TÉZISGYŰJTEMÉNY NÖVEKEDÉS-OPTIMÁLIS PORTFÓLIÓ ELMÉLET

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "TÉZISGYŰJTEMÉNY NÖVEKEDÉS-OPTIMÁLIS PORTFÓLIÓ ELMÉLET"

Átírás

1 TÉZISGYŰJTMÉNY NÖVKDÉS-OPTIMÁLIS PORTFÓLIÓ LMÉLT Vajda Istvá című Ph.D. értekezéséhez Témavezető: Prof. Györfi László MTA redes tagja Budapest, 2009

2 TÉZISGYŰJTMÉNY NÖVKDÉS-OPTIMÁLIS PORTFÓLIÓ LMÉLT Vajda Istvá című Ph.D. értekezéséhez Témavezető: Prof. Györfi László MTA redes tagja Copyright Vajda Istvá,

3 Tartalomjegyzék. Kutatási előzméyek és a téma idoklása 4 2. A felhaszált módszerek 0 3. Az értekezés eredméyei A szemi-log-optimális stratégia Diamikus átlag-variacia optimalizálás xplicit kockázat kotroll mpírikus portfólió-választás Optimális portfólió-választás trazakciós költség eseté

4 . Kutatási előzméyek és a téma idoklása A dolgozat alapproblémája a végtele időhorizoto való optimális befektetési politika vizsgálata. A kérdése számos eves közgazdász dolgozott, még Merto és Samuelso figyelmét is felkeltették a kutatások. A disszertációba szekveciális befektetési (portfólióválasztási) stratégiákat mutatok be. Szekveciális stratégia alatt olya kauzális stratégiát értek, amely a piacról redelkezésre álló múltbeli adatokat haszálva, mide kereskedési periódus (ap) elejé megváltoztathatja a portfóliót, azaz a tőkét újraoszthatja a redelkezésre álló értékpapírok között. A végtele időhorizoto való optimális befektetés problémájáak vizsgálata sorá először azt kell tisztázi, hogy mit is értük egyáltalá az optimális szó. A dolgozat címébe jelzett kutatási iráy az optimalitás kritériumá a maximális átlagos övekedési ütemet érti a végtelebe vett határérték értelmébe. Az elemzés megköyítése érdekébe éháy egyszerűsítő feltételt kell bevezeti: felteszem, hogy az eszközök korlátlaul oszthatóak és mide eszköz tetszőleges meyiségbe érhető el az aktuális piaci áro bármely kereskedési periódusba, figyelme kívül hagyom a trazakciós költségeket a 3.5 fejezetig, a befektető viselkedése a vizsgált stratégiák haszálata sorá em befolyásolja a piacot (ez a feltételezés akkor valósághű ha a befektető a teljes kereskedési volumehez képest kis meyiségű tőkével kereskedik). ze feltételezések mellett, a kereskedési módszerek múltbeli adatoko törtéő vizsgálata racioális. Matematikai modell A dolgozatba vizsgált részvéypiaci modellt alkalmazta többek között Breima [8], Algoet és Cover [3]. Tegyük fel, hogy a piaco d darab részvéy 4

5 va, és a tőkéket mide ap elejé szabado újraoszthatjuk a részvéyek között. A vizsgálatok sorá em haszálom a közgazdasági modellekbe gyakra alkalmazott feltevést, hogy az egyik értékpapír kockázatmetes. Jelölje x = (x () ; : : : x (d) ) 2 R d + a hozamvektort, amelyek j-edik kompoese, x (j) 0, a j-edik részvéy yitó áraiak aráyát fejezi ki az adott ap és azt követő ap között. Más szóval, x (j), azt modja meg, hogy az adott ap reggelé a j-edik részvéybe fektetett egységyi tőke meyit ér a következő ap reggelé. x (j) tehát egy körüli szám. A befektető mide egyes kereskedési periódus elejé diverzifikálja a tőkéjét egy b = (b () ; : : : b (d) ) portfólióvektor szerit. A b j-edik kompoese, b (j) azt modja meg, hogy a j-edik részvéybe tőkéjéek háyad részét fekteti be. A dolgozatba felteszem, hogy b portfólióvektor em egatív kompoesekből áll, amelyekek az összege, azaz, P d j= b (j) =. Az utóbbi feltétel azt jeleti, hogy a befektetési stratégia öfiaszirozó, az előbbi pedig a rövidre eladási üzleteket zárja ki. Jelölje S 0 a befektető kezdeti tőkéjét, ekkor a tőkéje egy ap múlva S = S 0 dx j= b (j) x (j) = S 0 hb ; xi ; ahol h ; i a skalárszorzatot jelöli. Hosszú idejű befektetések eseté a piac változását x ; x 2 ; : : : 2 R d + hozamvektor sorozattal jellemezhetjük. Az x i hozamvektor j-edik kompoese x (j) i, amely azt modja meg, hogy a j-edik részvéybe fektetett egységyi tőke meyit ér az i-edik ap végé. Mide j i eseté az x i j rövidítést haszálom a hozamvektorok (x j ; : : : ; x i ) sorozatára és jelölje d az összes b 2 R d + emegatív kompoesű vektor szimplexét, amely kompoeseiek az összege. gy B = fb ; b 2 ; : : :g befektetési stratégia függvéyekek egy sorozata b i : R d + i! d ; i = ; 2; : : : úgy, hogy b i (x i ) jelöli a befektető által az i-edik apra a piac korábbi viselkedése alapjá választott portfólióvektort. Az egyszerűség kedvéért a későbbiekbe a következő jelölést haszálom b(x i ) = b i (x i ). 5

