Laplace transzformáció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Laplace transzformáció"

Átírás

1 Laplace tranzformáció 27. márciu Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra konvergen. Megjegyzéek: A Laplace-tranzformáció tehát egy olyan leképezé, amely függvényhez függvényt rendel: f F. A Laplace-tranzformáció definíciójában f általában komplex változó fügvény é i komplex zám. Mi azonban a cak való zámokra zorítkozunk. A definícióban zereplő impropriu integrált Laplace-integrálnak nevezzük. Az f függvényt generátorfüggvénynek nevezzük. Azt i zoká mondani, hogy az f függvény az F inverz Laplace-tranzformáltja. A generátorfüggvényt a definícióban cak nemnegatív zámokra értelmeztük. Szokták negatív zámokra i értelmezni, azonban ilyenkor f a negatív helyek mindegyikén -t vez fel. Jelöléek: A Laplace-tranzformáltra: F )= f )=L f t) ] = L f ] Az inverz Laplace-tranzformáltra: f t)=l 1 F]=L 1 F )] A kapcolatukra: f F, illetve F f. Tétel: A Laplace-integrál konvergenciájával kapcolatban cak az alábbi három eet valamelyike fordulhat elő: Minden R eetén konvergen. 1

2 Egyetlen R eetén em konvergen. Létezik olyan a R zám, hogy <a eetén a Laplace-integrál divergen, >a eetén pedig konvergen. Tétel: Ha létezik olyan K R + éα R, hogy f t) Ke αt, akkor az f t) e t dt Laplace-integrál > α eetén konvergen. Tétel: Ha az f függvénynek létezik Laplace-tranzformáltja é c R, akkor a c f függvénynek i létezik Laplace-tranzformáltja é L c f ] = cl f ] Tétel: Legyenek f 1 é f 2 olyan függvények, amelyek Laplace-tranzformáltja létezik. Ekkor létezik f 1 + f 2 Laplace-tranzformáltja i é: L f 1 + f 2 ] = L f1 ] + L f2 ] Tétel: Legyenek f 1 é f 2 olyan függvények, amelyek Laplace-tranzformáltja létezik. Ha c 1, c 2 R, akkor létezik c 1 f 1 + c 2 f 2 Laplace-tranzformáltja i é: L c 1 f 1 + c 2 f 2 ] = c1 L f 1 ] + c2 L f 2 ] Megjegyzé: Az utóbbi tételnek az előző kettő peciáli eete. A két peciáli eet együtteen ekvivalen az utoló tétellel, amely biztoan igaz, ha az előző kettő igaz. 2. Néhány konkrét függvény Laplace-tranzformáltja 2.1. Az egyégugrá függvény Laplace-tranzformáltja Definíció: Az 1:R R, 1 t)= függvényt egyégugrá függvénynek nevezzük. L 1]= e t dt= et { ha t< 1 ha t = lim eω + 1 ) = 1 ω ha > 2.2. Az exponenciáli függvény Laplace-tranzformáltja L e at] = e at e t dt= Példa: e 3t 1 3 e a)t dt= e a)t a e a)ω = lim ω a 1 ) = 1 a a ha >a

3 2.3. A hiperboliku függvények Laplace-tranzformáltja ] e at e at L h at)]=l = 1 ] L e at L e at]) = a 1 ) = +a Példa: h 2t ] e at + e at L ch at)]=l = 1 ] L e at + L e at]) = a + 1 ) = +a Példa: ch 5t 2 25 ha ha a 2 a 2 > a 2 a A trigonometriku függvények Laplace-tranzformáltja > a L in at)]= = lim ω in at) e t v=inat), u =e t dt= in aω) eω in at) et + a co at) e t dt= v=coat), u =e t ) a at) et + co a2 2 in at) e t dt= = a 2 lim co aω) ω eω 1) a2 L in at)] ha > 2 Tehát a következő egyenlethez jutottunk: Ebből rendezéel adódik: L in at)]= a 2 a2 L in at)]= L in at)] ha > 2 a 2 + a 2 ha >

