HÁZI FELADATOK. 3. félév. 1. konferencia A Laplace-transzformáció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "HÁZI FELADATOK. 3. félév. 1. konferencia A Laplace-transzformáció"

Átírás

1 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! HÁZI FELADATOK. félév. onferencia A Laplace-tranzformáció Értéelé:. egyég: önálló feladatmegoldá. Képezze az alábbi épleteel megadott f(t) függvénye L[f(t)] Laplace-tranzformáltját! t 4.. L e t.. L [ 9 e ] 7 t 5 t t.4. L e + e 9 e 5 5 t.8. L 4 co 4 R ω t.0. L e + in ω t L C (R, L, C é ιυ állandó). Tranzformálja viza az alábbi épleteel megadott F() függvényeet!.. L L 4

2 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! L L L L L

3 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! Értéelé:. onferencia Állandó együttható differenciálegyenlete egy partiulári megoldáána meghatározáa a Laplace-tranzformáció alalmazáával. egyég: önálló feladatmegoldá Oldja meg a Laplace-tranzformáció alalmazáával a övetező differenciálegyenleteet! 4.. 5x ha y ( 0) 4 y + y e 4.. y + y h x ha y ( 0) 5

4 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! 4.4. y x ha ( 0) 0 + y + y e y é y ( 0) 4.5. y x ha ( 0) 0 6y + 9 e y é y ( 0) 0 4

5 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! 4.7. y + 4 y in x ha y ( 0) 0 é y ( 0) y + y 4y h x ha y ( 0) é y ( 0) 5

6 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i!. egyég: Áramöri feladato megoldáa operátorimpedanciával (Jegyzet a tanönyv ijelölt fejezetei alapján) Folytatá a 6/, 6/, tb. oldalaon! 6

7 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! 7 Értéelé:. onferencia A numeriu or é apcolata a függvényorral. egyég: önálló feladatmegoldá Írja fel az alábbi zámoro elő hat rézletözegét!

8 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! ( ) egyég: önálló feladatmegoldá Valamelyi onvergenciaritérium egítégével dönte el, hogy az alábbi zámoro onvergene vagy divergene!

9 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! ! 0 5 9

10 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i!. egyég: önálló feladatmegoldá 4. onferencia A Fourier-or, mint peciáli függvényor Értéelé: Ábrázolja az alábbi periodiu függvényeet é határozza meg a Fourier-oruat! 9.9., ha π < x 0 f ( x) é f ( x) f ( x + π ) minden x R eetén, ha 0 < x π 0

11 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! f ( x) x, ha π < x π é f ( x) f ( x + π ) minden x R eetén

12 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! x +, ha π < x 0 f ( x) é f ( x) f ( x + π ) minden x R eetén, ha 0 < x π

13 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i!. egyég: önálló feladatmegoldá Ábrázolja az alábbi periodiu függvényeet é határozza meg a Fourier-oruat! x +, ha π < x 0 f ( x) é f ( x) f ( x + π ) minden x R eetén x +, ha 0 < x π

14 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! 9.9. f ( x) x, ha π < x π é f ( x) f ( x + π ) minden x R eetén 4

15 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! 9.0. x +, ha < x 0 f ( x) é f ( x) f ( x + ) minden x R eetén x +, ha 0 < x 5

16 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! 9.04., ha < x 0 f ( x) é f ( x) f ( x + ) minden x R eetén, ha 0 < x 6

17 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i!. egyég: önálló feladatmegoldá 5. onferencia A hatványor, mint peciáli függvényor é a Taylor-or, mint peciáli hatványor Állapíta meg az alábbi hatványoro onvergenciatartományát! Értéelé: 9..! x x 9.0. x 0! 7

18 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! 9.0. (x) 0 Határozza meg az alábbi függvény Maclaurin-orát, é állapíta meg a apott or onvergenciatartományát! 9.4. f ( x) in x A függvény Maclaurin-orána egítégével, a megadott pontoággal, zámíta i az alábbi határozott integrálo értéét! 0,5 in x 9.8. dx x 0 ε 0 4 8

