A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )"

Átírás

1 Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és csk kkor igz h A=B) lpzoosságok: A B = B A A B = B A ( A B ) C = A ( B C ) ( A B ) C = A ( B C ) A ( B C ) = ( A B ) ( A C ) A ( B C ) = ( A B ) ( A C ) A A = A A A = A A = A A 0 = 0 A 0 = A A = A A A = A A = 0 ( = H l p h l m z ) A B = A B D e m o r g s z á ly A B = A B A ( A B ) = A B e o l v s z t á s i s z á ly A ( A B ) = A A - B = A B A B = A B A B = A B A B p r i o r i t á s :. e g á l á s. s z o r z á s z á r ó j e le k 3. ö s s z e d á s 4. tö i e k á t ír á s : ; ; \ - ; H ; 0 0 A = A = 0 0 = A B C = A B C A B C = A B C

2 Soroztok H számláló okszám gyo vgy egyelı evezı okszámávl érdemes POLINOMOSZTÁST végezi!!!!. Htárérték meghtározás poliom/poliom típusú eldtokál szály: evezı legmgs okú tgjávl osztom számlálót és evezıt. Poliom leggyo kitevıje okszám jelölése: r(p()) p( ) p( g). r(p)=r(g) ı együtthtók háydos. r(p)>r(g) ± 3. r(p)<r(g) 0. mootoitás vizsgált > ill. h > 0 mooto ı h mooto csökke h < 0 ill h < A mootoitás tgdásához egyetle ellepéld elegedı így z elméleti izoyítást em kötelezı elvégezi! 3. korlátosság vizsgált

3 4. küszöszám meghtározás A < ε 0 = [ ] válsztott számk midig z egészrészét veszem h másodokú egyelet jö ki kkor gyoik gyököt kell -ek válszti. típusú soroztokál htárértéke: lim = 0 diverges h - (-) diverges = - h - < < h > h = lim = e Speciális soroztok: Mootoitást tökreteszik htárértéket em iztos π ( ) = cos( π ) = si korlátosk! π 3

4 Esetszétválsztást érdemes csiáli és mid kettı lim-ét megézi h ezek egyelık kkor v htárérték h em kkor sorozt diverges ( torlódási potj v). Mérti sorozt összegképlete S = Sorok A végtele sor koverges h részletösszegekıl képzett sorozt koverges; ekkor sor összege megegyezik sorozt htárértékével. A végtele mérti sor potos kkor koverges h < lim s = Függvéyek htárértéke olytoosság Adott pot olytoosság eltétele hogy z dott pot üggvéy helyettesítési értéke egyelı legye z dott pot üggvéy htárértékével. végtelee ugyúgy csiálom mit soroztokál míusz végtelee léyegée ugyzt végese új módszerek (szorzt lk) 4

5 pólushelyeke kell jo és loldli htárértéket is vizsgáli (A pólushelyéek evezıek zérushelye) Aszolútértékes üggvéyekél esetszétválsztást kell csiáli és z dott potokál üggvéy megelelı ágát hszáli. Az esetszétválsztás htáráál joról és lról is meg kell vizsgáli htárértéket itt is megelelı ág hszáltávl. lim si 0 = si = si cos cos = cos si si( ± y) = si cos y ± cos si y lim 0 e = Áttérés trükk lim si( ) lim si t = = t 0 t t t = = t 0 lim l t lim t = t e = 0 5

6 t = l t = e t 0 Gyökteleítéses trükk Tylor sor Tylor poliom ( i) ( ) i ( ) = ( ) = ( ) ( ) ( ) i! i= 0 ( ) ( ) ( ) ( 3 )...! 3! McLuri poliom h =0 McLuri sorok: e k =......!! k! k si k =... ( )! 3! 5! 7! ( k )!... cos 4 6 k k =... ( )...! 4! 6! ( k )! 3 4 k k l( ) =... ( ) k 6

