Kidolgozott minta feladatok kinematikából

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kidolgozott minta feladatok kinematikából"

Átírás

1 Kidolgozott minta feladatok kinematikából EGYENESVONALÚ EGYNLETES MOZGÁS 1. Egy gépkoci útjának az elő felét, a máik felét ebeéggel tette meg. Mekkora volt az átlagebeége? I. Saját zavainkkal megfogalmazva: tudjuk, hogy az öze megtett út, amiből utat II. III. IV. é utat ebeéggel tette meg a jármű. Kérdé, hogy az öze megtett útra mekkora az autó átlagebeége? Fonto: az átlagebeég nem egyenlő a ebeégek átlagával! A I. pontban leírtakból világoan kitűnnek az imert é az imeretlen mennyiégek. Így imertek a ebeégek é a megtett út, imeretlen az átlagebeég é az az idő ameddig a jármű mozgott. Az időt közvetlenül nem imerjük, ezért közvetetten kell majd meghatározni. Az imert é imeretlen mennyiégek közötti özefüggéek feltáráát az előző két pontban már megtettük, így jöhet a megoldái terv kézítée, de előtte még egy megjegyzé: az alapfeladatnak egy jól átgondolt újrafogalmazáa egézen közel viz a helye megoldához. A megoldái terv. Írjuk fel a lehetége, é fizikailag értelme özefüggéeket.. Az utat jelöljük egyzerűen -el. Az öze út megtétele ideig tartott, amit két rézre kell bontani. Az út elő felének a megtétele ideig, míg az út máodik felének a megtétele V. A megoldái terv végrehajtáa. ideig tartott. ( ) ( ) VI. Az eredmény ellenőrzée. a. Teljeen termézete, hogy az eredmény fizikailag megfelelő. b. Az eredményt az eredeti feladat zövegébe helyetteítve ez könnyen bizonyítható. c. Mint azt a I. pontban írom az átlagebeég nem egyenlő a ebeégek átlagával. Ez a tény józan logikával i belátható. 2. Egy zemélyvonat ebeéggel halad. A zomzédo pályán egy 100 m hozú tehervonat ebeéggel jön a zemélyvonattal ellentéte irányban. a) Mekkora a zemélyvonat ebeége a tehervonathoz vizonyítva? b) Mekkora a tehervonat ebeége a zemélyvonathoz rögzített vonatkoztatái rendzerben? c) Mennyi ideig látja a zemélyvonat ablakán merőlegeen kinéző uta a tehervonatot? d) Mennyi ideig látja önmaga mellett a tehervonat vezetője a 200 m hozú zemélyvonatot? e) Mennyi ideig látja a zemélyvonatban ülő megfigyelő a tehervonatot, ha az a zemélyvonattal egy irányban halad ebeéggel? I. Saját zavainkkal megfogalmazva: Célzerű előzör a zemélyvonaton ülő utanak, majd pedig a tehervonat vezetőjének a helyzetébe képzelni magunkat. Hogy miért ép-.

2 II. III. pen a megadott zemélyek nézőpontja a célzerű, az a kérdéekből egyeneen következik. A feladat mértékegyégei vegyeen vannak megadva. Ajánlato SI alapegyégekre váltani őket. a. b. Rögtön rá lehet térni a megoldá menetére, mert apró kici rézkérdéek vannak megfogalmazva. a. Mivel a két vonat egymáal zemben halad, a zemélyvonat ebeége a tehervonathoz képet éppen a két ebeég özege.. Például ezért vezélye a frontáli ütközé, cak erre okan nem gondolnak, amikor autóba ülnek é záguldoznak. b. Ha a zemélyvonatot tekintjük vonatkoztatái rendzernek, akkor az egy ebeéggel, a zemélyvonattal ellenkező irányba haladó vonatkoztatái rendzer. Ebben a vonatkoztatái rendzerben vizgálva a tehervonat ebeégét, pontoan az előző ebeéget kapjuk eredményül. c. A tehervonat 100 m hozú, ezt jelöljük 1 -el. Vegyük ézre, hogy teljeen mindegy, hogy a zemélyvonaton ülő uta a vonat melyik rézén foglal helyet. A kérdét úgy i feltehetjük, hogy megtenni 100 m utat.. ebeéggel mennyi idő alatt lehet d. Mot pedig azt a kérdét tehetjük fel, hogy mennyi idő alatt lehet megtenni ebeéggel az mellette elhaladó zemélyvonatot. utat. Ennyi ideig látja a mozdonyvezető a. Ez rögtön belátható zámolá nélkül i a c. pontban elmondottak alapján. e. Ennek a kérdének a megválazoláa figyelmet követel. i. A két vonat azono irányban halad, tehát a közöttük lévő ebeégkülönbég:. ii. Az uta helye nem fonto a következő okfejté miatt. A zemélyvonat utoléri a tehervonatot é a megfigyelő attól a pillanattól méri az időt, amint a tehervonat végével egy vonalban van. Az időmérét akkor fejezi be, amikor a tehervonat mozdonyának az elő íkjával van egyvonalban. iii. A kérdé tehát, hogy ebeéggel mennyi idő alatt lehet megtenni 100 m távolágot. IV. A feladat megoldáának ellenőrzéi lépéeit zorgalmi feladatként végezze el az érdeklődő. 3. Egy hajó a folyó vizén ebeéggel halad. A folyó ebeége. A folyó ugyanazon oldali partján két váro távolága. Mennyi idő alatt tezi meg a hajó a két váro közötti távolágot oda-viza? Megváltozna-e a menetidő, ha a feladatba a folyó helyett egy tó zerepelne?