19 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! e x x dx ε 0 4. egyég: önálló feladatmegoldá Állapíta meg az alábbi oro onvergenciatartományát! 9.4. x x x + 9

20 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! ! x 9.9. x 0! Határozza meg az alábbi függvénye Maclaurin-orát, é állapíta meg a apott or onvergenciatartományát! 9.6. f ( x) in x 9.7. f ( x) co x 0

21 Figyelem! A feladato megoldáa legyen átteinthető é rézlete, de férjen el az arra zánt helyen! Ha valamelyi feladat megoldáához útmutatát talál, aor övee azt értelemzerűen a feladatcoport többi feladatában i! f ( x) ln( x + ) A függvény Maclaurin-orána egítégével, a megadott pontoággal, zámíta i az alábbi határozott integrál értéét! e x 0 dx ε 0 6

A 2006/2007. tanévi Országos középiskolai Tanulmányi Verseny második fordulójának feladatai és azok megoldásai f i z i k á b ó l. I.

A 2006/2007. tanévi Országos középiskolai Tanulmányi Verseny második fordulójának feladatai és azok megoldásai f i z i k á b ó l. I. 006/007. tanévi Orzágo középikolai Tanulmányi Vereny máodik fordulójának feladatai é azok megoldáai f i z i k á b ó l I. kategória. feladat. Egy m maga 30 hajlázögű lejtő lapjának elő é máodik fele különböző

Részletesebben

Laplace transzformáció

Laplace transzformáció Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

Koppány Krisztián, SZE Koppány Krisztián, SZE

Koppány Krisztián, SZE Koppány Krisztián, SZE 6. előadá Háztartáok tényezőpiaci döntéei A munkavállalói é az intertemporáli optimalizáció mikroökonómiai alapmodellje Alapvető özefüggéek Fogyaztái kiadá HÁZTARTÁS Jövedelem Munkaidő Megtakarítá (elhalaztott

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

Az átviteli (transzfer) függvény, átviteli karakterisztika, Bode diagrammok

Az átviteli (transzfer) függvény, átviteli karakterisztika, Bode diagrammok Elektronka. Bode dagramok, éldák /9 Az átvtel (tranzfer) függvény, átvtel karakterztka, Bode dagrammok.) Tku feladat: Számítuk k adott lezáráok mellett egy lneár hálózat (oerátor tartomány) u j T tranzfer

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók

Részletesebben

Laplace-transzformáció. Vajda István február 26.

Laplace-transzformáció. Vajda István február 26. Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

Elérhető maximális pontszám: 70+30=100 pont

Elérhető maximális pontszám: 70+30=100 pont Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:

Részletesebben

Eötvös Lóránd Tudományegyetem Természettudományi Kar. A Laplace-transzformáció és alkalmazásai. Szakdolgozat. Laczkó Éva

Eötvös Lóránd Tudományegyetem Természettudományi Kar. A Laplace-transzformáció és alkalmazásai. Szakdolgozat. Laczkó Éva Eötvö Lóránd Tudományegyetem Termézettudományi Kar A Laplace-tranzformáció é alkalmazáai Szakdolgozat Laczkó Éva Matematika BSc - Matematikai elemz zakirány Témavezet : Bátkai Andrá, Egyetemi docen Alkalmazott

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány Függvénye hatványsorba fejtése, Maclaurin-sor, onvergenciatartomány Taylor-sor, ) Állítsu elő az alábbi függvénye x helyhez tartozó hatványsorát esetleg ülönféle módszereel) éa állapítsu meg a hatványsor

Részletesebben

Egyedi cölöp süllyedésszámítása

Egyedi cölöp süllyedésszámítása 14. zámú mérnöki kézikönyv Friítve: 2016. áprili Egyedi cölöp üllyedézámítáa Program: Cölöp Fájl: Demo_manual_14.gpi Ennek a mérnöki kézikönyvnek tárgya egy egyedi cölöp GEO5 cölöp programmal való üllyedézámítáának

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.

Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim. Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

Speciális függvénysorok: Taylor-sorok

Speciális függvénysorok: Taylor-sorok Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény

Részletesebben

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim. Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

Gyakorlo feladatok a szobeli vizsgahoz

Gyakorlo feladatok a szobeli vizsgahoz Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F

Részletesebben

Matematika M1 1. zárthelyi megoldások, 2017 tavasz

Matematika M1 1. zárthelyi megoldások, 2017 tavasz Matematika M. zárthelyi megoldáok, 07 tavaz A coport Pontozá: 0 + + 6 + 50 pont. Számíta ki az alábbi adatokhoz legkiebb négyzete értelemben legjobban illezkedő legfeljebb máodfokú polinomot! x i 3 0 y

Részletesebben

Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1

Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1 Szakác enő Megyei Fizika Vereny, az I. forduló feladatainak megoldáa. t perc, az A fiú ebeége, a B fiú ebeége, b 6 a buz ebeége. t? A rajz alapján: t + t + b t t t + t + 6 t t 7 t t t 7t 4 perc. Így A

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradátechka elfeldolgozá 8 előadá: Modeek áu 4 Budapet Dr Gaál Józef docen BME Hálózat Rendzerek é Szolgáltatáokanzék gaal@htbehu Unverzál QAM deodulátor analog aplng rate ybol rate data ybol tng recovery

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

TARTÓSZERKEZETEK II.-III.

TARTÓSZERKEZETEK II.-III. TRTÓSZERKEZETEK II.-III. VSBETOSZERKEZETEK 29.3.7. VSBETO KERESZTMETSZET YOMÁSI TEHERBÍRÁSÁK SZÁMÍTÁS kereztmetzet teherbíráa megelelı ha nyomott km. eetén: Rd hol a normálerı tervezéi értéke (mértékadó

Részletesebben

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben. Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1 numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Megoldások november

IV. INTEGRÁLSZÁMÍTÁS Megoldások november IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +

Részletesebben

Ó Ó É ü É ü ü

Ó Ó É ü É ü ü É Ó É Ú ü ű ú ú ü ü ü Ó Ó É ü É ü ü Ó ü ü ü É ü ü Ó É É ü ü ü ü ü ü ü ü ü ü ü ü ü Ó Ó ü ü ü ü ü ü ü É ü ü É ü ü ü ü ü ü Ó ü ü ü ü ü ü ü ü É Ó ü ü É Ó Ó ü ü ü ü ü É ü ü ü É ü ü ü ü ü Ó Ó ú ü ü ü ü ü ü Ó

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással Gyengeavak izociáció állanójának meghatározáa potenciometriá titráláal 1. Bevezeté a) A titrálái görbe egyenlete Egy egybáziú A gyengeavat titrálva NaO mérőolattal a titrálá bármely pontjában teljeül az

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt zint 08 É RETTSÉGI VIZSGA 0. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utaítáai zerint,

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Repülőgépek és hajók Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Repülőgépek és hajók Tanszék Budapet Műzak é Gazdaágtudomány Egyetem Közlekedémérnök Kar Repülőgépek é hajók Tanzék Hő- é áramlátan II. 2008/2009 I. félév 1 Méré Hőugárzá é a vízznte cő hőátadáának vzgálata Jegyzőkönyvet kézítette:

Részletesebben

Ipari matematika 2. gyakorlófeladatok

Ipari matematika 2. gyakorlófeladatok Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,

Részletesebben

Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú

Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú É Ó Ö É Ü ű ú Ü ÉÚ É ú ú ű ú Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú Ó ú Ü Ü ú ű Ü Ö Ó ú ú ú ú É Ü ú ú Ü Ü Ó Ó É ú ú É É É É Ú Ü Ü ú Ü ú ú É Ő Ő ú É Ó Ó É Ő Ü Ó Ő ú Ó Ó É É ú Ü Ó Ó Ó É ú Ü Ú Ö Ü É ú Ó