6 Az S 0 kezdeti tőkéből kiidulva, -edik ap végé a B befektetési stratégia tőkéje Y D P S = S 0 b(x i ) ; x i = S 0 e i= loghb(xi ) ; x ii = S0 e W(B) ; i= ahol W (B) az átlagos hozamszit (övekedési ráta) W (B) = X i= log D b(x i ) ; x i : Nyilvávalóa, S = S (B) maximalizálása ekvivales W (B) maximalizálásával. Szembe a klasszikus modellekkel, amelyek a piac működéséek a leírására erős statisztikai feltételezéseket teszek, a dolgozatbeli modellekbe a matematikai vizsgálatok sorá haszált egyetle feltétel csak az hogy a api hozamok stacioárius és ergodikus folyamatot alkotak. feltétel mellett a övekedési ráta határértékéek egy jól defiiált maximuma va, amely elérhető a teljes folyamat eloszlásáak ismeretébe az úgyevezett log-optimális portfólió-stratégia segítségével (lásd Algoet és Cover [3]). Log-optimális portfóliók stacioárius piacok eseté Tegyük fel, hogy x ; x 2 ; : : : az X ; X 2 ; : : : véletle valószíűségi változók realizációja, amelyek egy vektor-értékű stacioárius és ergodikus folyamatot fx g alkotak. A feti feltételek mellett vizsgálta pl. Algoet és Cover [3], Algoet [, 2] a portfólióválasztási problémát. A [3]-be és [, 2]- be meghatározott fudametális korlátok megmutatták, hogy az úgyevezett log-optimális portfólió a legjobb választás. Formálisa, az -edik kereskedési periódusba jelölje b ( ) a log-optimális portfóliót: D log b (X ) ; X o X = max b( ) log D b(x ) ; X X A log-optimális stratégia az optimális választás, ahogy azt a következő tétel mutatja. Ha S = S (B ) jelöli a B log-optimális portfólió stratégiával elért tőkét ap utá, akkor mide tetszőleges B befektetési stratégia 6 o :

7 által elért S = S (B) vagyora és fx g tetszőleges stacioárius és ergodikus folyamat eseté és lim sup! log S S 0 valószíűséggel () ahol lim! log S = W valószíűséggel, (2) W = ( max b( ) log D b(x ) ; X 0 X o ) (3) a log-optimális befektetési stratégia övekedési rátája. Ha a valószíűségi változók függetleek és azoos eloszlásúak, akkor az együttes eloszlásuk ismeretéhez elegedő egyetle változó eloszlást megadi. Ha azoba csak ayit tuduk, hogy stacioárius a sorozat, akkor az együttes eloszlás ismeretéhez az összes változó együttes eloszlása szükséges. Mivel az optimális övekedési stratégia yilvá az együttes eloszlástól függ, ezért kell az egész problémát áttraszformáli a egatív időtegelyre. Az első egyelőtleség ismét a log-optimális stratégia aszimptotikus optimalítását állítja, ahogy azt f.a.e. esetbe is láttuk. Második egyelet mutatja, hogy a log-optimalítási stratégia az optimális aszimptotikus övekedési ütemet realizálja. Az állítás harmadik része az optimális a- szimptotikus övekedési ütem kokrét alakját mutatja. A log-optimális stratégia optimalitása azt jeleti, hogy egyetle másik stratégia sem produkál a végtele időhorizoto agyobb átlagos övekedési ütemet. Természetese a végtele időhorizoto való relatív átlag sok midet eltütet. A külöböző stratégiák eseté csak a végtelebe való övekedési ütemük érdekes. A helyzet azoos a agy számok törvéyével, amikor egy sorozatról csak az átlagát tudjuk. A disszertációba javasoli fogok egy olya stratégiát, ami közel azoos teljesítméyt yújt, mit a log-optimális portfólió, ugyaakkor lehetővé teszi a log-optimális portfólióválasztás összehasolítását a kockázatot is figyelembe vevő pézügyi irodalomba klasszikusa elfogadott átlag-variacia 7

8 optimalizással. Uiverzális koziztecia Természetese, a log-optimális portfólió meghatározásához, a folyamat (végtele dimeziós) eloszlásáak teljes ismerete szükséges. És ez utóbbi megállapítás emcsak a log-optimális stratégiára igaz, haem az általam javasolt szemi-log-optimális és Markowitz-típusú portfólió-választási stratégiákra. z a probléma megoldást igéyel. zért több kutató törekedett arra, hogy a log-optimális stratégia teljesítméyét lemásoló stratégiát kostruáljo az eloszlás ismerete élkül. Azokat a befektetési stratégiákat, amelyek aszimptotikusa elérik az optimális W hozamszitet az eloszlás ismerete élkül uiverzálisa kozisztesek evezem. Potosabba, egy B befektetési stratégiát uiverzálisa kozisztesek evezük az fx g stacioárius és ergodikus folyamatok egy osztályá, ha mide folyamatra az osztályba lim! log S (B) = W valószíűséggel. Mivel em ismerjük a téyleges eloszlást, hisze em tudjuk az összes változót, csak véges sokat, az optimalizáló eljárásak függetleek kell lei a téyleges eloszlástól. Vagyis olya eljárást kell megadi, amelyet, ha mide véges időhorizoto alkalmazuk, akkor végülis, vagyis határértékbe, megkapjuk az optimális övekedési ütemet. Uiverzális eljárások a log-optimális stratégiával azoos aszimptotikus övekedési rátát teszek lehetővé az eloszlás ismerete élkül publikált Algoet [], Györfi ad Schäfer [2], Györfi, Lugosi, Udia [4], ad Györfi, Udia, Walk [5]. Az eljárás agyo leegyszerűsítve a klasszikus, árfolyamgörbe techikai elemzés mitaillesztéses módszeréek vektorfolyamra való kiterjesztése. A klasszikus módszerél az emberi szem a pillaatyi közelmúlthoz hasoló mitázatokat keresett a távolabbi múltba, amit meg tudott jegyezi, csak egy-egy árfolyamot tudott figyeli, s em azok együttesét. Továbbá külöböző periódusoko (időablakokba) figyelük. A techikai elemzőkek a miták hatásaira voatkozóa tapasztalatai voltak, modhati agyo durva "becsléseket" tartott a fejebe a "felteteles eloszlassal" 8