3 I. Saját megfogalmazában a feladat úgy zól, hogy mennyire befolyáolja a folyó ebeége a hajó ebeégét, é ezen kereztül a mozgá időtartamát? II. Az imert mennyiégek: III. IV. a. a hajó ebeége a folyó vizéhez képet b. a folyó ebeége a parthoz képet c. a várook közötti távolág Az imeretlen mennyiégek: a. a folyón lefelé zükége haladái idő b. a folyón felfelé zükége haladái idő c. a telje menetidő oda-viza a két váro között a folyón haladva d. a telje menetidő, ha a mozgá ugyanazon távolágban egy tavon történne Kereünk özefüggéeket a mennyiégek között. A vonatkoztatái rendzer a folyó meder, hizen a folyó ebeégét ehhez képet adta meg a feladat. Tehát a folyó ebeége egy nyugvó koordinátarendzerben van értelmezve. A hajó ebeége a folyó mozgáához van vizonyítva. A folyó a hajóhoz képet mozog, tehát a hajó mozgáát egy mozgó koordinátarendzerben adta meg a feladat. Célzerű vizont a mozgáokat úgy vizgálni, hogy azok mindegyike (ha lehetége) nyugvó koordinátarendzerben történjen. A mozgát (elmozdulát) zemléltető vektorok egítéget jelentenek majd a megoldá orán. A megoldái tervhez rajzoljunk. km Folyó v m v f m Folyáirányban a folyó ebeégéhez hozzáadódik a hajó ebeége! Folyáiránnyal zemben a folyó ebeégéből kivonódik a hajó ebeége! km v f v m m Folyó V. A két ábra zemlélete, így elkezdhetjük a megoldát. Elő körben három időtartamot kell kizámolni. Tehát a telje menetidő 4,444 óra. Ha tavon közlekedne a hajó, akkor az állóvíz, nem befolyáolná a hajó ebeégét. Így egyzerűen az öze út é a hajó ebeégének a hányadoa megadja a telje menetidőt.

4 (cökkenne) ha a hajó a folyó helyett tavon közlekedne. Tehát a menetidő jelentően megváltozna ===== 4. Egy vonat útjának elő felét 1,5-zer nagyobb ebeéggel tette meg, mint a máodik felét. Az egéz útra vonatkozó átlagebeége 43,2 km/h. Mekkora volt a vonat ebeége útjának elő, illetve máodik rézén? I. A feladat teljeen életzerű. A vonat az útjának elő felében nagyobb ebeéggel haladt, mint a máodik felében. A ebeég különbég oka pl. a vaúti pálya javítáa miatt elrendelt ebeégkorlátozá lehetett, vagy valami má. Azt kell ézrevenni a feladatban, hogy a megtett út két feléhez a különböző ebeégek eetén a ebeégekkel arányo időtartamok rendelhetők. Mondhatni ez a kulca a feladat megoldáának. (Felülete olvaá eetén azt i hihetnénk, hogy a telje menetidő felében az egyik, majd a máik felében a máik ebeéggel haladt a vonat, pedig nem így írja a feladat. Ugyanakkor érdeme megoldani a feladatot olyan változatban i.) II. Figyelembe véve az előzőleg leírtakat, írjuk fel az imert é az imeretlen mennyiégeket. i. imert mennyiégek: 1. (a vonat ebeége az út máodik felében) III. 2. (a vonat ebeége az út elő felében) 3. (az út máodik felének megtételéhez zükége időtartam) 4. (az út elő felének megtételéhez zükége időtartam) 5. ii. imeretlen mennyiégek Kereünk özefüggéeket az imert é az imeretlen mennyiégek között. Ha ezt ikereen megtezük, akkor azzal a magoldái tervet i elkézítettük. Mint látható az imert mennyiégek között, zámértékkel é mértékegyéggel rendelkező adat cak egy van, az átlagebeég. A többi fizikai mennyiéget paramétereen tudtuk leírni, de ez, mint kéőbb kiderül, nem okoz problémát. Az út felét jelöljük ebeég é idő zorzatával mindkét eetre. é é fejezzük ki a Van két egyenletünk, de a két egyenletben három imeretlen van, az, a v 2 é a t 2. Még egy független egyenlet zükége, hogy a feladatot meg tudjuk oldani. Írjuk fel azt i. IV. Ha a v 2 ebeéget meghatároztuk, akkor az imert mennyiégek 2.-e pontjába helyetteítve a v 1 ebeéget i megimerjük. Eddig tartott a feladat fizikai megoldáa! Innentől már kizárólag matematikai imeretek zükégeek az eredmények elérééig! Az e egyenletek jobb oldalainak az özege az utat zolgáltatja. Írjuk ezt fel. Vegyük ézre, hogy: Emeljük ki v 2 -t.

5 ( ) ===== A továbbiakban a feladatokat akkor fogalmazzuk meg aját zavainkkal, ha a megoldához elengedhetetlenül zükége. Mondhatni, hogy a kezét nem lehet fogni örökké a tanulónak. Előbb-utóbb önállóvá kell válni a feladatmegoldá terén. EGYENESVONALÚ EGYNLETESEN VÁLTOZÓ MOZGÁS, SZABADESÉS, HAJÍTÁS 5. Milyen hozú kifutópályát kell építeni, hogy a repülőgép, a földön egyenleteen gyoruló mozgáal, a felzállához zükége 198 km/h ebeéget elérje, ha a gyoruláa 2,5 m/ 2? Imeretlen mennyiég: A mozgá időtartamát nem imerjük, de ki tudjuk fejezni a következő özefüggéből. Ebből: Ezt helyetteítük be az egyenletbe. ( ) 6. A háztetőről cerépdarab eik le, mely ablakunk előtt 0,2 alatt uhan el. Milyen magaról eik a cerép, ha az ablakunk magaága 2,2m? Az ablakpárkány földtől mért magaága 1,3m. Milyen magaan van a tető a földzinthez képet? Mennyi idő múlva, é mekkora ebeéggel ér földet a cerép?