Részletesebben

ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű

ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű ű Ö É ű É Ö ű ű ű ű ű ű ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű Ú Ú Ú Ü É É É É ű É Ú É ű É Ó Ö É É ű ű ű É ű Ö Ö ű Ö Ú ű ű ű Ú ű ű ű Ö ű ű ű É ű ű ű Ó Ü É É Ú Ú Ü Ü Ö Ó ű Ü Ü ű ű É Ó Ó ű ű Ü Ö Ó Ö Ü Ü ű

Részletesebben

Ú Ú Ü Ü ű ű ű É Ú É ű

Ú Ú Ü Ü ű ű ű É Ú É ű É Ó ű ű Ö Ú Ú Ü Ü ű ű ű É Ú É ű É ű ű ű Ü ű É ű Ű Ö ű ű ű Ú Ú É É Ó Ó Ú ű ű É Ú É Ü Ü Ú ű Ú Ó É Ü ű É ű ű ű Ö ű ű ű Ö Ö Ú ű Ü Ú Ö ű Ü ű Ü ű ű Ü Ö ű ű ű Ú Ü Ú Ó ű ű É É ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű ű

Részletesebben

Ó Ó ú ú ú ú ú É ú

Ó Ó ú ú ú ú ú É ú É Ö É ű ú É Ó É ú ú ú Ó Ó ú ú ú ú ú É ú Ó Ó ú É ú É ú Ó Ö É Ó Ó ú É ú Ö Ó Ó ú ú É É É ú Ó Ó É ú ú ú ú ú ú ú ú ú ú É Ú É Ó Ó ú ú Ó Ó Ö Ö É É É ú É É ú ú É É Ó Ó É Ű ú É Ó Ó Ű Ú ú ú É Ú Ú É Ú Ó Ó Ó É É É

Részletesebben

Laplace-transzformáció és alkalmazása

Laplace-transzformáció és alkalmazása Eötvö Loránd Tudományegyetem Termézettudományi Kar Laplace-tranzformáció é alkalmazáa Szakdolgozat Ki Ezter Matematika BSc., Elemz zakirány Témavezet : Bátkai Andrá, Egyetemi docen Alkalmazott Analízi

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

1.1. A Laplace-transzformált és fontosabb tulajdonságai

1.1. A Laplace-transzformált és fontosabb tulajdonságai . A Laplace-tranzformált. A Laplace-tranzformált.. A Laplace-tranzformált é fontoabb tulajdonágai Jelölje R a való zámok é C a komplex zámok halmazát. Legyen g : [a,b] C adott komplex értékű függvény.

Részletesebben

a) az O(0, 0) középpontú, r = 2 sugarú, negatív irányítasú körvonal P( 2, 2), Q( 2, 2) pontjait

a) az O(0, 0) középpontú, r = 2 sugarú, negatív irányítasú körvonal P( 2, 2), Q( 2, 2) pontjait 06.05.7. Kalulus II. NÉV:... A csoport EHA:... FELADATOK. Határozzu meg a xy da integrált, ahol H az A(, ), B(0, 0) és C(, ) ponto által megha- y + 3 tározott háromszög. H 0pt. Oldju meg: y y + 5y = e

Részletesebben

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,

Részletesebben

2011/2012 tavaszi félév 7. óra

2011/2012 tavaszi félév 7. óra 2011/2012 tavazi félév 7. óra ph-zámítá (II) Hidrolizáló ók ph-ja Pufferelegyek ph-ja Pufferkapaitá zámítáa Savak, áziok é ók keverékeinek zámítáa Benkő Zoltán jegyzete: 8.6 fejezet Eredeti Vezprémi T.