4 Az előző gondolatmenethez haonlóan: L co at)]= = lim ω co at) e t v=coat), u =e t dt= co aω) eω Példa: 2 in 3t3 co 5t 2 co at) et a in at) e t dt= v=inat), u =e t + 1 ) a at) et + in = 1 a2 2 L co at)]= 1 a2 L co at)] ha > 2 L co at)]= ha > 2 + a 2 co at) e t dt= a2 + L co at)] ha > = A hatványfüggvény Laplace-tranzformáltja Előzör vezeünk le egy a hatványfüggvény Laplace-tranzformáltjára vonatkozó rekurzív özefüggét n pozitív egéz zám): L t n ]= t n e t dt= v=t n, u =e t tn e t + n t n1 e t dt= = lim ωn e ω + )+ n ω L t n1] = n L t n1] Tudjuk, hogy L t ] = L 1]= 1, tehát L t]= 1 L 1]= 1 2, L t 2] = 2 L t]= 2 3, L t 3] = 3 L t 2] = 6 4, L t 4] = 4 L t 3] = 24 5, tb. Ebből arra a ejtére jutunk, hogy L t n ]= n! n+1. Ez telje indukcióval könnyen igazolható i, hizen: L t n+1] = n+1 L t n ]= n+1 n! n+1=n+1)!, n+2 tehát ha egy n termézete zámra helye a megejtett képlet, akkor helye n+1-re, azaz a következő termézete zámra i. Példa: t 3 3t 2 + 7t+9 3! 2! 1! t3+ 7 t2+ 9 = t 3+ t 2+

5 3. Néhány zámítái zabály 3.1. Exponenciáli függvénnyel zorzott függvény Laplace-tranzformáltja Tegyük fel, hogy imerjük az f függvény Laplace-tranzformáltját: f t) F ). Ekkor az f t) e at zorzat Laplace-tranzformáltja i könnyen felírható: Bizonyítá: f t) e at F a). L f t) e at] = f t) e at e t dt= f t) e a)t dt=f a) Példák: e 2t in 3t 3 2) = e t co 4t 1 1) = e 3t h 2t 2 3) 2 4 = e 2t ch 2t +2 +2) 2 4 = e 5t t 8 8! 5) 9

6 3.2. Hatványfüggvénnyel zorzott függvény Laplace-tranzfor máltja Tegyük fel, hogy imerjük az f függvény Laplace-tranzformáltját: f t) F ). Ekkor az f t) t n zorzat Laplace-tranzformáltja i meghatározható: f t) t n 1) n dn F ) d n. Bizonyítá: Előzör az n = 1 peciáli eetre bizonyítjuk az özefüggét. Induljunk ki a Laplace-tranzformáció definíciójából: f t) e t dt=f ) Deriváljuk ennek mindkét oldalá az változó zerint: t f t) e t dt= df ) d Ezt1-gyel zorozva a bizonyítani kívánt özefüggéhez jutunk: t f t) e t dt= df ) d Az általáno eet telje indukcióval bizonyítható. Tegyük fel, hogy n-re már igazoltuk az állítát. Ekkor n+1-re: L t n+1 f t) ] = L t t n f t) ] = d d L t n f t) ] = d d 1)n dn F ) d n = Tehát ha az állítá n-re igaz, akkor n+1-re i teljeül. Példa: t in 2t d 2 =2 2 d ) = ) 2 = 1) n+1 d n+1 F ) d n+1