6 Imeretlen mennyiégek: Kézítünk egy vázlatot. A rendelkezére álló adatokból é az ábrából látjuk, hogy zükég lez a távolág megtételéhez zükége időre, mert a négyzete úttörvény vezet el e megoldához. Tehát a négyzete úttörvény általáno alakja: t a Amikor a cerép az ablak felő zélének a magaágához ér, akkor már van valamilyen ebeége. Ezt nem imerjük, de a négyzete úttörvényt írjuk fel a következő képen. Világo, hogy: Az egyenletben egy imeretlen van, a időtartam, ami a eémagaághoz tartozik. Fejezzük ki ezt az időt. A matematikai levezetét mellőzve (azt mot már végezze el a diák!) f Tehát a tetőről az ablak felő zéléig tartó út megtételéhez idő zükége. Mot zámoljuk ki a magaágot. nulla. Ezért: A tető földtől mért magaága: Mivel a cerép nulla kezdőebeéggel indul, így az egyenlet elő tagja A cerép eéének a telje ideje: A földet éré ebeége: Tanulág: ha az ember leeik egy ilyen (nem túl maga) tetőről, az végzete i lehet, de az a minimum, hogy ok contját eltöri. 7. Nyugalomból induló é egyenleteen gyoruló tet mozgáának nyolcadik máodpercében 60 cm utat tett meg. Mekkora utat futott be a kilencedik máodperc alatt? Ez egy vízzinte íkon történő mozgá, gyoruláal. Előzör kézítünk rajzot, hogy egyzerűbb legyen az értelmezé é a feladatmegoldá. 0 m (m) 0 x t () x 2

7 Imeretlen mennyiégek: Az ábrát zemlélve megállapítható, hogy adatok cak a 7. é 8. máodperc közötti időtartamról vannak. A tet a időpontban kezdőebeéggel indul. Amikor a 8. kezdetéhez, azaz a 7. - hoz érkezik, akkor már van valamilyen éppen a ebeége. ebeége. Ez a ebeég, a tetnek Mot már egyre nyilvánvalóbb, hogy a négyzete úttörvényben kell kereni a megoldát, de nem imerjük a tet gyoruláát. Ezt i abból határozhatjuk meg a következő képen. ( ) ( ) ezt a kifejezét írjuk be az előző egyenletbe. ( ) ( ) itt a gyorulá imeretlen, amit ki kell fejezni. ( ) ( ) ( ( ) ( ) ) ( ) ( ) ( ) A gyorulá imeretében kizámítjuk, hogy mekkora utat tez meg a tet a kezdőponttól a időpontig (ez az x 2 távolág), majd pedig azt, hogy mennyi utat tez meg a időpontig (ez az x 1 távolág). A két távolág különbége éppen a 9. máodpercben megtett utat zolgáltatja. Tehát: = 8. Mennyi ideig emelkedik, é milyen magara jut az elhajítá helyétől a függőlegeen felfelé kezdőebeéggel dobott tárgy. Imeretlen mennyiégek:

8 özefüggéből indulunk ki. A tetnek a felő holtpont eléréekor a v ebeé- A ge nulla. A t emelkedéi idő könnyen meghatározható: Az emelkedé magaága: Vagy máképpen: ( ) = 9. Milyen magara jut a függőlegeen fölfelé hajított tet, mire a ebeége a kezdőebeég harmadára cökken? Imeretlen mennyiég: A paramétereen megoldható fizika feladatok jellemzői: 1. fejlezti a fizikai látámódot, 2. fejlezti az abztrakció kézéget, 3. fejlezti a gondolkodát, 4. fejlezti az egyenletmegoldó kézéget, 5. felvilágoítát ad arról, hogy egy fizikai mennyiég (függvény érték) hogyan függ a bemeneti változók (független változók) változáától. A feladatban zámzerű adatok nincenek. Az ilyet nevezzük paramétereen megadott feladatnak. Az imert adatokat a feladat zövegéből lehet é kell meghatározni. Cak megjegyzem, hogy ez az értő olvaá próbája, ugyanakkor ez a réz tényleg igényel fizikai imeretet. Mivel egyenleteen változó mozgáról (függőlege felfelé hajítá) van zó a megoldát i az ott megimert özefüggéek fogják biztoítani. Két alapvető egyenletet kell felírni. Az egyik az emelkedé magaága, a máik a kezdőebeég harmada. A II. egyenletből kifejezzük a t időt. Ezt behelyetteítjük I.-be é megkapjuk a kérdée magaágot. A feladat megoldáa innen tizta matematika! Láuk a levezetét., Ezt behelyetteítjük I.-be. ( ) Teék addig gondolkozni é gyakorolni, amíg teljeen nem világo a levezeté eredménye!

9 10. Egy ebeéggel üllyedő lift mellett elejtünk egy követ. Mikor é hol találkozik a kő a lifttel? ( ) Imeretlen mennyiégek: Mindenekelőtt ézre kell venni, hogy kétféle mozgáról van zó. A vizgálat időtartama alatt a lift egyene vonalú egyenlete mozgát, míg a kő egyene vonalú egyenleteen változó mozgát végez. A máik ézrevétel, hogy a lefelé egyenleteen mozgó lift egy adott helyzete mellett engedjük el a követ nulla kezdőebeéggel. A kő elengedéének a pillanatában a lift még nagyobb ebeéggel halad, mint a kő, de (ahogy a megoldából majd látni lehet) rövid időn belül utoléri a kő a liftet. Ez az egyenlet a lift által megtett útra vonatkozik. Ez az egyenlet a kő által megtett útra vonatkozik. Mivel a találkozáig megtett utak egyformák, így a két egyenlet jobb oldalai i egyformák. Tehát ennyi idő múlva éri utol a kő a liftet. Ennyi idő alatt a lift (é a kő) által megtett út: = 11. Függőlege egyeneen helyezkedik el az A pont, é 100 méterrel lejjebb a B pont. A-ból lefelé, B-ből fölfelé hajítanak egy-egy kavicot azono pillanatban, é azono kezdőebeéggel. Mikor é hol találkozik a két kavic? ( ) Teék ábrát kézíteni é átgondolni a kavicok mozgáát a kezdőfeltételek figyelembevételével.

