x = Várható érték becslése Intervallum becslés Feladat µ becslése (σ ismert) Feladat Feladat s s x normális eloszlású
|
|
- Erik Somogyi
- 4 évvel ezelőtt
- Látták:
Átírás
1 Itervallum beclé Az elméleti leti jellemzők k imeretébe így a beclé egy adott agyágú értékközzel, itervallummal adható meg. Ez az u. kofidecia itervallum - megbízhatóág ill. kockázat - mitaagyág - igadozá Az itervallum többyire kétoldali, de ritkábba hazáljuk az egyoldalú beclét i. Várható érték beclée Ha imert az alaelozlá zóráa (), akkor ormáli elozláú µ µ Ha em imert az alaelozlá zóráa (), akkor Studet(t) elozláú DF zabadági fok * µ beclée ( imert) < µ < + z / Kézítük itervallumbeclét 95 %-o zite kétoldali eetbe egy rézvéy 59 havi USD-ba megadott adatából a hozam várható értékére! A hozam átlaga: 3,57% z a tadard ormáli elozlá értéke A hozam zóráa: 16,7% ε 0,95 / Kézítük beclét kétoldali eetbe. Kétoldali (rézvéy)! 59 16,7% ε 0,95 0,05 Φ(z) 0,975 / 0,05 Kézítük beclét kétoldali eetbe. (rézvéy) 59 16,7% ε 0,95 0,05 Φ(z) 0,975 / 0,05 16,7 z 1,96 z 1,96 4, ,57-4,7 < µ < 3,57+4,7-0,7% < µ < 7,84%
2 folyt. Adjuk egyoldali beclét t a hozam várható értékére! re! folyt. µ < + + z 0,05 Φ(z) 0,95 z 1, ,7 1,645 3,58 59 µ < 3,57 + 3,58 7,15% Tehát a hozam 95%-o valóz zíűéggel legfeljebb 7,15%. µ beclée ( em imert) < µ < + t t t / t t-elozlá értéke, amely -tól é DF-től függ DF a zabadágfok, DF -1 t * 1 Az előző feladat adatai alajá. (rézvéy) 59 * 16,7% DF ε 0,95 0,05 t /,0 * 16,7,0 59 t / 4,35 3,57-4,35 < µ <3,57+4,35-0,78% < µ < 7,9% imert -0,7 < µ < 7,84 Özehaolítá em imert -0,78 < µ < 7,9 8,54 % 8,7 % Tehát t otatlaabb a beclé az imeretle miatt! Kézítük felő beclét 95 %-o megbízhatóági zittel egy rézvéy 59 havi USD-ba megadott adatából a hozam várható értékére! A hozam átlaga: 3,57% Hozamadatok zóráa: * 16,7% ε 0,95
3 Kézítük felő beclét. 59 * 16,7% ε 0,95 0,05 t 1,671 µ < 16,7 1,671 3, ,57 + 3,64 7,1% Egyoldali Sokaági aráy beclée Sokaági aráy otbeclée: Elméleti variacia beclée: P( z < P < + z ) 1 (1 ) (1 ) (1 ) P( z < P < + z ) 1 Sokaági aráy beclée Egy felméré orá 00 embert kérdeztek meg é közülük 4 volt balkeze. E mita alajá 95 %-o megbízhatóági zit mellett adjuk itervallumbeclét a okaági aráyra! Sokaági aráy beclée 00 4/000,1 ε95% 0,05 kétoldali beclé /0,05 1, 96 0,1 1,96 z z < P < + z 0,1 0,88 