7 3.3. Függvény integráljának Laplace-tranzformáltja Legyen f t) F ). Ekkor a g t)= F ). Bizonyítá: L g t) ] = t f x) dx et t v= f x) dx, u =e t dt= t f x) dx függvény laplace-tranzformáltja t = lim ω f x) dx ω ) e t f x) dx ) e ω f t) e t dt= + F ) = F ) 3.4. Függvény deriváltjainak Laplace-tranzformáltja Ha f t) F )= f ), akkor f t) f ) f ). Bizonyítá: Imét parciáli integrálát alkalmazunk: L f t) ] = f t) e t dt= f t) e ] t + u = f t), v=e t Az f függvény máodik deriváltjának Laplace-tranzformáltja: f t) 2 f ) f ) f ) Bizonyítá: f t) e t dt= f )+ f ) L f t) ] = L f t) ] f )= f ) f ) ) f )= 2 f ) f ) f ) Az f függvény n-edik deriváltjának Laplace-tranzformáltja: f n) t) n f ) n1 f ) n2 f )... f n1) ) Bizonyítá: Telje indukcióval.) Az állítá n = 1-re é n = 2-re igaz. Tegyük fel, hogy n-re i igaz. Ekkor n+1-re: L f n+1) t) ] = L f n) t) ] f n) )= = n f ) n1 f ) n2 f )... f n1) ) ) f n) )= = n+1 f ) n f ) n1 f )... f n1) ) f n) ) Tehát ha az állítá igaz n-re, akkor n+1-re i igaz.

8 3.5. Eltolái tétel függvény Laplace- Legyen f t) F ). Ekkor a g t)= tranzformáltja L g t) ] = e a F ) { ha x<a f ta) ha x a Bizonyítá: a L g t) ] = g t) e t dt= dt+ f ta) e t dt= f ta) e t dt a a Alkalmazzunk u = t a helyetteítét: L g t) ] = f ta) e t dt= f u) e u+a) du=e a f u) e u du=e a F ) a 4. Inverz Laplace-tranzformáció Hogyan állítuk elő a generátorfüggvényt, ha adott a Laplace-tranzformáltja? Ha a Laplace-tranzformált valamilyen egyzerű racionáli törtfüggvény, akkor gyakran a Laplace-tranzformáció megfordítáával táblázat egítégével) célt érünk. Példák: 1 e8t = in 2t = 3 3! t = 1 3) = 3 3) ) e 3t co 2t+e 3t in 2t Ha a vizatranzformálandó kifejezé bonyolultabb racionáli tört, akkor előzör réztörtekre bontát alkalmazunk é a tagokat egyenként tranzformáljuk viza.

Laplace-transzformáció és alkalmazása

Laplace-transzformáció és alkalmazása Eötvö Loránd Tudományegyetem Termézettudományi Kar Laplace-tranzformáció é alkalmazáa Szakdolgozat Ki Ezter Matematika BSc., Elemz zakirány Témavezet : Bátkai Andrá, Egyetemi docen Alkalmazott Analízi

Részletesebben

1.1. A Laplace-transzformált és fontosabb tulajdonságai

1.1. A Laplace-transzformált és fontosabb tulajdonságai . A Laplace-tranzformált. A Laplace-tranzformált.. A Laplace-tranzformált é fontoabb tulajdonágai Jelölje R a való zámok é C a komplex zámok halmazát. Legyen g : [a,b] C adott komplex értékű függvény.

Részletesebben

Eötvös Lóránd Tudományegyetem Természettudományi Kar. A Laplace-transzformáció és alkalmazásai. Szakdolgozat. Laczkó Éva

Eötvös Lóránd Tudományegyetem Természettudományi Kar. A Laplace-transzformáció és alkalmazásai. Szakdolgozat. Laczkó Éva Eötvö Lóránd Tudományegyetem Termézettudományi Kar A Laplace-tranzformáció é alkalmazáai Szakdolgozat Laczkó Éva Matematika BSc - Matematikai elemz zakirány Témavezet : Bátkai Andrá, Egyetemi docen Alkalmazott

Részletesebben

Laplace-transzformáció és alkalmazása

Laplace-transzformáció és alkalmazása Eötvö Loránd Tudományegyetem Termézettudományi Kar Laplace-tranzformáció é alkalmazáa Szakdolgozat Ki Ezter Matematika BSc., Elemz zakirány Témavezet : Bátkai Andrá, Egyetemi docen Alkalmazott Analízi

Részletesebben

Inverz Laplace-transzformáció. Vajda István március 4.