Részletesebben

Hidrogénszerű atomi részecskék. Hidrogénszerű atomi részecskék

Hidrogénszerű atomi részecskék. Hidrogénszerű atomi részecskék Hidrogénzerű rézeckék páyáinak radiái fuámfüggvénye: páya radiái uámfüggvény p 3 3p 3d Zr Zr Rn, ( r) Nn, r exp Ln radiái uámfüggvény na na R ( Z / a ) exp( Zr / a ) 3, R ( Z / a ) ( Zr / a )exp( Zr /

Részletesebben

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA Széchenyi Itván Egyetem MTK Szerkezetépítéi é Geotechnikai Tanzék Tartók tatikája I. 1. Prizmatiku rúdelem cavaráa r. Papp Ferenc RÚAK CSAVARÁSA Egyene tengelyű é állandó kereztmetzetű (prizmatiku) rúdelem

Részletesebben

Numerikus matematika

Numerikus matematika Numerikus matematika Baran Ágnes Gyakorlat Numerikus integrálás Matlab-bal Baran Ágnes Numerikus matematika 8. Gyakorlat 1 / 20 Anoním függvények, function handle Függvényeket definiálhatunk parancssorban

Részletesebben

Runge-Kutta módszerek

Runge-Kutta módszerek Runge-Kutta módszerek A Runge-Kutta módszerek az Euler módszer továbbfejlesztésének, javításának tekinthetők, kezdeti értékkel definiált differenciál egyenletek megoldására. Előnye hogy a megoldás során

Részletesebben

MŰSZAKI FIZIKA I. Dr. Iványi Miklósné Professor Emeritus. 6. Előadás. PTE PMMK Műszaki Informatika Tanszék. Műszaki Fizika-I/EA-VI/1

MŰSZAKI FIZIKA I. Dr. Iványi Miklósné Professor Emeritus. 6. Előadás. PTE PMMK Műszaki Informatika Tanszék. Műszaki Fizika-I/EA-VI/1 MŰSZAK FZKA Dr. ványi Milóné Profeor Emeriu 6. Előadá PTE PMMK Műzai nformaia Tanzé Műzai Fizia-/EA-V/ Műzai Fizia-/EA-V/ PTE PMMK Műzai nformaia Tanzé Ellenálláo oro é párhuzamo apcoláa a) Ellenálláo

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü

ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü Ö ü ö ő ú ö ü ű ö ö ö ö ő ő ö ő ü ö ö ő ö ö ü ú ö ü ő ő ö ú ő ü ü ü ű ű ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü ő ü ü ő ő ü ü ő ő ú ő ú ő ü ü ő ü ő ú ü Ü ő ő ö ő ü ő ü

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Komplex számok. A komplex számok algebrai alakja

Komplex számok. A komplex számok algebrai alakja Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j

Részletesebben

1.40 VARIFORM (VF) Légcsatorna idomok. Légcsatorna rendszerek

1.40 VARIFORM (VF) Légcsatorna idomok. Légcsatorna rendszerek .40 VARIFORM (VF) égcatrna idmk égcatrna rendzerek Alkalmazá: A VARIFORM idmk lyan zellõztetõ é klímarendzerek kialakítááz, illetve zerelééez aználatók, al a légcatrna-álózatz WESTERFORM vagy SPIKO cöveket

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Idő-ütemterv hálók - II.

Idő-ütemterv hálók - II. Előadá:Folia1.doc Idő-ütemterv hálók - II. CPM - CPM létra : Továbbra i gond az átlaolá, a nyitott háló é a meg-nem-zakítható tevékenyég ( termeléközeli ütemtervek ) MPM time : ( METRA Potential' Method

Részletesebben

A CSOPORT 4 PONTOS: 1. A

A CSOPORT 4 PONTOS: 1. A A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével

Részletesebben

A kör harmadik pontjának meghatározásához egy könnyen kiszámítható pontot keressünk

A kör harmadik pontjának meghatározásához egy könnyen kiszámítható pontot keressünk 7. Átviteli ellemzők fogalma é ábrázoláa! A kondenzátor kapacitív reaktanciáa: Z Tehát az áramkör ellemzői a rákapcolt zinuzo el frekvenciáától függenek, ha az áramkör energiatároló elemet, i tartalmaz.

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2011. május 31.