0,1 0,88 < P < 0,1+ 1, ,075< P < 0,165 Sokaági aráy beclée Az IDEA közvéleméy-kutató egy közelgő válaztá előtt egy 1000 fő gyorfelmérét végzett egy ártra zavazók aráyáak meghatározáára. A válazolók 40 %-a yilatkozott úgy, hogy a megkérdezébe zerelő ártra kívája zavazatát leadi. Számítuk ki a várható eredméy 95%-o zithez tartozó becléi itervallumát! Sokaági aráy beclée /10000,4 ε95% 0,05 kétoldali beclé /0,05 z 1, 96 z < P < + z 0,4 0,6 0,4 0,6 0,4 1,96 < P < 0,4 + 1, ,4 0,03036< P < 0,4 + 0, ,3696< P < 0,43036
4 Sokaági variacia beclée ( 1) χ / * ( 1) < < χ P 1 / χ χ 1 é 1 megadáa ν ill. DF-1 zabadági fokú χ elozlá táblázatából lehetége. * Sokaági variacia beclée Egy karácoyfa-izzó tíu élettartamát 16 elemű mitá megvizgálva az élettartamok korrigált taaztalati zóráa 10 óra. Határozzuk meg az izzók variaciájára ill. zóráára voatkozó 95%-o kofidecia határokat. Sokaági variacia beclée 16 *10 óra DF ε95% 0,05 kétoldali beclé /0,05 1-/0,975 χ 7, 488 χ 6, 6 1 Sokaági variacia beclée ( 1) 16 < < *10 óra χ / χ1 / DF ε95% (16 1)10 0,05 kétoldali (16 beclé 1)10 < < /0,05 7,488 1-/0,975 6,6 χ 7, 488 χ 6, 6 * 54,5 < 1 ( 1) < 39,6 7,38 < < 15,5 * Kézítük beclét kétoldali eetbe 95 %-o zite az 100 mm-e zéleégű bútorla zéleégéek várható értékéről, ha a mm zóráú gyártái folyamatból 9 elemű mita kivétele utá a mita átlaga 101, mm lett. Kézítük beclét kétoldali eetbe. 101, 9 mm/ ε 0,95 0,05 Φ(z) 0,975 / 0,05 Kétoldali! z 1,96 z 1,96 1, , -1,3 < µ <101,+1,3 99,9 < µ <10,5
5 Kézítük beclét kétoldali eetbe. 101, 9 mm ε 0,95 0,05 Φ(z) 0,975 / 0,05 Kétoldali! z 1,96 z 1,96 1, , -1,3 < µ <101,+1,3 99,9 < µ <10,5 Tegyük fel, hogy az aló határ (A) véglege elejtet jelet. Becüljük meg, a A értékét 95%-o valózíűéggel! Egyoldali!!! A z 0,05 Φ(z) 0,95 1, 64 1,64 1,1 9 A 101, - 1,1 100,1 Tehát µ 95%-o valóz zíűéggel legalább 100,1 mm. z Az előző feladat adatai alajá. 101, 9 mm ε 0,95 0,05 t /,31 t /,31 1, , -1,65 < µ <101,+1,65 99,5 < µ < 10,85 Egyoldali itervallum. Egyoldali 101, 9 mm (ta( ta.. zórá) ) ε 0,95 0,05 t 1,86 A 101, 1,86 99, 9mm 8 A műayagalkatrézekből 5 elemű mitákat vezük. A mitavétel orá az alkatrézek hozúágáak átlaga 8,31 mm lett, ahol a mitaelemek taaztalati zóráa 0,06 mm. Adjo kétoldalú itervallumbeclét a műayagalkatréz hozúágáak várható értékére 5%-o é 1%-o zigifikaciazite.