Inverz Laplace-transzformáció. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Definíció: Ha az f (t) függvény laplace-transzformáltja F (s), akkor f (t)-t az F (s) függvény inverz Laplace-transzformáltjának nevezzük. Definíció: Ha

Részletesebben

Matematika M1 1. zárthelyi megoldások, 2017 tavasz

Matematika M1 1. zárthelyi megoldások, 2017 tavasz Matematika M. zárthelyi megoldáok, 07 tavaz A coport Pontozá: 0 + + 6 + 50 pont. Számíta ki az alábbi adatokhoz legkiebb négyzete értelemben legjobban illezkedő legfeljebb máodfokú polinomot! x i 3 0 y

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

Frekvenciatartomány Irányítástechnika PE MI BSc 1

Frekvenciatartomány Irányítástechnika PE MI BSc 1 Frekvenciatartomány ny 008.03.4. Irányítátechnika PE MI BSc Frekvenciatartomány bevezetéének indoka: általában időtartománybeli válaz kell alkalmazott teztelek i ezt indokolák információ rendzerek eetében

Részletesebben

Maradékos osztás nagy számokkal

Maradékos osztás nagy számokkal Maradéko oztá nagy zámokkal Uray M. Jáno, 01 1 Bevezeté Célunk a nagy termézete zámokkal való zámolá. A nagy itt azt jelenti, hogy nagyobb, mint amivel a zámítógép közvetlenül zámolni tud. A termézete

Részletesebben

Irányítástechnika 3. előadás

Irányítástechnika 3. előadás Irányítátechnika 3. előadá Dr. Kovác Levente 203. 04. 6. 203.04.6. Tartalom Laplace tranzformáció, fontoabb jelek Laplace tranzformáltja Stabilitá alaptétele Bode diagram, Bode-féle tabilitá kritérium

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt zint 08 É RETTSÉGI VIZSGA 0. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utaítáai zerint,

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

Mindennapjaink. A költő is munkára

Mindennapjaink. A költő is munkára A munka zót okzor haználjuk, okféle jelentée van. Mi i lehet ezeknek az egymától nagyon különböző dolgoknak a közö lényege? É mi köze ezeknek a fizikához? A költő i munkára nevel 1.1. A munka az emberi

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

HÁZI FELADATOK. 3. félév. 1. konferencia A Laplace-transzformáció

HÁZI FELADATOK. 3. félév. 1. konferencia A Laplace-transzformáció Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással Gyengeavak izociáció állanójának meghatározáa potenciometriá titráláal 1. Bevezeté a) A titrálái görbe egyenlete Egy egybáziú A gyengeavat titrálva NaO mérőolattal a titrálá bármely pontjában teljeül az

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

A differenciálgeometria alapjai: görbeelmélet

A differenciálgeometria alapjai: görbeelmélet A differenciálgeometria alapjai: görbeelmélet Előadávázlat Kovác Zoltán előadáaihoz 2003. december 4.. Differenciálá A differenciálá fogalmára több zituációban i zükégünk lez R R, R R 2, R R 3, R 2 R 2,

Részletesebben

Irányítástechnika 4. előadás

Irányítástechnika 4. előadás Iránítátechnika 4. előadá Dr. Kovác Levente 3. 4. 3. 3.5.. artalom ipiku tagok amplitúdó- é fázimenete Bode diagram példák Frekvencia átviteli függvén Hurwitz kritérium A zabálozái kör ugráválaza, minőégi