9 kapcsolatba. hhez a kutatási iráyhoz kapcsolódóa szerzőtársaimmal é is kidolgoztam olya eljárásokat, amelyek az általam javasolt szemi-log-optimális és a Markowitz-típusú portfólió-stratégiák teljesítméyét másolják aszimptotikusa valószíűséggel. Optimalítás trazakciós díj mellett A disszertációba megvizsgálom a trazakciós díj melletti optimális portfólióválasztás lehetőségét övekedésoptimális befektetés eseté. Kevés olya cikk va, amely diszkrét időbe vizsgálja a trazakciós költség kérdését övekedésoptimális politika eseté. Cover és Iyegar[7] fogalmazta meg a lóverseypiac kérdését, ahol mide egyes periódusba csak az egyik eszközek va pozitív kifizetőfüggvéye az összes többi eszköz em fizet semmit. Aráyos trazakciós költséget tételeztek fel és aszimptotikus várható átlagos övekedési ütem kritériumot alkalmaztak. Általáosabb piacok eseté is vaak eredméyek. Iyegar [6] övekedés-optimális befektetést vizsgált több eszköz, f.a.e. hozamok és aráyos trazakciós költség feltételezése melett. Diszkrét időbe a legmesszebbre jutó taulmáy Schäfer [24] dolgozata volt, amely aszimptotikus várható átlagos övekedési ütemet, több eszközt, aráyos trazakciós költséget tételezett fel, az eszközhozamok pedig stacioárius Markov folyamatot követtek. A legtöbb a kérdéskörrel foglalkozó cikk sztochasztikus optimális kotrollt alkalmaz és a aszimptotikus várható átlagos övekedési ütem szempotjából vizsgálja a kérdést. zért érdekes megvizsgáli vajo va-e emcsak várható értékbe, de egy valószíűséggel optimális stratégia. A log-optimális stratégia kritikája Az átlagos övekedési ütem optimalizálása csak egyike a lehetséges optimalitási kritériumokak. A modellkör közgazdasági kritikája yilvá ebből az észrevételből idul ki. A lehetséges kritikai észrevételek tudomásul vétele elleére a megközelítés jogosultsága em kérdőjelezhető meg. Számos közgazdász em értett egyet az log S, mit cél maximalizálásá- 9

10 val, és többyire a haszosságelmélet oldaláról idítottak támadást a logoptimális portfólió-választás elle. Az eddigi általáos feltételekkel szembe (stacioárius és ergodikus hozamok), ebbe az alfejezetbe jóval korlátozóbb feltételezéssel élek, mégpedig, hogy a hozamok függetle azoos eloszlásúak. A kritikák e feltételek mellett születtek. Az ilye jellegű kritikákkal az a probléma, hogy figyelme kívül hagyják azt a téyt, hogy a log S -t em haszossági megfotolások miatt kell maximalizáli, haem a kedvező aszimptotikus tulajdoságai miatt. Vegyük észre, hogy az egyes befektetők haszosságától függetleül pézbe kifejezve valószíűséggel a legagyobb vagyot fogja biztosítai aszimptotikusa. Ugyaakkor, ha már a logaritmus függvéyt haszossági függvéyek akarjuk tekitei, akkor e várjuk el, hogy a log-optimális stratégia egy logaritmustól külöböző haszossági függvéy szeriti várható haszosságot is maximalizáljo. 2. A felhaszált módszerek A szemi-log-optimális és a Markowitz-típusú stratégia kostruálásáál alkalmazott módszerta A szemi-log optimális stratégia és a Markowitz típusú stratégia bevezetése sorá alapvetőe a martigálelemélet éháy fogalmára (martigál, szubmartigál, martigál-differecia) támaszkodom. Többször haszálom a szubmartigál kovergecia tételt illetve az ergodelméletből ismert Breima ergodtételt. Módszerta uiverzálisa kozisztes empírikus befektetési stratégiák kostruáláshoz Uiverzálisa kozisztes portfólió-stratégia készítéséhez a emparaméteres regressziófüggvéy-becslés yújt segítséget. Mivel ez kevésébbé ismert, mit a fetebb hivatkozott alapvető, martigálokkal kapcsolatos ismeretek, ezért rövide ismertetem a szükséges fogalmakat és a portfólióelmélethez való kapcsolódódásukat. Legye Y egy valós értékű valószíűségi változó, 0

11 jelöljö továbbá a X egy véletle vektort. A m(x) regressziós függvéy az Y -ak a X-re voatkozó feltételes várható értéke m(x) = (Y jx = x): Az adatok egy f.a.e. sorozatot alkotak (X; Y ): D = f(x ; Y ); : : : ; (X 2 ; Y 2 )g: A regressziós függvéy becslés a következő formába adható meg m (x) = m (x; D ): Speciális típust alkotak a lokális átlagoláso alapuló becslők m (x) = X i= W i (x; X ; : : : ; X )Y i ; ahol a W i súlyok em egatívak és az összegük (lásd.[3]). Ha ismeretle eloszlás eseté a log-optimális portfóliót szereték becsüli akkor egy olya b portfóliót keresük, amely a [log D b(x ) ; X jx ]: kifejezést maximalizálja. Így az általáos regresszó függvéy becslés és a log-optimális portfólió becslés közötti megfeleltetés az alábbi. X X k Y log hb ; X k+ i m(x) = fy jx = xg m b (x k ) = [log hb ; X k+i jx k = xk ]: A magfüggvéy alapú regressziós becslő egy K(x) 0 magfüggvéy és egy h > 0 ablakméret segítségével va defiiálva m (x) = P x X i= Y i K i h P x X i= K i h :

12 Az egyeletes K(x) = I fkxkg magfüggvéy eseté, m (x) = P i= Y i I fkx Xi khg P : i= I fkx Xi khg Györfi, Lugosi, Udia [4] vezette be a magfüggvéy alapú stratégiát, amelyek egy egyszerűbb, az egyeletes magfüggvéyhez tartozó, mozgó ablakos verzióját ismertetem. A stratégiához defiiálom a szakértők egy végtele osztályát B (k;`) = fb (k;`) ( )g-t, ahol k és ` pozitív egészek. Mide fix k; ` pozitív egészhez válasszuk egy r k;` > 0 sugarat, úgy, hogy mide fix k-ra lim r k;` = 0 : `! kkor mide > k + eseté defiiáljuk a b (k;`) szakértőt a következőképpe Y b (k;`) (x ) = arg max hb ; x i i ; b2 d fk<i<:kx i i k x kr k k;`g ha a szorzat em üres, külöbe pedig válasszuk az egyeletes b 0 = (=d; : : : ; =d) portfóliót. Az előbb bemutatott empirikus stratégia alapötlete a szakértők (portfóliók) kombiálása, azaz ha B K -vel jelöljük a kombiálás utá kapott stratégiát X S (B K ) = q k;`s (B (k;`) ); k;` Az uiverzális koziszteciához azt kell megmutati, hogy lim if! log S (B K ) W m.m.. Györfi, Lugosi, Udia [4] bebizoyította, hogy B K portfólióséma uiverzálisa kozisztes az ergodikus folyamatok azo osztályára, amelyre igaz fj log X (j) jg <, j = ; 2; : : : ; d. Az egy valószíűséggel taulhatóság érdekes eredméy. Nagyo durvá fogalmazva azt állítja az előbb ismertett három módszer, hogy egy agyo fejlett "techikai elemzés" lehet hatékoy. gy ilye megjegyzéssel szembe a szokásos elleérv, hogy em elég az "árfolyamgörbéket" lesi, sok más 2