6 t A műayagalkatrézekből 5 elemű. 5 0,06 mm 0,05 8, 31mm DF -1 4 t /,06 (kétoldali) < µ < + t 1 0,06 0,01 4 8,31,06 0,01 < µ < 8,31+,06 0,01 8,85 < µ < 8,335 A műayagalkatrézekből 5 elemű. 5 0,06 mm 0,01 8, 31mm DF -1 4 t / /,8 (kétoldali) 1 0,06 0,01 4 8,31,8 0,01 < µ < 8,31+,8 0,01 8,76 < µ < 8,344
A várható érték vizsgálata u és t statisztika segítségével
A várható érték vizgálata u é t tatiztika egítégével Feltételezzük hogy ormáli elozláú alapokaágból vett véletle mita/miták alapjá vizgáljuk hogy az imeretle várható érték milye feltételezett értékel egyel
STATISZTIKA. Excel INVERZ.T függvf. ára 300 Ft/kg. bafüggvény, alfa=0,05; DF=76. Tesztelhetjük, hogy a valósz. konfidencia intervallum nagyságát t is.
Egymiá -r róba STATISZTIKA 0. Gyakorla Közéérék-özehaolíó ezek Tezelhejük, hogy a valóz zíűégi válozók éréke megegyezik-e e egy kokré érékkel. Megválazhajuk a kofidecia iervallum agyágá i. H 0 : µ µ Feléel:
HIPOTÉZISVIZSGÁLATOK, STATISZTIKAI PRÓBÁK. Hipotézisvizsgálat_Statisztikai próbák
HIPOTÉZISVIZSGÁLATOK, STATISZTIKAI PRÓBÁK Hipotézivizgálat_Statiztikai próbák Hipotézivizgálat alapgodolata A okaág érdekel, de a mita va a kezükbe. Elmúlt előadáoko: tatiztikai következteté (beclé) mita
STATISZTIKA. Philosophiae Naturalis Principia Mathematica (A természetfiloz. szetfilozófia fia matematikai alapelvei, 1687) Laplace ( )
STATISZTIKA 8. Előad adá Megbíhat tartomáyok (Kofidecia itervallumok) (Kofidecia itervallumok) Sir Iaac Newto, 1643-177 177 Philoohiae Naturali Priciia Mathematica (A terméetfilo etfiloófia fia matematikai
2. gyakorlat 2. Mérési adatok feldolgozása, mérési eredmény megadása. 2.1. Matematikai statisztikai alapismeretek (kiegészítés)
. gyakorlat. Méréi adatok feldolgozáa méréi eredméy megadáa... Matematikai tatiztikai alapimeretek (kiegézíté) A matematikai tatiztika tárgya az hogy a tapaztalati adatokból következtee a telje okaág vagy
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
STATISZTIKA (H 0 ) 5. Előad. lete, Nullhipotézis 2/60 1/60 3/60 4/60 5/60 6/60
Hioézi STATISZTIKA 5. Előad adá Hioéziek elmélee, lee, Közéérék-özehaolíó ezek /60 /60 Tudomáyo hioézi Nullhioézi feláll llíáa (H 0 ): Kémiá hioéziek 3/60 4/60 Mukahioézi (H a ) Nullhioézi (H 0 ) > 5/60
Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!