7 Függvéyvizsgált. értelmezési trtomáy D. zérushely ()=0 törtüggvéyél h számláló=0 3. () ()=0 lok. sz. é. mootoitás 4. () ()=0 ileiós pot kove kokáv 5. Htárértékek z értelmezési trtomáy szélei 6. Tálázt (deriváltk zérushelyei póluspotok) 7. Ár és értékkészlet (R ) 8. pritás Páros üggvéy: ()=(-) (szimmetrikus z y tegelyre) Pártl üggvéy: -()=(-) (szimmetrikus z origór) l -él kikötés >0 Szélsıérték ()=0 lehetséges szélsıértékhely ( ) < 0 lokális m ( ) = 0 továi vizsgált szükséges ( ) > 0 lokális mi Töváltozós üggvéyek szélsıértéke ' ( ) = 0 ' ( ) = 0 y egyeletredszer megoldás h ics megoldás ics lok. sz.é. h v megoldás P ( y ) P ( y )... D( ) = " ( ) ( ) [ " ( )] yy y 7

8 h D()>0 szélsıértéke v ()-e h D()<0 yeregpotj v ()-e h D()=0 továi vizsgált szükséges " ( ) < 0 lokális mimum " yy ( ) > 0 lokális miimum Diereciálszámítás Éritı egyelete z (()) pot h () létezik e( ) = ( )( ) ( ) Diereci háydos d ( ) ( ) ( ) = ( D ) \{ } Diereciál háydos: '( ) lim d ( ) lim ( ) = = ( ) h '( ) lim ( ) = ( ) 0 h Diereciálási szályok ( c )' = c ' ( g)' = ' g' ( g)' = ' g g' g g = g (0 g( Dg)) g g = (0 g( Dg)). g g ( gh) = gh g h gh 8

9 9 3 3 = ( )( ) ( ) '( ) { } R R e e ctg tg R p N p N N N N R c c p p l \ log l l si cos si cos cos si rtl p Žs 0 α α α α

10 Itegrálszámítás Elemi üggvéyek htároztl itegrálji α α. d = C α α R α. l d = C 3. si d = cos C 4. cos d = si C ctg si d = C tg cos d = C 7. e d = e C 8. d = C > 0. l 9. l = l - Itegrálási szályok c = c ( g) = g ( ) d = F ( ) C I és álldó 0 α ' = C α α ' = l C α 0

11 prciális itegrálás g' g ' g = lpesetek: ) poliom*trig poliom*ep (pol - g() trig v. ep. ()) ) poliom*log (pol - () log g()) helyettesítéssel vló itegrálás módszere ( g( )) g'( ) d = F( g( )) C ( o g) g' = Fo g C htározott itegrál tuljdosági c = c ( g) = g Térogtszámítás V = ( ) d. tegely körüli orgtássl keletkezett testekél V = π ( ) d.

Matematika A1 vizsga elméleti kérdések

Matematika A1 vizsga elméleti kérdések Mtemtik A1 vizsg elméleti kérdések Deiíciók Forrás: Szirmi Jeő elődásvázltok, Szász Gáor: Mtemtik 1. tköyv Gépre vitte: Atli Máté 1. Peo-xiómák A természetes számok hlmzát N Peo-xiómák segítségével deiiáljuk.

Részletesebben

Analízis. Glashütter Andrea

Analízis. Glashütter Andrea Alízis Glshütter Adre Alízis Hlmzok I. Hlmzok Deiíció (hlmz) elemek összessége. Megdás. elemek elsorolásávl (z összes elemet elsorolom, vgy leglá yit, hogy z lpjá következteti lehesse töi elemre); pl A{,,4,7,4,8}..

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

Emelt szintő érettségi tételek. 10. tétel Számsorozatok

Emelt szintő érettségi tételek. 10. tétel Számsorozatok Mgyr Eszter Emelt szitő érettségi tétele 0. tétel zámsorozto orozt: Oly függvéy, melye értelmezési trtomáy pozitív egész számo hlmz. zámsorozt éphlmz vlós számo hlmz. f : N R f () jelöli sorozt -ei tgját.