13 iformáció is szükséges a sikerhez, így a kapcsolatos cégek fudametális elemezése, a makrogazdasági köryezet, az,hogy a gazdasági ciklus mely potja sejtjük magukat, hogy áll a világgazdaság, szóval sok mide más. Az előbb ismertett módszerek sorá persze em éháy tucat típusmitát figyelük, az árfolyamoko keresztbe is, s emcsak az időtegely mete dolgozuk. z midekeppe regeteg plusz iformációt hordoz, ami csökketi a feti szokasos fayalgás érvéyességét, em beszélve az egy valószíűségű bizoyítás erejéről. A feti módszerek végtele időhorizotra voatkozak véges időhorizotú befektetés sikerére em jeleteek feltétle garaciát. Módszerta a trazakciós költség bevezetéséhez A trazakciós díj bevezetése kapcsá a módszertai alapvetés két cso- korba gyűjthető. gyrészt ki kell terjesztei a elemzési keretkét szolgáló matematikai modellt a trazakciós költséggel. Másrészt ki kell terjesztei a módszertat a Markov kotroll folyamatokra. A trazakciós költség bevezetéséél támaszkodok a [7] cikkre. Az. fejezetbe bevezettem az S, amit az -edik api vagyokét defiiáltuk. bbe a fejezetbe S jelölje a bruttó vagyo agyságát az -edik ap végé ( = 0; ; 2; ), ugyais a trazakciós költség miatt meg kell külöböztetük a ettó és a bruttó vagyo agyságát. N jelölje az -dik kereskedési periódus végé kialakuló ettó vagyo agyságát. Feltehetjük, hogy a befeketető kezdeti vagyoa S 0 dollárral egyelő. Mide további az. fejezetbe bevezetett jelölés érvéybe marad. A feti jelölés tudatába az -edik kereskedési periódus kezdeté az N ettó vagyot a b portfólióvektor szerit fektessük be. kkor a -edik ap végé kialakuló S bruttó vagyo S = N dx j= b (j) x (j) = N hb ; x i ; ahol h ; i a belső szorzatot jelöli. Az + -edik ap elejé a befektető felállítja az új portfólióját, azaz végrehajtja az új b + vektor szerit szükséges vételeket és eladásokat. A 3

14 vételekért és az eladásokért trazakciós költséget kell fizetie, ezért az +- edik ap kezdeté a b + portfólióba levő vagyoa kevesebb mit S. A feti jelölések alapjá -dik ap végi bruttó vagyo S a következőképpe éz ki: S = N hb ; x i : A kiszabott trazakciós költség egy eszköz vásárlása vagy eladása eseté 0 < c p < illetve 0 < c s <, vagyis, dollár értékű részvéy eladása csak c s dollár jövedelmet jelet, és hasolóa dollár értékű eszköz megvásárlása +c p dollárba kerül. Felteszem, hogy ezek a költségek mide eszközre azoosak. Számoljuk ki a b + portfólió összeállításakor fizetedő trazakciós költséget. Mielőtt a tőkéket átredezék, a j-edik eszközbe fekvő tőke b (j) x (j) N dollár, míg az átredezés utá b (j) +N meyiségú dollárt kell képviselie. Ha b (j) x (j) N b (j) +N akkor el kell aduk és a fizetedő trazakciós költség a j-edik eszközhöz kapcsolódóa c s b (j) x (j) N b (j) +N ; máskülöbe veük kell és így a trazakciós költség a j-edik eszközhöz kapcsolódóa (j) c p b +N b (j) x (j) N : Jelölje x + az x pozitív részét. kkor a bruttó vagyo felbomlik a ettó vagyo és a bruttó vagyo összegére a következő öfiaszírozó módo N = S dx j= c s b (j) x (j) N b (j) +N + dx j= c p b (j) +N + b (j) x (j) N ; vagy hasolóa S = N +c s dx j= b (j) x (j) N b (j) +N ++cp dx j= b (j) +N + b (j) x (j) N : Markov kotroll elmélet 4

15 A diszkrét idejű portfólió-optimalizálás az általáos Markov kotroll folyamatok elmélet egyik speciális esete. gy diszkrét idejű Markov kotroll folyamat a következő öt meyiséggel jellemezhető: (S; A; U (s); Q; r). S jelöli az állapotteret, A az akciók tere, míg az egyes állapotokba megegedett akciók terét U (s) jelöli ami egy részhalamaza az A-ak. Legye a K halmaz a következőképpe defiiálva f(s; a) : s 2 S; a 2 U (s)g. A Q(:js; a) egy átmeetvalósziűség magfüggvéy S és K feltétel mellett. Továbbá r(s; a) a megtérülési függvéy. A folyamat a következőképpe alakul. Jelölje S t a t időpotba elfoglalt állapotot. S t állapotba kiválasztjuk a számukra optimális akciót: A t -t. Ha S t = s és A t = a, akkor a megtérülés r(s; a) és a folyamat S t+ állapotba mozdul a Q(:js; a) átmeetfüggvéy szerit. A kotroll politika egy sorozat az A halmazo, ahol a múltbeli akciók és állapotok vaak a feltételbe, azaz ( js 0 ; a 0 ; : : : ; s,a ; s ) akár egy véletleített politika is lehet. Két megtérülési kritériumot szokás figyelembe vei. A aszimptotikus várható hozam a kotrollpolitika eseté a következőképpe va defiiálva J() = lim if! X t=0 r(s t ; A t ): (4) A trajektóriákéti aszimptotikus hozamot a következőképpe kell defiiáli X J() := lim if r(s! t ; A t ): (5) A Markov kotroll elméletbe az eredméyek többsége a (4) szeriti várható átlagos hozammal kapcsolatos, csak éháy cikk tud eredméyt felmutati a (5) szeriti trajektóriákéti hozammal. A cél megközelítei a maximális aszimptotikus hozamot: t=0 J = sup J(); ami diamikus programozási feladathoz vezet el. 5