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2011. május 31. Név, felvételi azonoító, Neptun-kód: VI pont(90) : Cak felvételi vizga: cak záróvizga: közö vizga: Közö alapképzée záróvizga meterképzé felvételi vizga Villamomérnöki zak BME Villamomérnöki é Informatikai

Részletesebben

Laplace-transzformáció és alkalmazása

Laplace-transzformáció és alkalmazása Eötvö Loránd Tudományegyetem Termézettudományi Kar Laplace-tranzformáció é alkalmazáa Szakdolgozat Ki Ezter Matematika BSc., Elemz zakirány Témavezet : Bátkai Andrá, Egyetemi docen Alkalmazott Analízi

Részletesebben

Kurzusinformáció. Analízis II, PMB1106

Kurzusinformáció. Analízis II, PMB1106 Kurzusinformáció Analízis II, PMB1106 2013 Tantárgy neve: Analízis II Tantárgy kódja: PMB1106 Kreditpont: 4 Heti kontakt óraszám (elm.+gyak.): 2+2 Előfeltétel: PMB1105 Félévi követelmény: kollokvium Előadás

Részletesebben

Az ideális Fermi-gáz termodinamikai mennyiségei

Az ideális Fermi-gáz termodinamikai mennyiségei Az ideális Fermi-gáz termodinamikai mennyiségei Kiegészítés III. éves BSc fizikusok számára Cserti József Eötvös Loránd udományegyetem, Komplex Rendszerek Fizikája anszék 2017. március 1. Néhány alapvető

Részletesebben

7. feladatsor: Laplace-transzformáció (megoldás)

7. feladatsor: Laplace-transzformáció (megoldás) Matematika Ac gyakorlat Vegyésmérnöki, Biomérnöki, Környeetmérnöki sakok, 017/18 ős 7. feladatsor: Laplace-transformáció (megoldás) 1. A definíció alapján sámoljuk ki a követkeő függvények Laplace-transformáltját.

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória

Hatvani István fizikaverseny forduló megoldások. 1. kategória Hatvani Itván fizikavereny 07-8.. kategória.3.. A kockából cak cm x cm x 6 cm e függőlege ozlopokat vehetek el. Ezt n =,,,35 eetben tehetem meg, így N = n 6 db kockát vehetek el egyzerre úgy, hogy a nyomá

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

Feladatok Oktatási segédanyag

Feladatok Oktatási segédanyag VIK, Műsaki Informatika ANAÍZIS () Komplex függvénytan Feladatok Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műsaki informatikus hallgatóinak tartott előadásai alapján össeállította: Frit

Részletesebben

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris

Részletesebben

Dugós szállítás. dugó eleje és vége közötti nyomásesés p. figyelembevételével. = ρ. Keverékek áramlása. 9. előadás

Dugós szállítás. dugó eleje és vége közötti nyomásesés p. figyelembevételével. = ρ. Keverékek áramlása. 9. előadás Keerékek ármlá. 9. előá Kézítette: r. Vári Sánor Bueti Műzki é Gzátuományi Eyetem Géézmérnöki Kr Hiroinmiki enzerek Tnzék, Buet, Műeyetem rk. 3. D é. 334. Tel: 463-6-8 x: 463-3-9 tt://www.ize.bme.u Duó

Részletesebben

Regresszióanalízis. Lineáris regresszió

Regresszióanalízis. Lineáris regresszió Regrezóanalíz Lneár regrezó REGRESSZIÓ 1 Modell: Valamely (pl. fzka) törvényzerûég értelméen az x független változó zonyo értékénél a függõ változó értéke Y ϕ (x). Y helyett y értéket mérünk, E(y x) Y,

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság.

2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság. Ütemterv az Analízis I. c. tárgyhoz (GEMAN510B, 510-B) Járműmérnöki, logisztikai mérnöki, műszaki menedzser, villamosmérnöki, ipari termék- és formatervező mérnöki alapképzési szak 2019/20. tanév I. félév

Részletesebben

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m.

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m. Szakác enő Megyei Fizika Vereny, I. forduló, 00/004. Megoldáok /9. 00, v O 4,9 k/h 4,9, t L 9,86.,6 a)?, b)?, t t L t O a) A futók t L 9,86 ideig futnak, így fennáll: + t L v O. Az adott előny: 4,9 t L

Részletesebben