Részletesebben

2. ALGEBRA ÉS SZÁMELMÉLET

2. ALGEBRA ÉS SZÁMELMÉLET Szkközépiskol 9. osztály Felkészülési jvslt jvítóvizsgár Véges, végtele, üres hlmz oglm Két hlmz egyelősége Részhlmz, vlódi részhlmz oglm Uiverzum, komplemeterhlmz Hlmzműveletek (uió, metszet, külöbség)

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

= dx 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 Folytoos vlószíűségi változók Értékkészletük számegyees egy folytoos (véges vgy végtele) itervllum. Vlmeyi lehetséges érték vlószíűségű, pozitív vlószíűségek csk értéktrtomáyokhoz trtozk. Az eloszlás em

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Matematika II. Műszaki informatikai mérnökasszisztens. Galambos Gábor JGYPK

Matematika II. Műszaki informatikai mérnökasszisztens. Galambos Gábor JGYPK ..7. Mtemtik II. Műszki iformtiki méröksszisztes http://jgypk.u-szeged.hu/tszek/szmtech/oktts/mtemtik-.pdf Glmos Gáor JGYPK - Mtemtik II. A Mtemtik II. fő témái: Itervllum, távolság, köryezet Vlós függvéyek

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

www.easymaths.hu -1 0 1 Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el. Végtele sok vlós számból álló összegeket sorokk evezzük. sorb szereplő tgokt képzeljük el úgy, mit egy bolh ugrásit számegyeese. sor összege h létezik ilye z szám hov bolh ugrási sorá eljut. Nézzük például

Részletesebben

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + +

-vel, ahol i a sor- és j az oszlopindex. Pl. harmadrendő determinánsnál: + + LINEÁRIS ALGEBRA Mit evezük másodredő determiásk? Másodredő determiásk evezzük égy elem, két sor és két oszlop redezett táláztát, melyhez z lái módo redelük értéket: = d c c d Mit evezük egy determiás,

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1. Határátmeet Határértékszámítás.. Tétel. (Nevezetes sorozatok) 005..5 Készítette: Dr. Toledo Rodolfo (a)... α (α > 0) (b) (c) 0 0... 0 (α > 0) α q (d) c (c > 0) ha q > = ha q = 0 ha q < diverges korlátos

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

x + 3 sorozat első hat tagját, ha

x + 3 sorozat első hat tagját, ha Soroztok, soroztok megdás rekurzív módo.. Az ( ) soroztot rekurzív módo dtuk meg 7 -, sorozt első két tgj ( < ) egybe gyökei következő egyeletek: sorozt első öt tgját. y.adott ( ). Írd fel ( ) x 0 x. Htározd

Részletesebben

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): --- A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

A valós számok halmaza

A valós számok halmaza A vlós számok hlmz VA A vlós számok hlmz A diáko megjeleő szövegek és képek csk szerző (Kocsis Imre, DE MFK) egedélyével hszálhtók fel! A vlós számok hlmz VA A vlós számok hlmzák lpvető tuljdosági A vlós

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7 Bodó Beáta 1 Sorozatok 1. Írja fel az a = 1 +4 sorozat 10. és ( + 1)-edik elemét! [a 10 = 4 14, a +1 = 4 +. Írja fel az a = +4 1 sorozat ( + 1)-edik és ( )-edik tagját! [a +1 = +7 +4, a = 11. Vizsgálja

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak

Bodó Bea, Simonné Szabó Klára Matematika 1. közgazdászoknak ábr: Ábr Bodó Be, Simoé Szbó Klár Mtemtik. közgzdászokk IV. modul: Számsoroztok 8. lecke: Számsorozt foglm és tuljdosági Tulási cél: A számsorozt foglmák és elemi tuljdoságik megismerése. A mootoitás,

Részletesebben

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus)

A hatványozás inverz műveletei. (Hatvány, gyök, logaritmus) A htváyoz yozás s iverz műveletei. m (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté Def.: egy oly téyezős szorzt, melyek mide téyezője. htváylp : kitevő: htváyérték: A htváyozás zoossági:

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

WEKERLE SÁNDOR ÜZLETI FŐISKOLA. Gazdaságmatematika 1 Analízis. Oktatási segédanyag Készítette: Pór Andrásné

WEKERLE SÁNDOR ÜZLETI FŐISKOLA. Gazdaságmatematika 1 Analízis. Oktatási segédanyag Készítette: Pór Andrásné WEKERLE SÁNDOR ÜZLETI FŐISKOLA Gzdságmtemtik Alízis Okttási segédyg Készítette: Pór Adrásé 203 Trtlomjegyzék HALMAZOK... 3 FÜGGVÉNYEK... 0 SOROZATOK... 24 FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA... 29

