Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Hasonló dokumentumok
3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

Matematika I. 9. előadás

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Kalkulus I. Első zárthelyi dolgozat szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l n 6n + 8

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

Gyakorló feladatok II.

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

Innen. 2. Az. s n = 1 + q + q q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Függvényhatárérték-számítás

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

Kalkulus II., második házi feladat

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

Analízis feladatgy jtemény II.

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

I. rész. Valós számok

VII. A határozatlan esetek kiküszöbölése

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7

Analízis I. gyakorlat

2. fejezet. Számsorozatok, számsorok

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

Sorozatok A.: Sorozatok általában

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Nevezetes sorozat-határértékek

Függvények határértéke 69. III. Függvények határértéke

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

Statisztika 1. zárthelyi dolgozat március 21.

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

2010. október 12. Dr. Vincze Szilvia

Valós függvények tulajdonságai és határérték-számítása

2.1. A sorozat fogalma, megadása és ábrázolása

Metrikus terek. továbbra is.

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Bevezető analízis II. példatár

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

1. gyakorlat - Végtelen sorok

V. Deriválható függvények

6. Számsorozat fogalma és tulajdonságai

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

FELADATOK A KALKULUS C. TÁRGYHOZ

f(x) a (x x 0 )-t használjuk.

A1 Analízis minimumkérdések szóbelire 2014

Sorok és hatványsorok vizsgálata Abel nyomán

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

Egy lehetséges tételsor megoldásokkal

BSc Analízis I. előadásjegyzet

Andai Attila: november 13.

Feladatok valós számsorozatokkal és sorokkal. 1.Feladatok valós számsorozatokkal

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

18. Differenciálszámítás

Kalkulus gyakorlat - Megoldásvázlatok

Sorozatok és Sorozatok és / 18

1. feladatlap megoldása. Analízis II. 1. Vizsgálja meg az alábbi sorokat konvergencia szempontjából! a) n 2 n = 1 1X 1

2014. november 5-7. Dr. Vincze Szilvia

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

2. gyakorlat - Hatványsorok és Taylor-sorok

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.

I. FEJEZET: ANALÍZIS... 3

First Prev Next Last Go Back Full Screen Close Quit

Komplex számok. A komplex számok algebrai alakja

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

Taylor-sorok alkalmazása numerikus sorok vizsgálatára

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

Integrált Intetnzív Matematika Érettségi

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Emelt szintő érettségi tételek. 10. tétel Számsorozatok

Függvény határérték összefoglalás

Descartes-féle, derékszögű koordináta-rendszer

Analízis I. beugró vizsgakérdések

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden

GRUBER TIBOR. ANALÍZIS III. Folytonosság

Analízis előadás és gyakorlat vázlat

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

Függvények határértéke és folytonossága

SOROK Feladatok és megoldások 1. Numerikus sorok

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Programtervező informatikus I. évfolyam Analízis 1

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

Sorozatok. 1. Vizsgálja meg az alábbi sorozatokat monotonitás szempontjából!(indoklással, nem elegendő a sorozat. (a) a n = n+1

Függvényhatárérték és folytonosság

A fontosabb definíciók

Integrálás sokaságokon

Átírás:

Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága

1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt végtele valós számsorozatak evezzük. A hozzáredelési szabály: f() a mide természetes számhoz a függvéy egy elemét redeli. A függvéy helyettesítési értékei: a sorozat elemei/tagjai. A sorozat. tagja: a.

A sorozat jelölése: (a ) vagy {a }. A sorozat megadható: az általáos (.) tag képletével: pl. a 2 1+ 2 rekurzióval: pl. a 1 a 2 1, a a -1 + a -2 ( 3, 4,...) Ábrázolható: koordiátaredszerbe, vagy számegyeese

A. A sorozatok tulajdoságai a) Mootoitás Defiíció: Az (a ) sorozat mooto övekvı (csökkeı), ha mide N-re: a +1 a (a +1 + a ). Vizsgálata: a +1 - a 0 vagy a +1 / a 1 alapjá. Szigorúa mooto övekvı (csökkeı), ha > (<) egyelıtleségjeleket íruk az elızı képletekbe.

b) Korlátosság, szélsıérték Defiíció: Az (a ) sorozat felülrıl (alulról) korlátos ill. korlátos, ha mit valós függvéy ilye tulajdoságú. A sorozat felsı és alsó korlátja, szupremuma és ifimuma, maximuma és miimuma a függvéyekre megismert módo értelmezhetı. Pl. a a 1 + (-1)d, N számtai sorozat d>0 eseté: szigorúa mooto övekvı, alulról korlátos, de em korlátos sorozat mi. (a ) if {a } a 1