16 3. Az értekezés eredméyei 3.. A szemi-log-optimális stratégia gy új szekveciális befektetési stratégiát vezettem be szemi-log-optimális stratégia évvel. A log-optimális stratégiával elletétbe a logaritmus célfüggvéy helyett aak Taylor soros közelítését haszálva. A szemi-log-optimális stratégiá keresztül lehetőségük yílik a Markowitz-típusú stratégia (ami a hagyomáyos átlag-variacia optimalizálás stacioárius és ergodikus hozamfolyamatra törtéő kiterjesztése) és a log-optimális stratégia összevetésére. Legye h(x) = (x ) (x 2 )2 ; amely a log x másodredű Taylor sorfejése az x = helye. Az -dik kereskedési apo a szemi-log-optimális portfólió-stratégiát a következőképpe defiiálom ~b(x ) = arg max b( ) és ~ S = S ( ~ B), ahol ~ B = f ~ b( )g. D h b(x ) ; X o X : Összevetettem eze stratégia teljesítméyét az optimális aszimptotikus övekedési rátát produkáló log-optimális stratégiával. Megmutattam, hogy bármely stacioárius és ergodikus fx g folyamat eseté, ahol a X j + c, 0:4 > a > 0, c > 0 a következő adódik W lim if log ~ S W 5 6 [max i (jx (i) 0 j 3 jx )] m.m.. A részvéypiacoko ahol az eszközökkel api szite kereskedek korlátokat állítaak fel a api maximális árfolyamváltozásra. Ha ezt a maximumot eléri a api árfolyamváltozás, például az árfolyam agyot esik apo belül, akkor az adott eszköz kereskedését felfüggesztik arra a apra. Ha feltesszük, hogy a = c = 0:, az eredméy azt állítja, hogy szemi-log-optimális stratégia legfeljebb 5=6 0: 3 ' 0:083%-al teljesít rosszabbul mit a log-optimális stratégia. 6

17 ljárást adtam a szemi-log-optimális portfólió megkeresése A szemi-log-optimális portfólió megkeresése ekvivales azzal, hogy megtaláljuk a következő kvadratikus programozási feladat megoldását: maximalizáljuk a g(b; X ) = 2 D b ; m(x D ) b ; C(X )b > 2 P célfüggvéyt a b vektor szerit a d b i = megszorítás mellett, ahol b i 0 mide i-re, ahol és i= m(x ) = (X jx ) C(X ) = fc i;j g C i;j = (X (i) X (j) jx ): 3.2. Diamikus átlag-variacia optimalizálás Markowitz portfólió-stratégiájáak a célja olya eszközallokálás végrehajtása a pézügyi piaco, ami optimális átváltást biztosít a várható hozam és a kockázat között. A statikus (egyperiódusos modell) klasszikus megoldását Markowitz [20] és Merto [2] adták meg. z a modell a várható haszosság modellekhez képest a diverzifikáció ituitív magyarázatát adta. A stadard Markowitz modelltől való megkülöböztetés érdekébe a bevezetett haszossági függvéyemet Markowitz-típusú haszossági függvéyek eveztem. Megadtam a Markowitz-típusú haszossági függvéy feltételes várható értékét: UM (D b(x ) ; X ; )jx : D = f b(x ) ; X jx = f D b(x ) ; X jx D + 2 b(x ) ; X jx o o (6) D g Var b(x ) ; X jx (7) D 2 g b(x ) ; X jx (8) o ; (9) 7

18 ahol X az -edik ap piaci hozamvektora, b(x ) 2 d, 2 [0; ) a befektető kostas kockázatelutasításáak mértéke, továbbá U M (D b(x ) ; X ; ) : = D b(x ) ; X D b(x ) ; X f D b(x ) ; X jx g: Defiiáltam a Markowitz-típusú portfólió-stratégiát: B = f b ( )g, ahol o UM ( : b (X ) = arg max b2 d D b(x ) ; X ; )jx Jelölje S ; = S ( B ) a Markowitz-típusú portfólió-stratégia elért vagyoát, az -edik kereskedési periódus utá. Megmutattam, hogy a Markowitz-típusú stratégia visszaadja a szemilog-optimális stratégiát, ha a befektető kockázatelutasítási mutatója a paraméter diamikusa változik időbe, vagyis a Markowitz-típusú befektető a portfólió múltbeli teljesítméye alapjá folyamatosa igazítja a kockázatkerüléséek mértékét. A diamikus változtatására formulát adtam. gy befekető számára yilvávalóa adódik a kérdés: vajo hogya alakul az aszimptotikus átlagos övekedési ütem az elérhető legjobbhoz képest, ha átlag-variacia portfólió optimalizálást végzük mide egyes kereskedési periódusba? Természetese ilyekor a kockázatra érzékeyebb olvasó felkaphatja a fejét és megkérdezheti vajo mi törtéik akkor ha a részvéypiac em a kedvező iráyba változik. kkor valóba egy "kockázatkezelt" stratégia elvileg jobba kell hogy teljesítse, de é a legagyobb "felülteljesítést" keresem a log-optimális javára. Alsó becslést adtam a Markowitz-típusú stratégia aszimptotikus átlagos övekedési ütemére az optimálisa elérhető aszimptotikus átlagos övekedési ütemhez képest. Bármely stacioárius és ergodikus fx g folyamatra, amelyre X (j) j = ; : : : ; d-re, ahol 0 < a < feáll, és a 8

19 mide 2 h 0; 2 -ra W lim if! log S ; W A ;a B ;a C ;a ( ( max m max m max m X (m) 0 log(x (m) (X (m) 0 ) 2 j X f X (m) 0 o ) 3 X g 0 ) X mi m m.m. jx (m) 0 jx ahol S ; a Markowitz-típusú portfólió-stratégia -dik api vagyoa kockázatkerülési paraméter mellett továbbá és A ;a = 2a + ( 4)(a )I f0 4 g 2 C ;a = a 3 + 3( 2) : ; B ;a = I f 4 << 2 g Fetebb 2 [0; ) paraméterértékek mellett adtam meg állítást. gy 2 befektető tipikus kockázatelutasítási paramétere = 0:005G, ahol G értéke 2 és 4 közé esik (lásd pl. [6]). Így a tétel teljes mértékbe lefedi a praktikus szempotból érdekes kockázatelutasítási paraméter értékeket. A "hibatagok" agyságredjéek elemzéséhez kisérleteket végezhetük. A értékéek optimális megválasztásával a W és a lim if! log S ; közötti külöbség az empírikus W értékéek %-a alá csökkethető. 2 ) 3.3. xplicit kockázat kotroll Az eredeti log-optimális portfólióstratégia eseté előfordulhat, hogy az összeállított portfólió értéke az idex zuhaása miatt rohamosa csökkee egy bizoyos százalékkal, amikor is a kötelező kockázatkezelési szabályok miatt a kezelő átredezé a portfólióját, azaz emcsak a várható hozam, de aak a kockázata (variaciája) figyelembe vétele is fotos. Markowitztípusú startégia és a log-optimális stratégia kapcsolatát már vizsgáltuk. Ugyaakkor em lehet elégszer hagsúlyozi a kockázatkezelés fotosságát. 9