Részletesebben

(arcsin x) (arccos x) ( x

(arcsin x) (arccos x) ( x ALAPDERIVÁLTAK ( c ) (si ) cos ( ) (cos ) si ( ) ( ) ( tg) cos ( e ) e ( ctg ) si ( a ) a l a ( sh) ch (l ) ( ch) sh (log a ) ( th) l a ch (arcsi ) (arccos ) ( arctg ) DERIVÁLÁSI SZABÁLYOK. ( c ) c. c

Részletesebben

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra

Megoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra . Adott z =, =,3, + 3 soozt. Számíts ki lim 3 htáétéket. Megoldás: Előszö lkítsuk át z k kifejezést: k = + k 3 = k3 k 3 + = (k (k + k + (k + (k k + = k k + k + k + k k +, k =,3, Ez lpjá z szozt átíhtó

Részletesebben

Orosz Gyula: Külföldi középiskolai matematikai versenyek. Elemi algebra 1. értékét, ha x, y pozitív valós számok és x 2 + y 2 = 6xy.

Orosz Gyula: Külföldi középiskolai matematikai versenyek. Elemi algebra 1. értékét, ha x, y pozitív valós számok és x 2 + y 2 = 6xy. Orosz Gyul: Külöldi középiskoli mtemtiki verseyek Elemi lgebr. A.. Mcedói, 00, 9. év. I. ord. Htározzuk meg y y értékét, h, y pozitív vlós számok és y = 6y. A.. Horvátország, 00, regioális versey, 0. év.

Részletesebben

II. ALGEBRA ÉS SZÁMELMÉLET

II. ALGEBRA ÉS SZÁMELMÉLET MATEMATIKA FELADATSOR 9. évolym Elézést tegezésért! I. HALMAZOK Számegyeesek, itervllumok. Töltsd ki táláztot! Mide sor egy-egy itervllum hároméle megdás szerepelje!. Add meg következő itervllumokt! A

Részletesebben

É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í

É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í Í É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í É Á É Í Í É É Í Í Í Á Í Á Á ö ó ö ö ő ő ő ö ö ó ő ű ö ö ö ö ü ö ö ö ü ü ó ö Á ó ó ö ö ő ő ő ő ö ó ü ó ó ó ó ó ó ö ü ü ó ö Ó Í Í É É

Részletesebben

Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü

Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü É Á í É Á Á ü Ú ű í Í Í Ü ü ú ü Í ü ü ü ü Í ü Í í ü ü ü ü ü ü ü ü ü í Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü Í Ó Í Ó ü ü ü Í ü ü É ü ü ü ü ü É ü ü Í ü ü ü Í Ó Í Ó í Á í É ü í Í ü í Í í í ü ü É ü ü

Részletesebben

Ü

Ü Ó Á ú Á É Ü Ö Ö Ö É É É Ö É Ü Ö É É É É É Ó Ö Ó Í Ö Ö Ö Ö Í Ö Ö É É É Í Ö Ö É Ö Í Á Ó Í Á É É Ó É Ú Á Í É É É Ö Ö Ó Ö Ö Ö Ö Ó Ó Ó Í Ü Ö É É Ö Ó Ö Ó ö Ö Ö Ö Ö Ö Ó Ü Ö Ó É ű É É É É É É É É Í Ö Ó Ö É Ö Ö

Részletesebben

ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö

ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö Ü É ű ü ü ö Í ü ö ö ü ű Í Í ü ű ö Ö ö ö ö Í ü ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö ü ü ü Í ü ö ö ö ö ö ö ö ü Í Í ű ö ö ö ü ü ö ü ö ö ö ü ö ö ö ö ü ü ű ü ö ö ö ü ö ü ű ö ü ö ö ű Í ü ü ű Í ö ü ö

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í ó ű Ü ó í ú í ö í ö í Í ó ó í í ö ü ö ö í ö í ö ö ö ü ó í ö ö ó í ú ü ó ö

ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í ó ű Ü ó í ú í ö í ö í Í ó ó í í ö ü ö ö í ö í ö ö ö ü ó í ö ö ó í ú ü ó ö Á Ö É Á É Ő Ü Ü ü ö Ö ü ú ö í ü ü ó ó Á ö ó ö ö ö Ö í ü ü ü í í ü ü ö ü ü ü ü ö í ó ó Ő ó ó ö ó ö í ü í Í ó í ó ö í ó ó ö ó ó ö ó ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í

Részletesebben

Matematika A2a - Vektorfüggvények elméleti kérdései

Matematika A2a - Vektorfüggvények elméleti kérdései Mtemtik A2 - Vektorfüggvéyek elméleti kérdései (műszki meedzser szk, 2018. tvsz) Első típusú improprius itegrál: Végtele trtomáyo korlátos függvéy Legye f itegrálhtó mide β > eseté z [, β]-. H β β és véges,

Részletesebben

ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű

ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű É Á É É Ó Á ű Á ű ú ú ű ű ú ű ű ú Á ú ű ú ű ú ű ú ű Á ű ú ű ű Ö Ú Á ű ű Á ű ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű ű ú ű ű ű ű ű ú ű ű ű ű ű ű Á ú ű ű ú ú ű ű ű ű ű ú ű Á ű ű ű ű ű ű ú ű ú ű ú ű Ö ú ű Ö

Részletesebben

í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó

í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó Á Á Ó Ö Á í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó ó í í ó ó ű ű ö ű ú í ö ó ó í ó ó ö ö Ü ú ó Ü ö ö í ö í ó ó ó ű í ó ö ö í í ö ö í ö Í ó ö í ö ö ó ó ö ö í ó ö ö í í ö í ú Í

Részletesebben

Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö

Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö Ö É Ö Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö Ü Ü Á É Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ú Í É Ó Á Ü Á É Á Ü Í Í Í Í Ü Í Í Í Í Í É Ö Á Í Á Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Í Í É Í Í É É Í Í Í É Í Ü Í Ü Á Ü Ü

Részletesebben

ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö

ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö Í Í Ő Ó Ü Ö Ő ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö ő ö ő Í ó ö ó ú Í Ö Í ÍÍ É Ó Ü Ü Ó Ó Ö É Ö ő ö ő ű ó ö ú Í Ö Í Ö Í Ö Ó Ó Ó Ó Ü Ö Ü Ü É Ú Ö Ó Ó Í Í ő ö ő ű ó ö ó ú É Ö Í Í ÍÍ Í Í Í É Í

Részletesebben

í Ó ó ó í ó ó ó ő í ó ó ó ó

í Ó ó ó í ó ó ó ő í ó ó ó ó í Ú Á Í í Ó ó ó í ó ó ó ő í ó ó ó ó í Ó Ó í ő ó Í í í í Ó í ó í í Ő É Ú Ű Í É Á ó Á É É ó ó í É Ü Í ő í ó í ó í Ő Ő Á Ó Ó Á É É Á Á É É Ő Á Ú É í ó Á í Á í í ő í í Ő Ő É Ú Ű Í É Á ó Á É Ö Í Í É ó ó í Ú

Részletesebben

Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő

Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő ű É ű ű É Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő É Ó Ó É ű Ö ű Ö ű ű ű Ú Ú Ö ű ű ű Ö ű ű ű ű ű ű ű ű Ú É É É É Ö Ö Ú Ö É ű ű ű ű ű ű ű Ó ű Ö Ö ű ű ű É ű ű ű ű ű ű ű ű ű É ű ű ű ű ű ű ű ű ű ű Ö ű ű ű Ü ű ű ű ű Ö ű

Részletesebben

í ó ő í é ö ő é í ó é é ó é í é é í é í íí é é é í é ö é ő é ó ő ő é ö é Ö ü é ó ö ü ö ö é é é ő í ő í ő ö é ő ú é ö é é é í é é í é é ü é é ö é ó í é

í ó ő í é ö ő é í ó é é ó é í é é í é í íí é é é í é ö é ő é ó ő ő é ö é Ö ü é ó ö ü ö ö é é é ő í ő í ő ö é ő ú é ö é é é í é é í é é ü é é ö é ó í é ű ű ö é ő ó í ö ő ü é ő é ü ő ö ő ö é é í ö ő ö ó ő é ó í ö ő ü é é é é é ő é é é é í ő ö é é ő ű ő ö í ö é é é Ö ű ú ő é é ű ő í ü ö é é ő ó ö ö ő é é é é é é é é é é ő ü í í é ú í í í Ú í é ú é ő ó ó