Pl. b b 1 q -1, N mértai sorozat b 1 >0, 0<q<1: szig. mo. csökkeı, q1 mo. csökkeı/övekvı, q>1 szig. mo. övekvı q 1 eseté: korlátos 1 b 3 2 4

c) Határérték Defiíció: Az (a ) sorozat koverges, és határértéke az "a" szám, ha ε>0 eseté található olya N(ε) N küszöbidex, hogy mide >N eseté a a < ε A határérték jelölése: lima Ha a em koverges, akkor azt modjuk, hogy diverges. A határérték azt jeleti, hogy va olya "a" szám, melyek tetszıleges kis köryezetébe va a sorozatak majdem mide tagja (kívül csak véges sok - N db - va). a

A legegyszerőbb koverges sorozatok: Kostas sorozat: limc c (c R) Harmoikus sorozat: 1 lim 0

B. Tételek koverges sorozatokra 1./ Ha egy sorozat koverges, akkor korlátos. A korlátosságból azoba em következik, hogy koverges is a sorozat. A korlátosság csak szükséges feltétele a kovergecia létezéséek a ( 1) 1 Pl. koverges sorozat, határértéke 0, a sorozat korlátos. a ( 1) korlátos sorozat, de em koverges.

2./ A kovergecia létezéséek elégséges feltétele: Ha egy sorozat mooto (övekvı, vagy csökkeı) és korlátos, akkor koverges, mégpedig ha - mooto övekvı és felülrıl korlátos, akkor lima sup(a ) 1 1 Pl. lim 5 sup 5 5 - mooto csökkeı és alulról korlátos, akkor lima if(a ) Pl. lim 2 + 1 2 if 2 + 1 2 2

Visszafelé em igaz az állítás: ha egy sorozat koverges, akkor ebbıl em következik, hogy mooto és korlátos. Pl.A már említett ( 1 ) 1 sorozat.

C. Diverges sorozatok határértéke Defiíció: Az (a ) sorozat a + -hez divergál (hatérértéke + ), ha bármilye agy K R-hez va olya N(K) N, K-tól függı küszöbidex, hogy mide >N eseté a > K. Jele: lima Hasolóa értelmezhetı a divergecia is. lima Nem mide diverges sorozat határértéke + (- ) Pl. a (-1) vagy b (-1) diverges sorozatokak ics határértéke.

Módszer: 2) EGYVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE Tetszıleges {x } függetle-változó sorozattal tartuk az értelmezési tartomáyo oda, ahol a függvéy határértékét vizsgáljuk (ez lehet a véges x 0 pot vagy a + vagy a - ) és vizsgáljuk, hogy közbe a függvéyértékek {f(x )} sorozatáak va-e határértéke. Ha bármely {x } sorozat eseté ugyaaz a (véges vagy + vagy - ) határérték adódik, akkor ez a függvéy határértéke a vizsgált helye. Külöbe ics határérték a vizsgált helye.

Esetei: 1. A véges x 0 potba a határérték a véges A szám Defiíció: Legye a függvéy értelmezve az x 0 valamely köryezetébe kivéve esetleg magát az x 0 potot. Az f(x) függvéy határértéke az x 0 helye a véges A szám, ha mide x 0 hoz kovergáló {x } (ahol x D, x x 0 ) függetle-változó sorozat eseté a megfelelı függvéyértékek {f(x )} sorozata tart A-hoz, azaz mide {x } x 0 (x D, x x 0 ) eseté {f(x )} A Jelölése: lim f (x) A x x 0

Defiíció: Legye a függvéy értelmezve az x 0 valamely baloldali köryezetébe kivéve esetleg magát az x 0 potot. Az f(x) függvéy baloldali határértéke az x 0 helye a véges A szám, ha mide {x } x 0 (x D, x <x 0 ) eseté {f(x )} A Jelölése: lim x x 0 0 f (x) A Hasolóa értelmezhetı a jobboldali határérték. Jele: lim f (x) A x x + 0 0

Tétel: Egy függvéyek akkor va határértéke az x 0 helye, ha ott a bal- és a jobboldali határérték létezik, és azok megegyezek. Egy függvéy x 0 potbeli baloldali ill. jobboldali határértékéek meghatározásához az {x }x 0 1/ ill. {x }x 0 +1/ sorozatokat haszáljuk. Példa: 2 1 2 1 1 lim(x + 1) lim (2 ) 1 lim(5 4 x 2 0 + + 2 2 1 2 1 1 lim (x + 1) lim (2 ) 1 lim(5 4 ) 5 2 0 + + + + + 2 x Mivel a bal- és a jobboldali határérték megegyezik, ezért lim (x 2 x 2 + 1) 5 ) 5