TestLine - Fizika 7. osztály mozgás 1 Minta feladatsor

TestLine - Fizika 7. osztály mozgás 1 Minta feladatsor TetLine - Fizika 7. oztály mozgá 1 7. oztály nap körül (1 helye válaz) 1. 1:35 Normál áll a föld kering a föld forog a föld Mi az elmozdulá fogalma: (1 helye válaz) 2. 1:48 Normál z a vonal, amelyen a

Részletesebben

Gyakorló feladatok a mozgások témaköréhez. Készítette: Porkoláb Tamás

Gyakorló feladatok a mozgások témaköréhez. Készítette: Porkoláb Tamás ELMÉLETI KÉRDÉSEK Gyakorló feladatok a mozgáok témaköréez 1. Mit mutat meg a ebeég? 2. Mit mutat meg a gyorulá? 3. Mit mutat meg az átlagebeég? 4. Mit mutat meg a pillanatnyi ebeég? 5. Mit mutat meg a

Részletesebben

Mindennapjaink. A költő is munkára

Mindennapjaink. A költő is munkára A munka zót okzor haználjuk, okféle jelentée van. Mi i lehet ezeknek az egymától nagyon különböző dolgoknak a közö lényege? É mi köze ezeknek a fizikához? A költő i munkára nevel 1.1. A munka az emberi

Részletesebben

Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0

Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0 Fizikkönyv ifj Zátonyi Sándor, 16 Trtlom Foglmk Törvények Képletek Lexikon Mozgá lejtőn Láttuk, hogy tetek lejtőn gyoruló mozgát végeznek A következőkben vizgáljuk meg rézleteen ezt mozgát! Egyene lejtőre

Részletesebben

km 1000 m 1 m m km Az átváltás : 1 1 1 3,6 h 3600 s 3,6 s s h

km 1000 m 1 m m km Az átváltás : 1 1 1 3,6 h 3600 s 3,6 s s h Út-idő feladatok Ha a ebeég állandó, akkor az út egeezik az eltelt időnek é a ebeégnek a zorzatáal. = t A ebeég értékeége a k/h a a /. Ha a tet ebeége k/h, akkor óra alatt kiloétert tez eg. k 000 k Az

Részletesebben

1. A mozgásokról általában

1. A mozgásokról általában 1. A ozgáokról általában A világegyeteben inden ozog. Az anyag é a ozgá egyától elválazthatatlan. A ozgá időben é térben egy végbe. Néhány ozgáfora: táradali, tudati, kéiai, biológiai, echanikai. Mechanikai

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók

Részletesebben

Egyenletes mozgás. Alapfeladatok: Nehezebb feladatok:

Egyenletes mozgás. Alapfeladatok: Nehezebb feladatok: Alapfeladatok: Egyenlete ozgá 1. Egy hajó 18 k-t halad ézakra 36 k/h állandó ebeéggel, ajd 4 k-t nyugatra 54 k/h állandó ebeéggel. Mekkora az elozdulá, a egtett út, é az egéz útra záított átlagebeég? (30k,

Részletesebben

2015.06.25. Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv.

2015.06.25. Villámvédelem 3. #5. Elszigetelt villámvédelem tervezése, s biztonsági távolság számítása. Tervezési alapok (norma szerint villámv. Magyar Mérnöki Kamara ELEKTROTECHNIKAI TAGOZAT Kötelező zakmai továbbképzé 2015 Villámvédelem #5. Elzigetelt villámvédelem tervezée, biztonági távolág zámítáa Villámvédelem 1 Tervezéi alapok (norma zerint

Részletesebben

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont A Mikola Sándor Fizikavereny feladatainak egoldáa Döntı - Gináziu oztály Péc feladat: a) Az elı eetben a koci é a ágne azono a lauláát a dinaika alaegyenlete felhaználáával záolhatjuk: Ma Dy Dy a 6 M ont

Részletesebben

Gyakorló feladatok Egyenletes mozgások

Gyakorló feladatok Egyenletes mozgások Gyakorló feladatok Egyenletes mozgások 1. Egy hajó 18 km-t halad északra 36 km/h állandó sebességgel, majd 24 km-t nyugatra 54 km/h állandó sebességgel. Mekkora az elmozdulás, a megtett út, és az egész

Részletesebben

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatákutató é Fejleztő Intézet TÁMOP-3.1.1-11/1-01-0001 XXI. zázadi közoktatá (fejlezté, koordináció) II. zakaz FIZIKA 1. MINTAFELADATSOR KÖZÉPSZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatákutató é Fejleztő

Részletesebben

Mechanika. 1.1. A kinematika alapjai

Mechanika. 1.1. A kinematika alapjai Tartalojegyzék Mecanika 1. Mecanika 4. Elektroágnee jelenégek 1.1. A kineatika alapjai 1.2. A dinaika alapjai 1.3. Munka, energia, teljeítény 1.4. Egyenúlyok, egyzerű gépek 1.5. Körozgá 1.6. Rezgéek 1.7.

Részletesebben

Miért kell az autók kerekén a gumit az időjárásnak megfelelően téli, illetve nyári gumira cserélni?

Miért kell az autók kerekén a gumit az időjárásnak megfelelően téli, illetve nyári gumira cserélni? Az egymáal érintkező felületek között fellépő, az érintkező tetek egymához vizoított mozgáát akadályozó hatát cúzái úrlódának nevezzük. A cúzái úrlódái erő nagyága a felületeket özeomó erőtől é a felületek

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt zint 08 É RETTSÉGI VIZSGA 0. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utaítáai zerint,

Részletesebben

Bor Pál Fizikaverseny, középdöntő 2012/2013. tanév, 7. osztály

Bor Pál Fizikaverseny, középdöntő 2012/2013. tanév, 7. osztály Bor Pál Fizikavereny, középdöntő 2012/201. tanév, 7. oztály I. Igaz vagy hami? (8 pont) Döntd el a következő állítáok mindegyikéről, hogy mindig igaz (I) vagy hami (H)! Írd a or utoló cellájába a megfelelő

Részletesebben

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m.

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m. Szakác enő Megyei Fizika Vereny, I. forduló, 00/004. Megoldáok /9. 00, v O 4,9 k/h 4,9, t L 9,86.,6 a)?, b)?, t t L t O a) A futók t L 9,86 ideig futnak, így fennáll: + t L v O. Az adott előny: 4,9 t L

Részletesebben

Mozgással kapcsolatos feladatok

Mozgással kapcsolatos feladatok Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek

Részletesebben

Azért jársz gyógyfürdőbe minden héten, Nagyapó, mert fáj a térded?