Részletesebben

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel? 1. Fogalmazza meg az R -beli háromszög-egyelőtleségeket!,y R (i) +y + y (ii) -y - y 2. Mit mod ki a Beroulli-egyelőtleség? (i) (1+h) 1+ h ( h>-1) ( N*) (ii) (1+h) 1+2 h 1 ( N*) h 2 3. Hogya szól a számtai

Részletesebben

é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü

é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü é í ü é ö é é ő ü é é é ú é ó Í é é ő Í é ó ö í é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü é ö ő

Részletesebben

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Nevezetes középértékek megjeleése külöböző feldtokb Vrg József, Kecskemét Hrmic éves tári pályámo sokszor tpsztltm, hogy tehetséges tulók

Részletesebben

í í í í ó í ó ö ö í ű ü ó ó ü ú Á Á ó ó ó ó ó ó í ó ö ö ü Ó ö ü í ö ó ö í í ö í ó ó í ö í ú ó ú í ö ú ö ö ö í ó ó ó ú ó ü ó ö í ó ó í í í Á í ó ó ó

í í í í ó í ó ö ö í ű ü ó ó ü ú Á Á ó ó ó ó ó ó í ó ö ö ü Ó ö ü í ö ó ö í í ö í ó ó í ö í ú ó ú í ö ú ö ö ö í ó ó ó ú ó ü ó ö í ó ó í í í Á í ó ó ó Í ö í ú ú ó ú Ö ü Ú ú Ö ü ó ü ó ö ö ó ó ö í ó í ó í Í ó í ö ö ö ó í ü ó ö ü ü ú ó ó ó ó ó ó í ó ó ó í ú ó ó ó ó ó í ü í í í í ó í ó ö ö í ű ü ó ó ü ú Á Á ó ó ó ó ó ó í ó ö ö ü Ó ö ü í ö ó ö í í ö í ó ó

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

1. Hibaszámítás Hibaforrások A gépi számok

1. Hibaszámítás Hibaforrások A gépi számok Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi

Részletesebben

ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö ü ú ö ú ö ű ú ú ü ö ó ö ö

ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö ü ú ö ú ö ű ú ú ü ö ó ö ö ö ö Ő Ö ü ö Ö ü ü ü ó ö ö ö ü ö ú ü ü ö ö ú ú ö ú ó ú ó ü ú ú ú ú ó ú ö ú Á ö ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö

Részletesebben

Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö

Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö ö ú ö ö ú ö ú Ü ő ú ő ö ő ő ő ö ö Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö Ú ő ö ő ő ő ö ú ú ú ő ö ő ö ő ő ő ö ö ö ö ő ő ö ő ú ő ö ú ö

Részletesebben

ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó

ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó ö Ö ó ü Ú ú ű ó ú ü ö Ö ü ó ü ü ó ó ö ö ó ó ö Ú ö í ó ö ö ö í í ú ü ó ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó ó ó Ó Ú ö ú ó í í ú ó ö ü ü Ö ó ü ü í Ö Ö ú

Részletesebben

ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó

ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó ü ö ö Ö ü ü ö ö Ö ö ó ö ú ó ü ö ö ö Ö í ó ü í í ü ö í í ó ó ü ö ü ö ö ü í ó ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó ö ö Ö ü í ö Ö ö ö ó ü í ö ó ó ü ö ó í ü ü ü ö ö ü í ü

Részletesebben

ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü

ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü ú Ö Ú ú ú ó Ő Ö ü Ú ú ö Ö Í ó í ü ü ó ó ó Í ö ö ö ö í ü ó ö ü ü ú í ű ö ó ó ö ö ö ű ö ó ó ö ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü ü ö ö ó ó Í ü ö ó ú ü ü ö ó ö ö Í í ó ó

Részletesebben

é ú é é é é é é é é é é é é ú é ö é é é ö Ő é é é ú é é é é é é é é ö é é é ö é Ö é é ö é ö é é é ű é ö ö é ö é é ö ö é é ö ö é ö é Ö é ú é é é é é é