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

Feladatgy jtemény az Irányítástechnika II. c. tárgyhoz

Feladatgy jtemény az Irányítástechnika II. c. tárgyhoz BME Közlekedéautomatikai Tanzék Feladatgy jtemény az Irányítátechnika II. c. tárgyhoz Özeállította: Dr. Bokor Józef egyetemi tanár Dr. Gápár Péter egyetemi tanár Bauer Péter tudományo munkatár Lupay Tamá

Részletesebben

Hurokegyenlet alakja, ha az áram irányával megegyező feszültségeséseket tekintjük pozitívnak:

Hurokegyenlet alakja, ha az áram irányával megegyező feszültségeséseket tekintjük pozitívnak: Első gyakorlat A gyakorlat célja, hogy megismerkedjünk Matlab-SIMULINK szoftverrel és annak segítségével sajátítsuk el az Automatika c. tantárgy gyakorlati tananyagát. Ezen a gyakorlaton ismertetésre kerül

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők é beavatkozók DC motorok 2. réz egyetemi docen - 1 - A DC motor dinamiku leíráa Villamo egyenlet: R r L r i r v r v e v r a forgóréz kapocfezültége i r a forgóréz árama R r a forgóréz villamo

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

9. feladatsor: Többváltozós függvények deriválása (megoldás)

9. feladatsor: Többváltozós függvények deriválása (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz feladatsor: Többváltozós függvények deriválása (megoldás) 1 Számoljuk ki a következő függvények parciális deriváltjait

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika Aa Analízis BMETE90AX00 Az exp és ln függvények H607, EIC 209-04-24 Wettl

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA Széchenyi Itván Egyetem MTK Szerkezetépítéi é Geotechnikai Tanzék Tartók tatikája I. 1. Prizmatiku rúdelem cavaráa r. Papp Ferenc RÚAK CSAVARÁSA Egyene tengelyű é állandó kereztmetzetű (prizmatiku) rúdelem

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Megoldások november

IV. INTEGRÁLSZÁMÍTÁS Megoldások november IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +

Részletesebben

Négypólusok tárgyalása Laplace transzformációval

Négypólusok tárgyalása Laplace transzformációval Négypólusok tárgyalása Laplace transzformációval Segédlet az Elektrotechnika II. c. tantárgyhoz Összeállította: Dr. Kurutz Károly egyetemi tanár Szászi István egyetemi tanársegéd . Laplace transzformáció

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból

Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból 1 Átviteli tényező számítása: Lineáris rendszer: Pl1.: Egy villanymotor 100V-os bemenő jelre 1000 fordulat/perc kimenő jelet ad.

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

A maximálisan lapos esetben a hurokerősítés Bode diagramjának elhelyezkedése Q * p így is írható:

A maximálisan lapos esetben a hurokerősítés Bode diagramjának elhelyezkedése Q * p így is írható: A maximálian lapo eetben a hurokerőíté Bode diagramjának elhelyezkedée Q * p így i írható: Q * p H0 H0 Ha» é H 0», akkor Q * p H 0 Vagyi a maximálian lapo eetben (ahol Q * p = ): H 0 = Az ennek megfelelő

Részletesebben

Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor

Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása. 5), akkor Integrálszámítás Integrálási szabályok Tanulási cél Szorzatfüggvényekre vonatkozó integrálási technikák megismerése és különböző típusokra való alkalmazása Motivációs feladat Valószínűség-számításnál találkozhatunk

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

A PIV - hajtásról II.

A PIV - hajtásról II. A PIV - hjtáról II. A PIV - hjtál foglkozó házi dolgoztunk I. rézében egy - két feltevé lján kéletet állítottunk fel z áttételre vontkozón. Mot előzör megvizgáljuk hogy e feltevéek egyike vlóbn érvénye

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

A kör harmadik pontjának meghatározásához egy könnyen kiszámítható pontot keressünk

A kör harmadik pontjának meghatározásához egy könnyen kiszámítható pontot keressünk 7. Átviteli ellemzők fogalma é ábrázoláa! A kondenzátor kapacitív reaktanciáa: Z Tehát az áramkör ellemzői a rákapcolt zinuzo el frekvenciáától függenek, ha az áramkör energiatároló elemet, i tartalmaz.