Azért jársz gyógyfürdőbe minden héten, Nagyapó, mert fáj a térded? 3. Mekkora annak a játékautónak a tömege, melyet a 10 N m rugóállandójú rugóra akaztva, a rugó hozváltozáa 10 cm? 4. Mekkora a rugóállandója annak a lengécillapítónak, amely 500 N erő hatáára 2,5 cm-rel

Részletesebben

Magdi meg tudja vásárolni a jegyet, mert t Kati - t Magdi = 3 perc > 2 perc. 1 6

Magdi meg tudja vásárolni a jegyet, mert t Kati - t Magdi = 3 perc > 2 perc. 1 6 JEDLIK korcoport Azonoító kód: Jedlik Ányo Fizikavereny. (orzágo) forduló 7. o. 0. A feladatlap. feladat Kati é Magdi egyzerre indulnak otthonról, a vaútálloára ietnek. Úgy tervezik, hogy Magdi váárolja

Részletesebben

Szakács Jenő Megyei Fizika Verseny, II. forduló, Megoldások. F f + K m 1 g + K F f = 0 és m 2 g K F f = 0. kg m

Szakács Jenő Megyei Fizika Verseny, II. forduló, Megoldások. F f + K m 1 g + K F f = 0 és m 2 g K F f = 0. kg m Szakác Jenő Megyei Fizika Vereny, II. forduló, Megoldáok. oldal. ρ v 0 kg/, ρ o 8 0 kg/, kg, ρ 5 0 kg/, d 8 c, 0,8 kg, ρ Al,7 0 kg/. a) x? b) M? x olaj F f g K a) A dezka é a golyó egyenúlyban van, így

Részletesebben

A rögzített tengely körül forgó testek kiegyensúlyozottságáról kezdőknek

A rögzített tengely körül forgó testek kiegyensúlyozottságáról kezdőknek A rögzített tengely körül forgó tetek kiegyenúlyozottágáról kezdőknek Bevezeté A faiparban nagyon ok forgó mozgát végző gépelem, zerzám haználato, melyek rende működéének feltétele azok kiegyenúlyozottága.

Részletesebben

A könyvet írta: Dr. Farkas Zsuzsanna Dr. Molnár Miklós. Lektorálta: Dr. Varga Zsuzsanna Thirring Gyuláné

A könyvet írta: Dr. Farkas Zsuzsanna Dr. Molnár Miklós. Lektorálta: Dr. Varga Zsuzsanna Thirring Gyuláné A könyvet írta: Dr. Farka Zuzanna Dr. Molnár Mikló Lektorálta: Dr. Varga Zuzanna Thirring Gyuláné Felelő zerkeztő: Dr. Mező Tamá Szabóné Mihály Hajnalka Tördelé: Szekretár Attila, Szűc Józef Korrektúra:

Részletesebben

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással Gyengeavak izociáció állanójának meghatározáa potenciometriá titráláal 1. Bevezeté a) A titrálái görbe egyenlete Egy egybáziú A gyengeavat titrálva NaO mérőolattal a titrálá bármely pontjában teljeül az

Részletesebben

Mozgással kapcsolatos szöveges feladatok 7 8. osztály Egyed László, Baja

Mozgással kapcsolatos szöveges feladatok 7 8. osztály Egyed László, Baja Mozgással kapcsolatos szöveges feladatok 7 8. osztály Egyed László, Baja 1. feladat Egy személy egy 42 km-es utat (amely éppen a maratoni versenyeken kitűzött távolság) a következőképpen teszi meg: öt

Részletesebben

5. Egy 21 méter magas épület emelkedési szögben látszik. A teodolit magassága 1,6 m. Milyen messze van tőlünk az épület?

5. Egy 21 méter magas épület emelkedési szögben látszik. A teodolit magassága 1,6 m. Milyen messze van tőlünk az épület? Gyakorlás 1. Az út emelkedésének nevezzük annak a szögnek a tangensét, amelyet az út a vízszintessel bezár. Ezt általában %-ban adják meg. (100 %-os emelkedésű a vízszintessel 1 tangensű szöget bezáró

Részletesebben

Hidraulikatömítések minősítése a kenőanyag rétegvastagságának mérése alapján

Hidraulikatömítések minősítése a kenőanyag rétegvastagságának mérése alapján JELLEGZETES ÜZEMFENNTATÁSI OBJEKTUMOK ÉS SZAKTEÜLETEK 5.33 Hidraulikatömítéek minőítée a kenőanyag rétegvatagágának mérée alapján Tárgyzavak: tömíté; tömítőrendzer; hidraulika; kenőanyag; méré. A jó tömíté

Részletesebben

4. A bolygók mozgása 48 A TESTEK MOZGÁSA

4. A bolygók mozgása 48 A TESTEK MOZGÁSA 48 A TESTEK MOZGÁSA 4. A bolygók mozgáa Már az õi páztornépek i figyelték az égbolt jelenégeit, változáait. Élénk képzelettel megzemélyeítették a cillagképeket, é igyekeztek magyarázatot találni azok elhelyezkedéének

Részletesebben

A feladatok közül egyelıre csak a 16. feladatig kell tudni, illetve a 33-45-ig. De nyugi, a dolgozat után azokat is megtanuljuk megoldani.

A feladatok közül egyelıre csak a 16. feladatig kell tudni, illetve a 33-45-ig. De nyugi, a dolgozat után azokat is megtanuljuk megoldani. Munka, energia, teljeítény, atáfok A feladatok közül egyelıre cak a 6. feladatig kell tudni, illetve a 33-45-ig. De nyugi, a dolgozat után azokat i egtanuljuk egoldani.:). Mitıl függ a ozgái energia?.