0.0.4. Wlcoxo-féle előel-próba ragok Példa: Va-e hatáa egy zórakoztató flm megtektééek, a páceek együttműködé halamára? ( zámok potértékek) orzám előtte utáa külöbég 0 0 3 3-4 4 5 3 6 3 3 0 7 4 3 8 5 4
Képletgyűjtemény a Gazdaságstatisztika tárgy A matematikai statisztika alapjai című részhez
Buaet űzak é Gazaágtuomá Egetem Gazaág- é Táaalomtuomá Ka Üzlet Tuomáok Itézet eezmet é Vállalatgazaágta Tazék Tóth Zuzaa Ezte Jóá Tamá Kéletgűtemé a Gazaágtatztka tág A matematka tatztka alaa című ézhez
A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html
MINİSÉGBIZTOSÍTÁS 6. ELİADÁS Március 19. Összeállította: Dr. Kovács Zsolt egyetemi tanár
MINİSÉGBIZTOSÍTÁS Özeállította: Dr. Kovác Zolt egyetemi taár 6. ELİADÁS 011. Márciu 19. NyME FMK Terméktervezéi é Gyártátechológiai Itézet http://tgyi.fmk.yme.hu NYME FMK TGYI 006.08.8. 1. fólia Kézült
Populáció nagyságának felmérése, becslése
http:/zeu.yf.hu/~zept/kuzuok.htm Populáció agyágáak felméée, beclée Becült paaméteek: - az adott populáció telje agyága (egyed, pá, tb) D- dezitá (űűég), egyégyi felülete/téfogata zámított egyedzám (egyed/m,
Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára
Zárthely dolgozat 04 B.... GEVEE037B tárgy hallgató zámára Név, Neptu kód., Néháy oro rövd léyegre törő válazokat adjo az alább kérdéekre! (5pot) a) Számítógépe mérőredzerek elépítée (rajz) (33.o.) b)
5. gyakorlat Konfidencia intervallum számolás
5. gykorlt Kofdec tervllum zámolá. Feldt Cél: Normál elozlá gyor áttektée. Az IQ tezteket úgy állítják öze, hogy tezt eredméye éeége belül ormál elozlát kövee 00 ot átlggl é 5 ot zórál. A éeég háy zázlék
5. gyakorlat Konfidencia intervallum számolás
5. gykorlt Kofideci itervllum zámolá. Feldt Cél: Normál elozlá gyor áttekitée. Az IQ tezteket úgy állítják öze, hogy tezt eredméye éeége belül ormáli elozlát kövee 00 ot átlggl é 5 ot zórál. A éeég háy
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
STATISZTIKA. Terjedelem. Forgalom terjedelem. R=MAX(adatok) MIN(adatok) kvartilis eltérés : Qe
Terjedelem STATISZTIKA 6. gyakorlat Szóródá mutatók A zóródá terjedelme a tatztka or legagyobb é legkebb eleme között k külöbég. R ma m ggvéyek Függvéykategóra: Statztka RMAX(adatok) MI(adatok) Forgalom
STATISZTIKA. Terjedelem. Forgalom terjedelem. R=MAX(adatok) MIN(adatok) rtékek a sokaság g elemeinek k. méri. Leggyakrabban a számtani. 3.
Változékoyág g (zóródá) ) STATISZTIKA. Előad adá Szóródá mutatók A középértk rtékek a okaág g elemeek értékagyágbel gbel külöbk béget eltakarják. k. A változv ltozékoyág g az azoo tulajdoágú, de eltérő
7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag
016.09.09. A m beclée A beclée = Az adatok átlago eltérée a m-től. (tapaztalat zórá) = az elemek átlago eltérée az átlagtól. átlag: az elemekhez képet középen kell elhelyezkedne. x x 0 x n x Q x x x 0
STATISZTIKA. H 0 : Kefir zsírtartalma 3% hektolitertömege 80 kg. u = = = = Tesztelhetjük, hogy a valósz. konfidencia intervallum nagyságát t is.
Egymiá u-róba STATISZTIKA 0. Előad adá Köéérék-öehaolíó eek Teelhejük, hogy a való íűégi váloók éréke megegyeik-e e egy kokré érékkel. Megválahajuk a kofidecia iervallum agyágá i. H 0 : µ µ 0 Feléel: el:
STATISZTIKA 2. KÉPLETGYŰJTEMÉNY. idősorok statisztikai becslések hipotézisvizsgálat regressziószámítás
SAISZIKA. KÉPLEGŰJEMÉN dőoro aza beclée hpoézvzgála regrezózámíá www.maeg.hu SAISZIKA. KÉPLEGŰJEMÉN fo@maeg.hu el:675447 6. IDŐSOROK 6..Állapodőor é aramdőor ÁLLAPOIDŐSOR ARAMIDŐSOR Válozá mérée d d d
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
Kutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
Biosta'sz'ka és informa'ka
Az előadás céljai Biosta'sz'ka és iforma'ka 5. előadás: Becslés és megbízhatóság 2018. október 11. Agócs Gergely Források: Heréyi L (2016): Sta4sz4ka és Iforma4ka: 14. fejezet Reiczigel J, Haros A, Solymosi
biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk
Egy faktor zernt NOV Nevével ellentétben nem zóráok, hanem átlagok özehaonlítáára zolgál Több független mntánk van, elemzámuk,...,,, r y,...,, y, y,..., yr;,, r H : r NOV. élda (Box-Hunter-Hunter: Stattc
Statisztika gyakorló feladatok
. Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.