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

2015.06.25. Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv.

2015.06.25. Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv. Magyar Mérnöki Kamara ELEKTROTECHNIKAI TAGOZAT Kötelező zakmai továbbképzé 2015 Villámvédelem #5. Elzigetelt villámvédelem tervezée, biztonági távolág zámítáa Villámvédelem 1 Tervezéi alapok (norma zerint

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

x a x, ha a > 1 x a x, ha 0 < a < 1

x a x, ha a > 1 x a x, ha 0 < a < 1 EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

Proxy Cache Szerverek hatékonyságának vizsgálata The Performance of the Proxy Cache Server

Proxy Cache Szerverek hatékonyságának vizsgálata The Performance of the Proxy Cache Server Proxy Cahe Szerverek hatékonyágának vizgálata The Performane of the Proxy Cahe Server Bérze Tamá, berzet@inf.unideb.hu IFSZ KFT, Debreen Péterfia u. Sztrik Jáno, ztrik.jano@inf.unideb.hu Debreeni Egyetem,

Részletesebben

XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: 1 0 0 0 0 1 0 0 E n = 0 0 1 0 0 0 0 1 n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatákutató é Fejleztő Intézet TÁMOP-3.1.1-11/1-01-0001 XXI. zázadi közoktatá (fejlezté, koordináció) II. zakaz FIZIKA 1. MINTAFELADATSOR KÖZÉPSZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatákutató é Fejleztő

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ

FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén

Részletesebben

A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag

A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag 016.09.09. A m beclée A beclée = Az adatok átlago eltérée a m-től. (tapaztalat zórá) = az elemek átlago eltérée az átlagtól. átlag: az elemekhez képet középen kell elhelyezkedne. x x 0 x n x Q x x x 0

Részletesebben

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Kísérlettervezés témakör

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Kísérlettervezés témakör Gyakorló feladatok a Kíérletek tervezée é értékelée c. tárgyól Kíérlettervezé témakör. példa Nitrálái kíérleteken a kitermelét az alái faktorok függvényéen vizgálták:. a alétromav-adagolá idee [h]. a reagáltatá

Részletesebben

Egyváltozós függvények differenciálszámítása

Egyváltozós függvények differenciálszámítása Egyváltozós függvények differenciálszámítása Egyváltozós függvények differenciálszámítása Ebben a részben I egy tetszőleges, pozitív hosszúságú, intervallumot jelöl. Egyváltozós függvények differenciálszámítása

Részletesebben

Az átviteli (transzfer) függvény, átviteli karakterisztika, Bode diagrammok

Az átviteli (transzfer) függvény, átviteli karakterisztika, Bode diagrammok Elektronka. Bode dagramok, éldák /9 Az átvtel (tranzfer) függvény, átvtel karakterztka, Bode dagrammok.) Tku feladat: Számítuk k adott lezáráok mellett egy lneár hálózat (oerátor tartomány) u j T tranzfer

Részletesebben

7. feladatsor: Laplace-transzformáció (megoldás)

7. feladatsor: Laplace-transzformáció (megoldás) Matematika Ac gyakorlat Vegyésmérnöki, Biomérnöki, Környeetmérnöki sakok, 017/18 ős 7. feladatsor: Laplace-transformáció (megoldás) 1. A definíció alapján sámoljuk ki a követkeő függvények Laplace-transformáltját.