Részletesebben

ω = r Egyenletesen gyorsuló körmozgásnál: ϕ = t, és most ω = ω, innen t= = 12,6 s. Másrészről β = = = 5,14 s 2. 4*5 pont

ω = r Egyenletesen gyorsuló körmozgásnál: ϕ = t, és most ω = ω, innen t= = 12,6 s. Másrészről β = = = 5,14 s 2. 4*5 pont Hódezőváárhely, Behlen Gábor Gináziu 004. áprili 3. Megoldáok.. felada (Hilber Margi) r = 0,3, v = 70 k/h = 9,44 /, N =65. ω =? ϕ =? β =? =? A körozgára vonakozó özefüggéek felhaználáával: ω = r v = 64,8

Részletesebben

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul.

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul. MUNKA, NRGIA izikai érteleben unkavégzéről akkor bezélünk, ha egy tet erő hatáára elozdul. Munkavégzé történik ha: feleelek egy könyvet kihúzo az expandert gyorítok egy otort húzok egy zánkót özenyoo az

Részletesebben

Laplace transzformáció

Laplace transzformáció Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra

Részletesebben

Mit keressek? Uccu! könyvtár. Teljes kiírás (hosszú!) L.nY..dEZ

Mit keressek? Uccu! könyvtár. Teljes kiírás (hosszú!) L.nY..dEZ Dugonic Andrá Piarita Gimnázium, Szakképző Ikola, Alapfokú Művézetoktatái Intézmény é Kollégium Az könyvtár haználati útmutatója 1. Az ikolai könyvtár feladatai: 1.1. Alapfeladatok: a gyűjtemény folyamato

Részletesebben

Fizika mérnököknek számolási gyakorlat 2009 2010 / I. félév

Fizika mérnököknek számolási gyakorlat 2009 2010 / I. félév Fizika mérnököknek zámolái gyakorlat V. Munka, energia teljeítmény V./1. V./2. V./3. V./4. V./5. V./6. V./7. V./8. V./9. V./10. V./11. V./12. V./13. V./14. V./15. V./16. Határozzuk meg, hogy mekkora magaágban

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1

Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1 Szakác enő Megyei Fizika Vereny, az I. forduló feladatainak megoldáa. t perc, az A fiú ebeége, a B fiú ebeége, b 6 a buz ebeége. t? A rajz alapján: t + t + b t t t + t + 6 t t 7 t t t 7t 4 perc. Így A

Részletesebben

FIZIKA EMELT SZINTŰ KÍSÉRLETEK 2011

FIZIKA EMELT SZINTŰ KÍSÉRLETEK 2011 FIZIKA EMELT SZINTŰ KÍSÉRLETEK 011 Segédlet emelt zintű kíérletekhez KÉSZÍTETTE: CSERI SÁNDOR ÁDÁM FIZIKA EMELT SZINTŰ KÍSÉRLETEK 011 Tartalom: 1. Súlyméré... 3. Játékmotor teljeítményének é hatáfokának

Részletesebben

Hely, idő, haladó mozgások (sebesség, gyorsulás)

Hely, idő, haladó mozgások (sebesség, gyorsulás) Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei 1. tétel Imertee a nagy aznkron motorok közvetlen ndítáának következményet! Elemezze a közvetett ndítá módokat! Kalcká motorok ndítáa Közvetlen ndítá. Az álló motor közvetlen hálózatra kapcoláa a legegyzerűbb

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatákutató é Fejleztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. zázadi közoktatá (fejlezté, koordináció) II. zakaz FIZIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 Az írábeli vizga időtartaa: 120 perc Oktatákutató

Részletesebben

Információs rendszerek biztonságtechnikája

Információs rendszerek biztonságtechnikája Információ rendzerek biztonágtechnikája Vaányi Itván, Dávid Áko, Smidla Józef, Süle Zoltán 2014 A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0104 A felőfokú informatikai oktatá minőégének fejleztée, modernizációja

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v.

Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v. Középzinű éreégi feladaor Fizika Elő réz 1. Melyik ebeég-idő grafikon alapján kézül el az ado ú-idő grafikon? v v v v A B C D m 2. A gokar gyoruláa álló helyzeből12. Melyik állíá helye? m A) 1 ala12 a

Részletesebben

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet) oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középzint Javítái-értékeléi útutató 06 ÉRETTSÉGI VIZSGA 006. noveber 6. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fizika középzint

Részletesebben

Részletes megoldások. Csajági Sándor és Dr. Fülöp Ferenc. Fizika 9. című tankönyvéhez. R.sz.: RE 16105

Részletes megoldások. Csajági Sándor és Dr. Fülöp Ferenc. Fizika 9. című tankönyvéhez. R.sz.: RE 16105 K O S Á D L O G ME Rézlete egoldáok Cajági Sándor é Dr. Fülöp Ferenc Fizika 9 cíű tankönyvéhez R.z.: RE 605 Tartalojegyzék:. lecke A echanikai ozgá. lecke Egyene vonalú egyenlete ozgá 3. lecke Átlagebeég,

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel Melyek a közutak lényegeebb technikai elemei, műtárgyai, tartozékai? Pálya Pályazint Műtárgyak Alul- é felüljárók

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

Hőátviteli műveletek példatár. Szerkesztette: Erdélyi Péter és Rajkó Róbert

Hőátviteli műveletek példatár. Szerkesztette: Erdélyi Péter és Rajkó Róbert Hőátviteli műveletek példatár Szerkeztette: Erdélyi Péter é Rajkó Róbert . Milyen vatag legyen egy berendezé poliuretán zigetelée, ha a megengedhető legnagyobb hővezteég ϕ 8 m? A berendezé két oldalán

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész

Középszintű érettségi feladatsor Fizika. Első rész Középzinű éreégi feladaor Fizika Elő réz 1. Egy cónak vízhez vizonyío ebeége 12. A cónakban egy labda gurul 4 ebeéggel a cónak haladái irányával ellenéeen. A labda vízhez vizonyío ebeége: A) 8 B) 12 C)

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

Dinamika gyakorló feladatok. Készítette: Porkoláb Tamás

Dinamika gyakorló feladatok. Készítette: Porkoláb Tamás Dinaika gyakorló feladatok Kézítette: Porkoláb Taá Elélet 1. Mit utat eg a őrőég?. Írj áro példát aelyek a teetetlenég törvéével agyarázatók! 3. Írd le a lendület-egaradá tételét pontrendzerre! 4. Mit