2. A véges x 0 potba a határérték a végtele Defiíció: Legye f: D R em korlátos függvéy. Az f(x) függvéy határértéke az x 0 helye + (- ), ha mide x 0 hoz kovergáló {x } (ahol x D, x x 0 ) függetle-változó sorozat eseté a megfelelı függvéyértékek {f(x )} sorozata tart a + -be (- ), azaz mide {x } x 0 (x D, x x 0 ) eseté {f(x )} + (- ) Jelölése: lim f (x) x x 0 + (- ) 2 f(x) 2 (x 3) az x 0 3 potba

3. A végtelebe a határérték a véges A szám Defiíció: Legye f olya függvéy, melyek értelmezési tartomáya em korlátos. Az f(x) függvéy határértéke a + -be (- -be) a A szám, ha mide + -be (- -be) kovergáló {x } (ahol x D) függetle-változó sorozat eseté a megfelelı függvéyértékek {f(x )} sorozata tart a A-hoz, azaz mide {x } + (- ) (x D) eseté {f(x )} A Jelölése: lim f (x) x + A illetve lim f (x) x - A + -be kovergáláshoz az {x }, a - -be tartáshoz az {x } - sorozatot haszáljuk. 3 x Pl. f(x) 2 a + -be illetve a - -be A

4. A végtelebe a határérték végtele Defiíció: Legye az f függvéy értelmezési tartomáya és értékkészlete em korlátos. Az f(x) függvéy határértéke a + -be + (- ), ha mide + -be kovergáló {x } (ahol x D) függetle-változó sorozat eseté a megfelelı függvéyértékek {f(x )} sorozata tart a + -be (- -be), azaz mide {x } + (x D) eseté {f(x )} + (- ) Jelölése: lim f (x) x + + illetve lim f (x) x + Hasolóképpe lehet a - -be a határérték + (- ) : lim f (x) x + illetve lim f (x) x

A. Határérték és a mőveletek Tétel: Ha f és g határértéke létezik az x 0 helye (+,- be) és ez A ill. B és c R, akkor lim c f (x) x x 0 lim x x 0 lim x x 0 ca [ f (x) ± g(x) ] A ± B [ f (x) g(x) ] A B f (x) lim x x 0 g(x) A B (B 0)

lim c B. Nevezetes határértékek c 1. x x 0 kostas függvéy határértéke mideütt kostas 2. 3. 4. 5. 6. lim x ± lim x ± x + 1 x x e, lim x ± ( k ) ( k a x +... + a x + a a x ) k a x k lim x ± b x m f (x) lim x g(x) k 1 ha x 0 midkét függvéy zérushelye 0 x + k x lim x ± k +... + a x + a 1 0 a kx lim m +... + b x + b x ± 1 0 b x m (x x 0) f1(x) f1(x) lim lim x x0 (x x ) g (x) x x g (x) m x 0 0 lim 0 si x x x 1 0 1 1 x k e k,

3) EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA Defiíció: Legye f: D R értelmezve az x 0 D helye és aak valamely köryezetébe. Az f függvéy folytoos az x 0 potba, ha lim f (x) f (x ) 0 x x 0 azaz létezik a jobb és a baloldali határérték az x 0 potba és ezek megegyezek az x 0 potba vett helyettesítési értékkel. Ez azt jeleti, hogy ics ugrás, szakadás az x 0 helye a függvéy görbéjé.

A defiíció következméye, hogy az x 0 potba folytoos függvéy értelmezve va x 0 ba létezik itt a határérték a határérték egyelı a helyettesítési értékkel. Nem folytoos a függvéy x 0 ba, ha a feti potok bármelyike em teljesül. Ilyekor szakadás va az x 0 potba. Defiíció: Az f függvéy folytoos egy H halmazo, ha aak mide potjába folytoos.

Mőveletek és folytoosság Tétel: Adott itervallumo folytoos függvéyek összege, külöbsége, szorzata, háyadosa (ha a evezı itt em ulla), kostasszorosa is folytoos. Tétel: Adott zárt itervallumo folytoos valós függvéy korlátos felveszi szélsıértékeit és bármely két felvett érték közötti mide számot felvesz. pl.: f: [-1, 2] R, f(x) -x 2 +1