Részletesebben

A mobil hírközlés alapjai

A mobil hírközlés alapjai Dr Pap Lázló Dr Imre Sándor A mobil hírközlé alapjai 7 Híradátechnikai Tanzék Dr Pap Lázló Dr Imre Sándor A mobil hírközlé alapjai Dr Pap Lázló dr Imre Sándor 7 Tartalomjegyzék TARTALOMJEGYZÉK BEVEZETÉS

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval

Részletesebben

ü Ö ü í ü ü ü ü í Ö ö ü ú ü ü ö ü ü ű ö í í ö í űá ú ü ö ö ö í ü ü ü ü ü ű ö í í ö í ű ú ü ü í ü ü ű ö í í ö í űá ú ü íí ü Á í í í Á ű ú í ö ö í ü ö ö ö í ö í ú ö ü ü ű ö ö í ű ö í ű ü ű ö í ű ö í ö í

Részletesebben

ó ű ó ü ó ó ü ó ü Í Ö Ő ű Á ó Á Á Á ó ü ó Ö Ö ÚÁ Ö Ó Ó Ó ó Á Ö Ö Á Ó Á Á ó Á Ö Ú Á Ú Ö Ö Á Ö ú Ú Ö ü ú ú ó ü ú ű ó ú ü ú ó ó ü ó ú ü ú Ű ó ü ó ú ó ű ó ú ú ú ó ó ú ú ü ó ü ó ú ó ó ü Ö ó ó ű ó ú ü Ö ű ó

Részletesebben

É ű Ö ű ű Ö ű ű ű É ű ű ű ű ű ű ű ű ű É ű ű ű ű ű ű Ó ű ű É ű ű ű ű ű Ö ű ű ű Ó ű Á Á ű ű ű Á Ü Ű ű ű ű Ő Á Á Á ű Á Á É É Á Á Á ű ű ű Á É Á Á ű Á ű Á Á ű ű ű ű ű ű ű ű ű ű ű ű Á Á É ű Á ű É ű Ü ű É É É

Részletesebben

Ó ő Ó ő ú ő ö ü Ó ő ö ő ü ő ö ő ü ö ö ő ö ü ú ö ő ü ú É ő ő ő ö ő ü ö Ó ő Á ő Á ú ü ő ú ú Ó ő Ó ő Á ő ő ő Ó ő Á ő ö ő ü ö ő ő ő ú ő Á ő ő ő Á ő ö ö ő ü ü ö ö ü ő É ő ő Á ő Á Ö ü ú ö Á ü ö ö ő ö ö ú ö ő

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008

Részletesebben

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

DIFFERENCIÁL EGYENLETRENDSZEREK DR. BENYÓ ZOLTÁN

DIFFERENCIÁL EGYENLETRENDSZEREK DR. BENYÓ ZOLTÁN DIFFERENCIÁL EGYENLETRENDSZEREK DR. ENYÓ ZOLTÁN be Redzer folyaat t differeciáló ódzer: Feltételezük egy értéket é ebből képezzük az elő, áodik, az -edik deriváltat. Itegráló ódzer z -edik deriváltból

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Határozd meg a következő kifejezésekben a c értékét!

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Határozd meg a következő kifejezésekben a c értékét! Megoldások. Határozd meg a következő kifejezésekben a c értékét! log 4 = c log 7 = c log 5 5 = c lg 0 = c log 7 49 = c A feladatok megoldásához használjuk a definíciót: log a b = c b = a c. log 4 = c 4

Részletesebben

MINERVA TÉRINFORMATIKAI RENDSZER ELEKTROMOS HÁLÓZAT TÉRINFORMATIKAI INTEGRÁCIÓJA

MINERVA TÉRINFORMATIKAI RENDSZER ELEKTROMOS HÁLÓZAT TÉRINFORMATIKAI INTEGRÁCIÓJA M I N E R V A É R I N F O R M A I K A I R E N D S Z E R MINERVA ÉRINFORMAIKAI RENDSZER ELEKROMOS HÁLÓZA ÉRINFORMAIKAI INEGRÁCIÓJA C 1 0 O 3 M 4 P u A d tel : 1)4301720 fax:(1)4301719 a R p e S t, é Ú c

Részletesebben