A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Statisztikai alapismeretek amit feltétlenül tudni kell
Statztka alameetek amt feltétlenül tudn kell Sokaág é mnta fogalma Statztka (mnta jellemzője) é aaméte fogalma Váható éték é vaanca jellemző Sűűégfüggvén é elozláfüggvén Standad nomál -, t- é F-elozlá
Paraméteres eljárások, normalitásvizsgálat, t-eloszlás, t-próbák. Statisztika I., 2. alkalom
Paraméere eljáráok, normaliávizgála, -elozlá, -próbák Saizika I.,. alkalom Paraméere eljáráok Becülik a populáció egy paraméeré Alkalmazáuknak zámo feléele van (paraméerek é a válozó elozláa Cak normál
ξ i = i-ik mérés valószínségi változója
EGYENESILLESZTÉS: A LEGKISEBB NÉGYZETEK MÓDSZERE Kíérleteket elvégeztük. Dolgozzuk fel az adatokat! Cél: mért változók (T, p, I, U ) között kapcolat felderítée. 1. zóródá dagram {x, y } ábra. kvattatív
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
Statisztikai hipotézisvizsgálatok
Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.
Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet
fizikai-kémiai mérések kiértékelése (jegyzkönyv elkészítése) mérési eredmények pontossága hibaszámítás ( közvetlen elvi segítség)
BEVEZEÉS Eladá célja: fzka-kéa éréek kértékelée jegyzkönyv elkézítée éré eredények pontoága hbazáítá közvetlen elv egítég éré technkák egerée alapvet fzka ennyégek pektrozkópa éréek elektrokéa éréek Ma
biometria I. foglalkozás előadó: Prof. Dr. Rajkó Róbert Alapfogalmak
Kíérlettervezé - bometra I. oglalozá előadó: Pro. Dr. Rajó Róbert Alapogalma Véletle jeleége: mde jeleéget az oo egy bzoyo redzere hoz létre. Ha az oo mdegyét gyelembe tudá ve a jeleég leolyáa azoból egyértelműe
Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet
Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz
Hipotézis-ellenırzés (Statisztikai próbák)
Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat
Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással
Gyengeavak izociáció állanójának meghatározáa potenciometriá titráláal 1. Bevezeté a) A titrálái görbe egyenlete Egy egybáziú A gyengeavat titrálva NaO mérőolattal a titrálá bármely pontjában teljeül az
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
A binomiális eloszláson alapuló próbák
A biomiális elosláso alapuló próbák Biomiális próba: Hipotéisvisgálat a előfordulások aráyára, egy mita eseté Két aráy össehasolítása Nemparaméteres próbák 49 Biomiális próba Hipotéisvisgálat a előfordulások
Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.
Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések
VIII. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár
Reinorce Concrete Structure I. / Vabetonzerkezetek I. VIII. Lecture VIII. / VIII. Előaá Reinorce Concrete Structure I. Vabetonzerkezetek I. - Vabeton kereztmetzet kötött é zaba tervezée hajlítára - Dr.