Részletesebben

ÓRATERV Felhasznált irodalom:

ÓRATERV Felhasznált irodalom: ÓRATERV A műveltégi terület/kompetenciaterület neve: magyar nyelv é irodalom műveltégi terület, magyar nyelvtan tantárgy Az évfolyam: 9. Az óra címe: Az idegen zavak helyeíráa Az óra célja é feladata:

Részletesebben

Családi állapottól függõ halandósági táblák Magyarországon

Családi állapottól függõ halandósági táblák Magyarországon Caládi állapottól függõ halandóági táblák Magyarorzágon A házaágok várható tartama, túlélée MÓDSZERTANI TANULMÁNY Központi Statiztikai Hivatal Hungarian Central Statitial Offie Központi Statiztikai Hivatal

Részletesebben

1. forduló (2010. február 16. 14 17

1. forduló (2010. február 16. 14 17 9. MIKOLA SÁNDOR ORSZÁGOS TEHETSÉGKUTATÓ FIZIKAVERSENY 9. frduló (. február 6. 4 7 a. A KITŰZÖTT FELADATOK: Figyele! A verenyen inden egédezköz (könyv, füzet, táblázatk, zálógép) haználható, é inden feladat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Minta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

EGYENES VONALÚ MOZGÁS

EGYENES VONALÚ MOZGÁS Mértékeyéek átváltáa Tiztelt Diákok! Ha ibát találtok az alábbi dokuentuban, akkor jelezzétek a info@eotvodoro.u eail cíen! EGYENES VONALÚ MOZGÁS 5,2 k = = 4560 = c = 4,5 óra = perc = ec 7200 ec = óra

Részletesebben

2-17. ábra 2-18. ábra. Analízis 1. r x = = R = (3)

2-17. ábra 2-18. ábra. Analízis 1. r x = = R = (3) A -17. ábra olyan centrifugáli tengelykapcolót mutat, melyben a centrifugáli erő hatáára kifelé mozgó golyók ékpálya-hatá egítégével zorítják öze a urlódótárcát. -17. ábra -18. ábra Analízi 1 A -17. ábrán

Részletesebben

A következő angol szavak rövidítése: Advanced Product Quality Planning. Magyarul minőségtervezésnek szokás nevezni.

A következő angol szavak rövidítése: Advanced Product Quality Planning. Magyarul minőségtervezésnek szokás nevezni. Mi az az APQP? Az APQP egy mozaik zó. A következő angol zavak rövidítée: Advanced Product Quality Planning. Magyarul minőégtervezének zoká nevezni. Ez egy projekt menedzment ezköz, é egyben egy trukturált

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Sárrétudvari Községi Sportegyesület

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Sárrétudvari Községi Sportegyesület Érkezett :. A KÉRELMEZŐ ADATAI A kérelmező zervezet telje neve: Sárrétudvari Közégi Sportegyeület A kérelmező zervezet rövidített neve: Sárrétudvari KSE 2Gazdálkodái formakód: 52 3Tagági azonoítózám 85

Részletesebben

MUNKA, ENERGIA, TELJESÍTMÉNY tankönyvpótlék összeállította: Basa István külön köszönet: Gizinek

MUNKA, ENERGIA, TELJESÍTMÉNY tankönyvpótlék összeállította: Basa István külön köszönet: Gizinek MUNKA, ENERGIA, TELJESÍTMÉNY tankönyvpótlék özeállította: Baa Itván külön közönet: Gizinek MUNKA, ENERGIA, TELJESÍTMÉNY özefoglalá Az alábbiakban egy rövid (relatíve) egédanyagot közlök a jövő heti témazáróhoz.

Részletesebben

EGYENLETEK, EGYENLŐTLENSÉGEK

EGYENLETEK, EGYENLŐTLENSÉGEK EGYENLETEK, EGYENLŐTLENSÉGEK Elsőfokú egyenletek megoldása mérleg elvvel Az egyenletek megoldása során a következő lépéseket hajtjuk végre: a kijelölt műveletek elvégzésével, az egynemű kifejezések összevonásával

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2011. május 31.

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2011. május 31. Név, felvételi azonoító, Neptun-kód: VI pont(90) : Cak felvételi vizga: cak záróvizga: közö vizga: Közö alapképzée záróvizga meterképzé felvételi vizga Villamomérnöki zak BME Villamomérnöki é Informatikai

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középzint 1513 ÉRETTSÉGI VIZSGA 2015. október 22. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utaítáai zerint,

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

7. osztály, minimum követelmények fizikából

7. osztály, minimum követelmények fizikából 7. ozály, iniu köeelények fizikából izikai ennyiégek Sebeég Jele: Definíciója: az a fizikai ennyiég, aely eguaja, ogy a e egyégnyi idő ala ekkora ua ez eg. Kizáíái ódja, (képlee):. Szaakkal: ú oza a egéeléez

Részletesebben

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Téglás Városi Sportegyesület

1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező szervezet teljes neve: Téglás Városi Sportegyesület 1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező zervezet telje neve: Téglá Vároi Sportegyeület A kérelmező zervezet rövidített neve: TVSE 2Gazdálkodái formakód: 521 3Tagági azonoítózám 852 Áfa levonára a

Részletesebben

VIII. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár

VIII. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár Reinorce Concrete Structure I. / Vabetonzerkezetek I. VIII. Lecture VIII. / VIII. Előaá Reinorce Concrete Structure I. Vabetonzerkezetek I. - Vabeton kereztmetzet kötött é zaba tervezée hajlítára - Dr.