é ú é é é é é é é é é é é é ú é ö é é é ö Ő é é é ú é é é é é é é é ö é é é ö é Ö é é ö é ö é é é ű é ö ö é ö é é ö ö é é ö ö é ö é Ö é ú é é é é é é é ű ö Ö é é ö ú é é é é ö ö é ö é é é ö ö é é é ö ö é ű é é ö é é é é é é é é é é ö é ö é é é ű ö ű ö é é é Ö Ú Í é ö é é Ő ö ö ú é é é é é é é é é é ű é é é ú é é é ű ú é é é é é ö é ö é ö é é ö é é é

Részletesebben

ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó

ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó ü ű ú ü ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó ü í í í í ó ü ó Ö ó ü Ö í ó ű ó ó ó Ö Ö ó ó í í Ö Ö ó ó í Ö ó ű í í ü

Részletesebben

ű í ú ü ü ü ü ü Ó í ü í í í É Á

ű í ú ü ü ü ü ü Ó í ü í í í É Á ü ű ü ú ű í ú í ű í ú ú ú ú ű í ú ü ü ü ü ü Ó í ü í í í É Á ű í í í Á ü É í í Ö Ö Á í Á É Á ú ú ú í ű í ú ű í í í É í í É í ű í ü í ú ű í ű í É í Ú í í í ű í ú ű í í í ü í í ú í ú í Ö ű í í í ü ü Ő í í

Részletesebben

É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő

É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő ő Ü É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő ő ő ú ő ő ő ú ő ü ú ű ő ű É Í ő É Ü Í ő ü ő ő ő ő ő ő ú ü ű ő ú ő ű ő ő ő ű ő ű ő É Í Ú Ö Á Á É Á Á Á Ő Á É Á Ö Á Ö É É É ü ő Á ő ú ü ő

Részletesebben

ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü

ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü Á Ó ö ü ü ü ú ú ü ü ö ü Ő ö ö ö ü ú ü Á ö ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü ö ö ü ü ö ü ö Ó ö ö ü ü ö ü ö ú ö ú ü ö ü É É Á ü ű Ö ű ú ö ö ú ö ú ö ú ö ű ü Ö ö ű ü ú ö ü ú ű ö ű ú

Részletesebben

ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü

ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü ű ü ü ú ü ú ú ű ü ú ú ü ü Ó Ö Í ü ú ú ű Ö ú ú ú ü ü ú ÍÍ ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü ü Ü ü ü ú ü ű ü ü ü Ü ú ú ü ü ü ü Í ü ü ú ű ü ü ü ü ü ü Í Í ü

Részletesebben

Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú

Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú ű É Í Á Á Á Ó É Á Á Ó Í Ö Á Á Á Ö ü Í Ó Í ű ű ü ú Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú ü Í ú Ü Ű Ó Ó Í ú Í ú Ö Ó ü Ü ü ű Ó ú Í ü É Í Í Á Á Ó Í Á ú Ö Í Ó ú ú ú Í ú ú ű ú Ü ü ü Í Á ü ú Í ú

Részletesebben

í ö Á ö ö ö Á í ö ű ü í í ű ö ú ü íí ö ű ö ü ú ü ö í ü ű í ö ö ü ü í ö ü ö ű ö í ű ü í ö í í ü í Á Á í í ü ö ö ü ű í í ö ö ü í ű ü ö í ö ű ü í í ű ö í í í ö ö í ö ö ö ö ö ö í í ű Á Á Á Á Á í í ú í ö ö

Részletesebben

ü ö ö ő ü ó ó ú ó

ü ö ö ő ü ó ó ú ó ö ö ő ü ü ü ő ö ü ö ö ő ü ó ó ú ó Ő Ö ü ö Ö ó ü ü ü ö ö Ö ó ó ü ö ó ő ü ó ü ő ó ő ó ü ö ö ö í í ó ő ú ü ö ö ó ü ö ő í ő ő í ő ü ó ő ü ű ö ú ó ú í ü ó ü ö ó ó ü ö Ö ó ő í ó ő ü ö ü ő ö ö ö ö Ö Ó ő ü ü ó