20 Míg a Markowitz-típusú portfólió-stratégia eseté lehetővé tettük, hogy a portfólióstratégia a teljes szimplexe optimalizáljo addig itt kokrét véletle megszorítást alkalmazok a választhatő portfóliók halmazára. Bevezettem a kockázat megszorítás melletti log-optimális portfólióvizsgálat egy lehetséges elemzési keretét. Kockázati megfotolások miatt megszorítom a lehetséges portfólióvektorok halmazát a c d halmazra. Legye a kockázat-megszorítás melletti log-optimális portfólió az -dik kereskedési apo b b ( ) a következőképp defiiálva D b b (X ) = arg max log b(x ) ; X o X : b( )2b Állításokat modtam ki és bizoíyítottam be a kockázat-megszorítás melletti log-optimális portfólió aszimptotikus tulajdoságairól. Megadtam a kockázat megszorítás melletti log-optimális portfólió Kuh-Tucker jellemzését mpírikus portfólió-választás A szemi-log-optimális és a Markowitz-típusú portfólió kiszámításához ismeri kell a hozamfolyamat eloszlását. Mivel ez em áll redelkezésre két empírikus stratégiát javasoltam a magfüggvéy alapú szemi-log-optimális stratégiát és a magfüggvéy alapú Markowitz típusú startégiát. Az eljárás a Györfi, Lugosi, Udia [4] által bevezetett magfüggvéy alapú eljárás közelítése úgy, hogy a hozamvektor első és második mometumát haszáljuk csak. Magfüggvéy alapú szemi-log-optimális stratégia Defiiáljuk a szakértők végtele vektorát a következőképpe: ~H (k;`) = f ~ h (k;`) ( )g, ahol k; ` pozitív egészek. Rögzített pozítiv egész k eseté válaszszuk meg az r k;` > 0 sugarat a következőképpe: lim r k;` = 0: `! 20

21 kkor bármely > k + eseté defiiáljuk a h ~ (k;`) szakértőket a következőképpe. Jelölje J az egybeeséseket: J = k < i < : kx i i k x kk r k;`o : Legye X ~h (k;`) (x ) = arg max h(hb ; x i i) ; (0) b2 d fi2j g ha az összegzés em üres, egyébkét b 0 = (=d; : : : ; =d). Kombiáljuk a szakértőket a következőképpe: legye fq k;`g a (k; `) pozitív egészek feletti valószíűségeloszlás, amelyre bármely k; ` eseté teljesül q k;` > 0. A ~ B K stratégiát a következőképpe kaphatjuk meg: ~b(x ) : = Pk;` q k;`s ( H ~ (k;`) ) h ~ (k;`) (x ) P : k;` q k;`s ( H ~ (k;`) ) Jelölje S ( ~ H (k;`) ) az elemi ~ H (k;`) szakértő -dik apra felhalmazott tőkéjét S 0 = kezdeti tőkével ~S K = S ( ~ B K ) = X k;` q k;`s ( ~ H (k;`) ) : () Megmutattam, hogy a h ~ (k;`) (x ) kiszámításáak futásideje sokkal kisebb volt (ha jjj elég agy) mit a h (k;`) (x ) számítási ideje. Megmutattam, hogy ha a hozamfolyamat stacioárius és ergodikus és a X j + c, 0:4 > a > 0, c > 0, mide j = ; 2; : : : d-re, akkor ~S K = S ( B ~ K ) eseté lim if! log S ~ K W 5 6 fmax j jx (j) j 3 g m.m. Az állítás azt mutatja, hogy a magfüggvéy alapú szemi-log-optimális stratégia közel olya veszteséget szved el a log-optimális stratégiával szembe, mit amit a szemi-log-optimális stratégia elszevedett. Magfüggvéy-alapú Markowitz-típusú stratégia Olya empírikus stratégiát kostruáltam, amelyre a Markowitz-típusú stratégia aszimptotikus övekedési üteméél alkalmazott alsó becsléséhez 2

22 képest közel azoos aszimptotikus alsó becslés adható. z egy empírikus stratégia azaz kizárólag az elmúlt kereskedési apok alapjá határozza meg a portfóliót, em épít az eloszlás ismeretére mit az eredeti Markowitztípusú stratégia. Bevezetve a szakértők következő végtele sorozatát H (k;`) = fh (k;`) ( )g, ahol k; ` pozitív egészek. Legye h (k;`) (x ) = arg max b2 d ( 2) + jj j X fi2j g X fi2j g (hb ; x i i hb ; x i i ) X fi2j g (hb ; x i i ) 2 A2 C A (2) ha a szumma em üres, egyébkét b 0 = (=d; : : : ; =d). A szakértőket a fq k;`g valószíűség eloszlás szerit kevertem, ahol bármely k; `, q k;` > 0. Az B stratégiát a következőképpe defiiáltam b (x ) : = Pk;` q k;`s ( H (k;`) ) h (k;`) (x ) Pk;` q k;`s ( H : (k;`) ) S ; ( B ) = X k;` q k;`s ( H (k;`) ) : (3) A B magfüggvéy-alapú Markowitz-típusú stratégia a fh (k;`) g szakértők kombiációja a (3) kombiáció szerit. Bármely fx g stacioárius és ergodikus folyamatra, amelyre X (j) j a h= ; : : : ; d-re, ahol 0 < a <, bármely S ; = S ; ( B ) és mide 2 0; 2 -ra feáll azt kapjuk, hogy lim if! S ; W A ;a B ;a fmax C ;a ( m max m max m X (m) 0 log(x (m) (X (m) 0 ) 2 j X f X (m) 0 o ) 3 X g 0 ) mi m X jx (m) m.m. 0 j 2g X 22