A statisztika részei. Példa:
STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,
STATISZTIKA. Terjedelem. R=MAX(adatok) MIN(adatok) rtékek a sokaság g elemeinek k. méri. Leggyakrabban a számtani. 4. Előad
Változéoyág g (zóródá) ) STATISZTIKA 4. Előad adá Szóródá mutató A özépért rtée a oaág g elemee értéagyágbel gbel ülöb béget eltaarjá.. A változv ltozéoyág g az azoo tulajdoágú, de eltérő értéagyágú adato
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Statisztika
Statisztika A statisztika adatok gyűjtésével, redszerezésével, illetve adatsorok elemzésével, szemléltetésével foglalkozik. Adatok redszerezése DEFINÍCIÓ: (Populáció) Populációak (statisztikai sokaságak)
Dr. BALOGH ALBERT. A folyamatképesség és a folyamatteljesítmény statisztikái (ISO 21747)
Dr. BAOGH ABERT A folyamatkéesség és a folyamatteljesítméy statistikái ISO 747 Folyamat sabályoott, ha csak véletle okú váltoásokat hibákat tartalma. Sabályoatla, ha aoosítható okú redseres váltoásokat
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK
KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel Melyek a közutak lényegeebb technikai elemei, műtárgyai, tartozékai? Pálya Pályazint Műtárgyak Alul- é felüljárók
Gazdaságstatisztika példatár
Buapet Műzak é Gazaágtuomány Egyetem Gazaág- é Táraalomtuomány Kar Üzlet Tuományok Intézet Menezment é Vállalatgazaágtan Tanzék Gazaágtatztka pélatár Megoláokkal E pélatár a Gazaágtatztka című tárgyhoz
Kísérletek tervezése és értékelése
STATISZTIKAI ALAPOK I. STATISZTIKAI ALAPOK Adatok ábrázolása Yogi Berra: "You ca observe a lot by watchig." I. STATISZTIKAI ALAPOK Mérési adatok ábrázolása: Pot ábrázolás (Dotplot) Dotplot for Y 9 3 Y
Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia
6. Minısítéses ellenırzı kártyák
6. Miısítéses elleırzı kártyák Sokszor elıfordul, hogy a termék-egyedek miıségét em tudjuk mérhetı meyiségekkel jellemezi, csak megfelelı/em megfelelı kategóriákba sorolhatjuk ıket, és a hibás darabokat,
GÉPÉSZETI ALAPISMERETEK
Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók
Statisztikai programcsomagok
Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés
PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László
PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ Írta Dr. Huzsvai László Debrece 2012 Tartalomjegyzék Bevezetés...1 Viszoyszámok...1 Középértékek (átlagok)...2 Szóródási mutatók...4 Idexek...7 Furfagos kérdések...8 Bevezetés
KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN
KÍSÉRLETTERVEZÉS ÉS ÉRTÉKELÉS A MIKROBIOLÓGIAI GYAKORLATBAN DR. REICHART OLIVÉR 005. Budapest Lektorálta: Zukál Edre Tartalom BEVEZETÉS 3. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK 5.. Kombiatorikai alapösszefüggések
Tartalom. Kezdeti szimulációs technikák. Tipikus kérdések. A bootstrap módszer. Bevezetés A független, azonos eloszlású eset:
Tartalom A bootstrap módszer Zempléi Adrás TTK, Valószíőségelméleti és Statisztika Taszék 2010. október 21 Bevezetés A függetle, azoos eloszlású eset: emparaméteres paraméteres eset Alkalmazások a rétegzett
Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Kísérlettervezés témakör
Gyakorló feladatok a Kíérletek tervezée é értékelée c. tárgyól Kíérlettervezé témakör. példa Nitrálái kíérleteken a kitermelét az alái faktorok függvényéen vizgálták:. a alétromav-adagolá idee [h]. a reagáltatá
Matematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
Kidolgozott minta feladatok kinematikából
Kidolgozott minta feladatok kinematikából EGYENESVONALÚ EGYNLETES MOZGÁS 1. Egy gépkoci útjának az elő felét, a máik felét ebeéggel tette meg. Mekkora volt az átlagebeége? I. Saját zavainkkal megfogalmazva:
Bootstrap (Efron, 1979)
Bootstrap (Efro, 979) 4. elıadás 204. március 3. Bootstrap módszerek, többdimeziós extrém-érték eloszlások illeszkedésvizsgálata Újramitavételezési eljárás, a becsléseik szórásáak vizsgálatára, modell-illeszkedés
Áramlástechnikai gépek
Áramláecikai géek Vetilátor mérée Méré ideje: Méré ely: BM L éület laboratórium Mérévezetı: Mérızemélyzet: /4 Méré célja: gy motor-vetilátor gécoort üzemi jelleggrbéiek felvétele. z a kvetkezı kacolatokat
Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)
oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Hűtő-, és fagyasztókészülékek ActiveGreen technológiával
tapaztalat, ami zámít Liebherr, mit a hűtő-fagyaztó kézülékek zakértője már több mit 50 éve következetee tervez é gyárt olya termékeket, amelyek új é meggyőző megoldáokkal büzkélkedhetek. Vevőik bizalma
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
kritikus érték(ek) (critical value).
Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása
véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?
BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is
A brexit-szavazás és a nagy számok törvénye
Mûhely Medvegyev Péter kadidátus, a Corvius Egyetem egyetemi taára E-mail: peter.medvegyev@uicorvius.hu A brexit-szavazás és a agy számok törvéye A 016. év, de vélhetőe az egész évtized legfotosabb politikai
VARIANCIAANALÍZIS (ANOVA) véletlen faktorok esetén
VRINCINLÍZI (NOV) véletlen faktorok eetén Varancakomponen-elemzé BIOMETRI_NOV_3 1 Rögzített faktorok: znteket a kíérletekhez megválazthatuk é beállíthatuk. Kérdé: van-e különbég a faktor különböző znte
Ventilátorok üzeme (16.fejezet)
Vetilátoro üzee (16.fejezet) 1. Defiiálja vetilátoro tatiu é zyoá veedéét! Vázlato utaa eg az zyoá ooeeie változáát egy egyfoozatú terelőrá élüli a ilééél a járóeré utá diffúzorral ellátott iáli átléű
Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
Kidolgozott feladatok a nemparaméteres statisztika témaköréből
Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.
6. feladatsor. Statisztika december 6. és 8.
6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak
Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.
I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?
Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os
MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János január
MUNAGAZDASÁGTAN ézült a TÁMOP-4..-8//A/MR-9-4pályázat proekt keretébe Tartalomfelezté az ETE TáT Szocálpoltka Tazéké az ETE özgazdaágtdomáy Tazék, az MTA özgazdaágtdomáy Itézet é a Bala adó közreműködéével
Normális eloszlás paramétereire vonatkozó próbák
Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású
Szinuszjel-illesztő módszer jeltorzulás mérésekhez 1. Bevezetés 2. A mérés elve
Szinuzjel-illeztő módzer jeltorzulá méréekhez 1. Bevezeté A hangtechnika világában fonto a hangfeldolgozó hardverek, mint például erőítők, zabályozók, analóg-digitáli é digitáli-analóg átalakítók, illetve
Néhány gyakoribb várakozósoros modell rendszertervezéshez.
éháy gyakoribb várakozóoro modell redzertervezéhez. Dr. Gyarmati G. Péter 976. úliu. - - - 3 - Tartalomegyzék. Bevezeté 5. A várakozóor leíráa 6 A forrá 7 Az igéyek beérkezée 7 A kizolgálái ido 8 gy paraméter
Statisztika 1. zárthelyi dolgozat március 18.
Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Minőségirányítási rendszerek 8. előadás 2013.05.03.