Részletesebben

Maradékos osztás nagy számokkal

Maradékos osztás nagy számokkal Maradéko oztá nagy zámokkal Uray M. Jáno, 01 1 Bevezeté Célunk a nagy termézete zámokkal való zámolá. A nagy itt azt jelenti, hogy nagyobb, mint amivel a zámítógép közvetlenül zámolni tud. A termézete

Részletesebben

Felszín alatti hidraulika. Dr. Szőcs Péter, Dr. Szabó Imre Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Felszín alatti hidraulika. Dr. Szőcs Péter, Dr. Szabó Imre Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Felzín alatti hidraulika Dr. Szőc Péter, Dr. Szabó Imre Mikolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanzék 1. A felzín alatti vizek termézete áramláa A földi vízkörforgalom (lád 1. ábra) révén a víz

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FIZIKA tankönyvcsaládjainkat

FIZIKA tankönyvcsaládjainkat Bemutatjuk a NAT 2012 é a hozzá kapcolódó új kerettantervek alapján kézült FIZIKA tankönyvcaládjainkat MINDENNAPOK TUDOMÁNYA SOROZAT NAT NAT K e r e t t a n t e r v K e r e t t a n t e r v ÚT A TUDÁSHOZ

Részletesebben

Jeges Zoltán. The mystery of mathematical modelling

Jeges Zoltán. The mystery of mathematical modelling Jege Z.: A MATEMATIKAI MODELLEZÉS... ETO: 51 CONFERENCE PAPER Jege Zoltán Újvidéki Egyetem, Magyar Tannyelvű Tanítóképző Kar, Szabadka Óbudai Egyetem, Budapet zjege@live.com A matematikai modellezé rejtélyei

Részletesebben

Gyakorló feladatok Tömegpont kinematikája

Gyakorló feladatok Tömegpont kinematikája Gyakorló feladatok Tömegpont kinematikája 2.3.1. Feladat Egy részecske helyzetének időfüggését az x ( t) = 3t 3 [m], t[s] pályagörbe írja le, amint a = indulva a pozitív x -tengely mentén mozog. Határozza

Részletesebben

III.4. JÁRŐRÖK. A feladatsor jellemzői

III.4. JÁRŐRÖK. A feladatsor jellemzői III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:

Részletesebben

PISZKOZAT. 1Érkezett : 1. A KÉRELMEZŐ ADATAI. A kérelmező szervezet rövidített neve: CKSE 2Gazdálkodási formakód:521 3Tagsági azonosítószám 1322

PISZKOZAT. 1Érkezett : 1. A KÉRELMEZŐ ADATAI. A kérelmező szervezet rövidített neve: CKSE 2Gazdálkodási formakód:521 3Tagsági azonosítószám 1322 1Érkezett : 1. A KÉRELMEZŐ ADATAI A kérelmező zervezet telje neve: CEGLÉDBERCELI KÖZSÉGI SPORTEGYESÜLET A kérelmező zervezet rövidített neve: CKSE 2Gazdálkodái formakód:521 3Tagági azonoítózám 1322 Áfa

Részletesebben

III.4. JÁRŐRÖK. A feladatsor jellemzői

III.4. JÁRŐRÖK. A feladatsor jellemzői III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:

Részletesebben

Egyenletek, egyenlőtlenségek VIII.

Egyenletek, egyenlőtlenségek VIII. Egyenletek, egyenlőtlenségek VIII. 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet:

Részletesebben

Kalandtúra 6. Munkafüzet megoldások. 6. osztályos tanulók számára. Fiala Ildikó

Kalandtúra 6. Munkafüzet megoldások. 6. osztályos tanulók számára. Fiala Ildikó alandtúra. unkafüzet megoldáok. oztályo tanulók zámára Fiala ldikó emelegítő gondolkodá. találó kérdéek. oldal. éve.. percig. Napfény.. Szeptember. élegyene. Rigó. Tömege.. Vízzinteen: torony, vázlat.

Részletesebben

Bolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás.

Bolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás. Bolyai János Matematikai Társulat Oktatási Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 005/00-os tanév első iskolai) forduló haladók II. kategória nem speciális

Részletesebben

A kör harmadik pontjának meghatározásához egy könnyen kiszámítható pontot keressünk

A kör harmadik pontjának meghatározásához egy könnyen kiszámítható pontot keressünk 7. Átviteli ellemzők fogalma é ábrázoláa! A kondenzátor kapacitív reaktanciáa: Z Tehát az áramkör ellemzői a rákapcolt zinuzo el frekvenciáától függenek, ha az áramkör energiatároló elemet, i tartalmaz.

Részletesebben

EGÉSZ SZÁMOK. 36. modul

EGÉSZ SZÁMOK. 36. modul Matematika A 3. évfolyam EGÉSZ SZÁMOK 36. modul Készítette: zsinkó erzsébet matematika A 3. ÉVFOLYAM 36. modul EGÉSZ számok MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

BROADBAND MEDIA HUNGARY Távközlési Szolgáltató Korlátolt Felelősségű Társaság

BROADBAND MEDIA HUNGARY Távközlési Szolgáltató Korlátolt Felelősségű Társaság BROADBAND MEDIA HUNGARY Távközléi Szolgáltató Korlátolt Felelőégű Táraág Kivonat Internet-hozzáféréi zolgáltatához Utoló módoítá kelte: 2016. zeptember 10. Módoítva: 2017. február 1. Hatálybalépé időpontja:

Részletesebben

Sebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy

Sebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy Haladó mozgások Alapfogalmak: Pálya: Az a vonal, amelyen a tárgy, test a mozgás során végighalad. Megtett út : A pályának az a szakasza, amelyet a mozgó tárgy, test megtesz. Elmozdulás: A kezdőpont és

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA 2016. január 16.

PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím SG-s

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

A gravitációs gyorsulás meghatározására irányuló. célkitűzései:

A gravitációs gyorsulás meghatározására irányuló. célkitűzései: Tanári útmutató: A gravitációs gyorsulás meghatározására irányuló célkitűzései: méréssorozat általános A gravitációs gyorsulás értékének meghatározása során ismerkedjenek meg a tanulók többféle hagyományos

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

Forgó mágneses tér létrehozása

Forgó mágneses tér létrehozása Forgó mágnee tér létrehozáa 3 f-ú tekercelé, pólupárok záma: p=1 A póluoztá: U X kivezetéekre i=io egyenáram Az indukció kerület menti elozláa: U X kivezetéekre Im=Io amplitúdójú váltakozó áram Az indukció

Részletesebben