletek sorá a redszer állapotát ellemző paraméterek kapcsolatát vizsgáluk. A yert adatok alapá felállítuk a redszer matematikai

Részletesebben

A 2012/2013. évi Mikola Sándor tehetségkutató verseny gyöngyösi döntıjének feladatai és megoldásai. Gimnázium, 9. osztály

A 2012/2013. évi Mikola Sándor tehetségkutató verseny gyöngyösi döntıjének feladatai és megoldásai. Gimnázium, 9. osztály A 0/0 éi Mikola Sádor tehetégkutató erey gyögyöi dötıjéek feladatai é egoldáai Giáziu 9 oztály G Két egyelı l hozúágú foálra rögzített M é töegő kiérető golyó alakú tetet ízziteig kitérítük ajd egyzerre

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

Matematikai Közlemények. I. kötet

Matematikai Közlemények. I. kötet Matematka Közleméyek I kötet NymE EMK Matematka Itézet Sopro Tudó Táraág 3 Matematka Oktatá é KUtatá Szemárum (MOKUS 3) Koferecakötet NymE EMK Matematka Itézet Sopro Tudó Táraág Szerkeztők: Dr Závot Józef

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatákutató é Fejleztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. zázadi közoktatá (fejlezté, koordináció) II. zakaz FIZIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 Az írábeli vizga időtartaa: 120 perc Oktatákutató

Részletesebben

Regresszióanalízis. Lineáris regresszió

Regresszióanalízis. Lineáris regresszió Regrezóanalíz Lneár regrezó REGRESSZIÓ 1 Modell: Valamely (pl. fzka) törvényzerûég értelméen az x független változó zonyo értékénél a függõ változó értéke Y ϕ (x). Y helyett y értéket mérünk, E(y x) Y,

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

A Bode-diagram felvétele

A Bode-diagram felvétele SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Méréi jegyzőkönyv egédlet Dr. Kuczmann Mikló Válogatott méréek Villamoágtan témakörből II. A Bode-diagram felvétele Győr, 2007 A méréi

Részletesebben

Egyenáramú motor kaszkád szabályozása

Egyenáramú motor kaszkád szabályozása Egyeáramú motor kazkád zabályozáa. gyakorlat élja z egyeáramú motor modellje alajá kazkád zabályozó terezée. zabályozá kör feléítée Smulk köryezetbe. zmuláó eredméyek feldolgozáa.. Elmélet beezet a az

Részletesebben