Miőségiráyítási redszerek 8. előadás 2013.05.03. Miőségtartó szabályozás Elleőrző kártyák miősítéses jellemzőkre Két esete: A termékre voatkozó adat: - valamely jellemző alapjá megfelelő em megfelelő:
Statisztika. Földtudomány szak, geológus szakirány, 2015/2016. tanév tavaszi
Statisztika Földtudomáy szak, geológus szakiráy, 015/016. taév tavaszi félév Backhausz Áges (ELTE TTK Valószíűségelméleti és Statisztika Taszék)1 Tartalomjegyzék 1. Bevezetés 3 1.1. Példa: az adatok elemzése....................
9. GYAKORLAT STATISZTIKAI PRÓBÁK SPSS-BEN FELADATOK
9. GYAKORLAT STATISZTIKAI PRÓBÁK SPSS-BE FELADATOK A feladatokhoz mentük aját gépünkre a példa adatokat tartalmazó fájlokat a tanzéki honlapról: www.hd.bme.hu/mota/m/p1.av www.hd.bme.hu/mota/m/p2.av www.hd.bme.hu/mota/m/p3.av
Matematika M1 1. zárthelyi megoldások, 2017 tavasz
Matematika M. zárthelyi megoldáok, 07 tavaz A coport Pontozá: 0 + + 6 + 50 pont. Számíta ki az alábbi adatokhoz legkiebb négyzete értelemben legjobban illezkedő legfeljebb máodfokú polinomot! x i 3 0 y
18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
Jeges Zoltán. The mystery of mathematical modelling
Jege Z.: A MATEMATIKAI MODELLEZÉS... ETO: 51 CONFERENCE PAPER Jege Zoltán Újvidéki Egyetem, Magyar Tannyelvű Tanítóképző Kar, Szabadka Óbudai Egyetem, Budapet zjege@live.com A matematikai modellezé rejtélyei
Mintapélda. Szivattyúperem furatának mérése tapintós furatmérővel. Megnevezés: Szivattyúperem Anyag: alumíniumötvözet
Szivattyúperem fratának mérée tapintó fratmérővel A mnkadarab: A mérőezköz: Megnevezé: Szivattyúperem Fratmérő Anyag: almínimötvözet EV 0,5 1,5 m Spec.: 85 kj Lin 3 m (T = 35 m) Tapintó (DIN 897-1) Mérétartomány:
Hidraulika II. Szivattyúk: típusok, jellemzők legfontosabb üzemi paraméterek és meghatározásuk
Hidraulika II. Szivattyúk: tíuok, jellemzők lefotoabb üzemi araméterek é meatározáuk Az ú. eyfokozatú ciaáza örvéyzivattyú zerkezete Sebeéek a járókerékbe: a ebeéározö. A foró járókerék laátjai a folyadékot
Statisztikai Statisztika I. elemzések viszonyszámokkal viszony 1. Láncból bázis Mennyiségi ismérv szerinti elemzés 1.
Statzta. ÉPLETE --e taé. élé Statzta elemzée zozámoal Vzozámo Damu zozámo V ahol : a zoítá tárga (zoítadó adat) : a zoítá alaa ázzozám: Láczozám: Vdb b Vdl l t b Damu zozámo Vzozámo özött özeüggée:. Lácból
1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya
Matematikai statisztika előadás survey statisztika MA szakosokak 206/207 2. félév Zempléi Adrás. előadás: Bevezetés Irodalom, követelméyek A félév célja Matematikai statisztika tárgya Törtéet Alapfogalmak
n*(n-1)*...*3*2*1 = n!
KOMBIATORIKA Pemutácó: egymától ülöböző elem egy meghatáozott oedbe való eledezée az elem egy pemutácója. Az öze pemutácó ülöböző oed záma: P! 0!: *-*...*3**! Imétlée pemutácó: Ha az elem özött,, 3, l
Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1
Szakác enő Megyei Fizika Vereny, az I. forduló feladatainak megoldáa. t perc, az A fiú ebeége, a B fiú ebeége, b 6 a buz ebeége. t? A rajz alapján: t + t + b t t t + t + 6 t t 7 t t t 7t 4 perc. Így A