23 ahol és A ;a = 2a + ( 4)(a )I f0 4 g 2 C ;a = a 3 + 3( 2) : ; B ;a = I f 4 << 2 g 3.5. Optimális portfólió-választás trazakciós költség eseté Két optimális portfólió-választási szabályt vezettem be. Jelölje 0 < < a diszkotfaktort. Tekitsük a következő diszkotált Bellma egyeletet: és F (b; x) = max fv(b; b 0 ; x) + ( )ff (b 0 ; X 2 ) j X = xgg : (4) b 0 Stratégia lső portfólió-választási stratégiám a következő: b i+ b = f=d; : : : ; =dg = arg max b 0 v(b i ; b 0 ; X i ) + ( i )ff i (b 0 ; X i+ )jx i gg; (5) ahol i, és a 0 < i < diszkotfaktorra teljesül, hogy i # 0. Megmutattam, hogy az Stratégia trajektóriákét átlagos övekedési ütem szempotjából optimális: Ha az fx i g homogé elsőredű Markov folyamat és va olya 0 < a < < a 2 <, hogy a X (j) a 2 mide j = ; : : : ; d, akkor a i # 0 megválasztható úgy, hogy lim if log S! log S 0 m.m. teljesüljö. Az S egy tetszőleges másik b i stratégia által elért -edik api vagyo. 23

24 Rekurzió segítségével defiiáltam a 2.stratégiámat. 2. Stratégia. Bármely k egész eseté, legye és b (k) i+ b (k) = f=d; : : : ; =dg (k) = arg max v(b i ; b 0 ; X i ) + ( k )ff k (b 0 ; X i+ )jx i gg; (6) b 0 bármely i-re. A B (k) = fb (k) i g portfóliót a k szakértő portfóliójáak evezzük S (B (k) ) tőkével. Válasszuk egy tetszőleges q k > 0 valószíűségeloszlást és defiiáljuk a kombiált portfoliót a következőképpe ~S = X k= q k S (B (k) ): Megmutattam, hogy ha az fx i g homogé elsőredű Markov folyamat és va olya 0 < a < < a 2 <, hogy a X (j) a 2 mide j = ; : : : ; d és a diszkotfaktor a i # 0 amit i! akkor m.m. lim! log S log S ~ = 0 Hivatkozások [] P. Algoet. Uiversal schemes for predictio, gamblig, ad portfolio selectio. Aals of Probability, 20:90 94, 992. [2] P. Algoet. The strog law of large umbers for sequetial decisios uder ucertaity. I Trasactios o Iformatio Theory, 40: , 994. [3] P. Algoet, T. Cover. Asymptotic optimality asymptotic equipartitio properties of log-optimum ivestmets. Aals of Probability, 6: ,

25 [4] A. Arapostathis, V. S. Borkar,. Feradez-Gaucherad, M. K. Ghosh ad S. I. Marcus. Discrete-time Cotrolled Markov Processes with Average Cost Criterio: a Survey." SIAM J. Cotrol Optimzatio, 3: , 993 [5] D. P. Bertsekas, ad S.. Shreve. Stochastic Optimal Cotrol: the Discrete Time Case. New York: Academic Press, 978. [6] Z. Bodie, A. Kae, ad A. J. Marcus. Ivestmets. McGrawHill- Irwi, [7] L. Breima. The idividual ergodic theorem of iformatio theory. Aals of Mathematical Statistics, 28:809 8, 957. Correctio. Aals of Mathematical Statistics, 3:809 80, 960. [8] L. Breima. Optimal gamblig systems for favorable games. Proc. Fourth Berkeley Symp. Math. Statist. Prob., :65 78, 96. [9] Y. S. Chow. Local covergece of martigales ad the law of large umbers. Aals of Mathematical Statistics, 36: , 965. [0] T. Cover ad J. Thomas. lemets of iformatio theory. Joh Wiley ad Sos, 99. [] M. H. A. Davis ad A. R. Norma. Portfolio Selectio with Trasactio Costs." Mathematics of Operatios Research, 5:676 73, 990. [2] L. Györfi, D. Schäfer. Noparametric predictio. Advaces i Learig Theory: Methods, Models ad Applicatios, J. A. K. Suykes, G. Horváth, S. Basu, C. Micchelli, J. Vadevalle (ds.), IOS Press, NATO Sciece Series, , [3] L. Györfi, M. Kohler, A. Krzyżak ad H Walk. A distributio-free theory of oparametric regressio. Spriger, New York, [4] L. Györfi, G. Lugosi, ad F. Udia. Noparametric kerel-based sequetial ivestmet strategies. Mathematical Fiace, 6: ,

26 [5] L. Györfi, F. Udia, H. Walk. Noparametric earest eighbor based empirical portfolio selectio strategies. Statistics ad Decisios(i prit), [6] G. Iyegar. Discrete time growth optimal ivestmet with costs. Workig Paper, gi0/papers/stochastic.pdf, [7] G. Iyegar ad T. Cover. Growths Optimal Ivestmet i Horse Race Markets with Costs. I Trasactios o Iformatio Theory, 46: , [8] J. B. Lasserre. Sample-path Average Optimality for Markov Cotrol Processes. I Trasactios o Automatic Cotrol, 44:966 97, 999. [9] H. R. Markowitz. Ivestmet for the log ru: ew evidece for ad old rule. The Joural of Fiace 3(5): , 976. [20] H. R. Markowitz. Portfolio selectio. The Joural of Fiace 7():77 89, 952. [2] R. Merto. A itertemporal capital asset pricig model. coometrica, 4(5): , 973. [22] R. C. Merto ad P. A. Samuelso. Fallacy of the log-ormal approximatio to optimal decisio makig over may periods. Joural of Fiacial coomics, ():67 94, 974. [23] P. A. Samuleso. Lifetime portfolio selectio by dyamic stochastic programmig. The Review of coomics ad Statistics 5(3): , 969. [24] D. Schafer. Noparametric estimatio for fiacial ivestmet uder log-utility. PhD Dissertatio, Mathematical Istitute, Uiversity Stuttgart, [25] W. F. Stout. Almost sure covergece. Academic Press, New York

27 [26] M. Taksar, M. Klass ad, D. Assaf. A Diffusio Model for Optimal Portfolio Selectio i the Presece of Brokerage Fees." Mathematics of Operatios Research, 3: , 988. [27] O. Vega-Amaya. Sample-path Average Optimality of Markov Cotrol Processes with Strictly Ubouded Costs." Applicatioes Mathematicae, 26:363 38, 999. A témakörrel kapcsolatos saját és társszerzős publikációk jegyzéke [28] L. Györfi, A. Urbá, ad I. Vajda. Kerel-based semi-log-optimal empirical portfolio selectio strategies. Iteratioal Joural of Theoretical ad Applied Fiace, 0(5):505 56, [29] Gy. Ottucsák, I. Vajda. A asymptotic aalysis of the mea-variace portfolio selectio. Statistics ad Decisios, 25:63 88, [30] L. Györfi, I. Vajda. Growth Optimal Portfolio Selectio Strategies with Trasactio Costs, Spriger Lecture Notes i Artificial Itelligece 5254:08 23, [3] I. Vajda. Aalysis of semi-log-optimal ivestmet strategies. Proc. Prague Stochastics, , [32] Gy. Ottucsák, I. Vajda. mpirikus portfólióstratégiák. Közgazdasági Szemle, 53: ,

NÖVEKEDÉSOPTIMÁLIS PORTFOLIÓ ELMÉLET

NÖVEKEDÉSOPTIMÁLIS PORTFOLIÓ ELMÉLET -2 NÖVKDÉSOPTIMÁLIS PORTFOLIÓ LMÉLT írta Vajda Istvá Ph.D. disszertáció Témavezető: Dr. Györfi László Budapesti Corvius gyetem 2009 május Copyright Vajda Istvá, 2009 Tartalomjegyzék. Bevezetés.. Matematikai

Részletesebben

Empirikus portfólióstratégiák

Empirikus portfólióstratégiák Közgazdasági Szemle, LIII. évf., 2006. július augusztus (624 640. o.) OTTUCSÁK GYÖRGY VAJDA ISTVÁN Empirikus portfólióstratégiák A cikk olya új szekveciális befektetési stratégiákat mutat be, amelyek általáos

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Logoptimális portfóliók empirikus vizsgálata

Logoptimális portfóliók empirikus vizsgálata Közgazasági Szemle, LVI. évf., 2009. jauár (1 18. o.) ORMOS MIHÁLY URBÁN ANDRÁS ZOLTÁN TAMÁS Logoptimális portfóliók empirikus vizsgálata A logoptimális portfólióelmélet matematikai bizoyítását, valamit

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea. VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

A brexit-szavazás és a nagy számok törvénye

A brexit-szavazás és a nagy számok törvénye Mûhely Medvegyev Péter kadidátus, a Corvius Egyetem egyetemi taára E-mail: peter.medvegyev@uicorvius.hu A brexit-szavazás és a agy számok törvéye A 016. év, de vélhetőe az egész évtized legfotosabb politikai

Részletesebben

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag

Részletesebben

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise Nagyméretű emlieáris közúti közlekedési hálózatok speciális aalízise Dr. Péter Tamás* *Budapesti Műszaki és Gazdaságtudomáyi Egyetem Közlekedéautomatikai Taszék (tel.: +36--46303; e-mail: peter.tamas@mail.bme.hu

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika

BIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Empirikus portfólió-stratégiák

Empirikus portfólió-stratégiák Empirikus portfólió-stratégiák Ottucsák György és Vajda István 2006. június 6. Kivonat A cikk olyan új szekvenciális befektetési stratégiákat mutat be, amelyek általános feltételek mellett garantálják

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

6. feladatsor. Statisztika december 6. és 8.

6. feladatsor. Statisztika december 6. és 8. 6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Differenciaegyenletek aszimptotikus viselkedésének

Differenciaegyenletek aszimptotikus viselkedésének Differeciaegyeletek aszimptotikus viselkedéséek vizsgálata Mathematica segítségével Botos Zsófia Újvidéki Egyetem TTK Újvidék Szerbia E-mail: botoszsofi@yahoo.com 1. Bevezető Tekitsük az késleltetett diszkrét

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1

A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1 A FUNDAMENÁLIS EGYENLE KÉ REPREZENÁCIÓBAN A differeciális fudametális egyelet A fudametális egyelet a belső eergiára: UU (S V K ) A függvéy teljes differeciálja a differeciális fudametális egyelet: U S

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

Elsőbbségi (prioritásos) sor

Elsőbbségi (prioritásos) sor Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

Pl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.?

Pl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.? Dr. Vicze Szilvia A kombiatorika a véges halmazokkal foglalkozik. A véges halmazokkal kapcsolatba számos olya probléma vethető fel, amely függetle a halmazok elemeitől. Pl.: háyféleképpe lehet egy elemű

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Empirikus szórásnégyzet

Empirikus szórásnégyzet Empirikus égyzet Mi lee hasoló szellembe a becslése a mita alapjá? Empirikus égyzet Mi lee hasoló szellembe a becslése a mita alapjá? Az átlagtól való égyzetes eltérést kée átlagoli... Empirikus égyzet

Részletesebben

6. Számsorozat fogalma és tulajdonságai

6. Számsorozat fogalma és tulajdonságai 6. Számsorozat fogalma és tulajdoságai Taulási cél: A számsorozat fogalmáak és elemi tulajdoságaiak megismerése. A mootoitás, korlátosság vizsgálatáak elsajátítása. Nevezetes sorozatok határértékéek megismerése.

Részletesebben

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel-

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel- ACÉLOK KÉMIAI LITY OF STEELS THROUGH Cserjésé Sutyák Áges *, Szilágyié Biró Adrea ** beig s s 1. E kutatás célja, hogy képet meghatározásáak kísérleti és számítási móiek tosságáról, és ezzel felfedjük

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Területi koncentráció és bolyongás Lengyel Imre publikációs tevékenységében

Területi koncentráció és bolyongás Lengyel Imre publikációs tevékenységében Lukovics Miklós (szerk.) 204: Taulmáyok Legyel Imre professzor 60. születésapja tiszteletére. SZTE Gazdaságtudomáyi Kar, Szeged, 5-24. o. Területi kocetráció és bolyogás Legyel Imre publikációs tevékeységébe

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

1. A lehetséges finanszírozási források és azok ára

1. A lehetséges finanszírozási források és azok ára 3. kozultáció 1. A lehetséges fiaszírozási források és azok ára 1.1. A fiaszírozás belső forrásai 1.2. Külső fiaszírozási források 1.3. A fiaszírozási források ára 1.4. A pézügyi lehetőségek egy részéek

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet

Részletesebben