Részletesebben

í ó í ó ó ó í í ü ú í ú ó ó ü ü í ó ü ú ó ü í í ü ü ü ó í ü í ü ü í ü ü í ó ó ó í ó í ü ó í Á

í ó í ó ó ó í í ü ú í ú ó ó ü ü í ó ü ú ó ü í í ü ü ü ó í ü í ü ü í ü ü í ó ó ó í ó í ü ó í Á Ö ü ó Ö ü ó ó ó ó ó ó ó ó ó ó í ü í í ü ü ü ü ó ü ü ú ó ü ü ü í ó í ü ü í ó í ó í ó ó ó ó í ó ó ó í í ó ü ú É Ö í í í ú ó í ü í ó í ó ó ó í í ü ú í ú ó ó ü ü í ó ü ú ó ü í í ü ü ü ó í ü í ü ü í ü ü í ó

Részletesebben

ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó

ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó ö ú Á ő ű ü ő ó ö ö ú ö ú ü ó ó ű ö ú ó ó ó ő ö ö ő ú ó ö ö ő ő ő ő ö ű ü ü ü ő ü ü ő ő ü ó ő ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó ó ü ű

Részletesebben

Ö ő ü Ö Ö Ő ü ő Ö Ö ü ű Á Í Ö ű ü ő ő ő Ö ü ü ő ő ő Ü ü ő ő ő ü ő ő ü ü

Ö ő ü Ö Ö Ő ü ő Ö Ö ü ű Á Í Ö ű ü ő ő ő Ö ü ü ő ő ő Ü ü ő ő ő ü ő ő ü ü Ö ő ü Ö ő ü Ö Ö Ő ü ő Ö Ö ü ű Á Í Ö ű ü ő ő ő Ö ü ü ő ő ő Ü ü ő ő ő ü ő ő ü ü ü ő ő ő ú ű ő ő ú Ö ő ü ő ő Ö ő ü ő ő ő ő ő ő ü ü ő ő Ö ő Í Ö Ö Ö ü Ü Ö ő ő Ö ü Ö Ö ü Ö Ö ü Ö Ü Ö ü ü ü ő ű Ö ő Ö ü ü ü ő Ű

Részletesebben

ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő

ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő ő ő ő ü ő ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő ő ü ő ő ű ü ő ű ő ő ő ő ü ő ő ő ü ő ű ő ő ő ü ő ü ő ő ü ű ő ő ü ü Á ő Á ű ű ü Á ő ű ű ő ű ű ü ű ő ő ő ü ő ű Ó ü Í Á ő ű ő ő ő ő ü

Részletesebben

ó ú ú ü ú ő ó ő ő ó ó ó ö ó ü ő ó ő ö ü ü ó ö ő É ó ö ö ö ó ó ö ü ü ö ü ó ó ő ó ü ó ü ü ö ö É ú ó ó ö ú ö ü ü ó ó ó ü Á ö ö ü ó ö ó ö ö ö ö ó ó ö ó ó

ó ú ú ü ú ő ó ő ő ó ó ó ö ó ü ő ó ő ö ü ü ó ö ő É ó ö ö ö ó ó ö ü ü ö ü ó ó ő ó ü ó ü ü ö ö É ú ó ó ö ú ö ü ü ó ó ó ü Á ö ö ü ó ö ó ö ö ö ö ó ó ö ó ó Ü Ű Ö É Á Á ö É É Ö Ú Ü ö ü ő ő ö ő Á ő ó ő ü ü ö ö ú É ű ó ü ű ö ú ü ö ó ö ö ü ű ö ó ó ö ö ö ö ü ű ö ő ö ö ó ö ö ő ó ő ü ő ó ő ö ö ő ü ü ö ő ó ú ú ü ú ő ó ő ő ó ó ó ö ó ü ő ó ő ö ü ü ó ö ő É ó ö ö ö ó

Részletesebben

ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü

ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü ü ü ü ú ú ü ű ü ű ü ü ű ü ü ü Í ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü ú ü ü Á ű ü ü ü ü ü ü ü ú ü ü Í ú ü É Ö Ö ú Ö Ö Ö ú ú ü ú Á Ö Á ú É ü ú ú É ú ú ú Ü ü ű ú ű É ú ű ü ü Á ú É ü ű ü ú Á É É ú ü Ö Ö Ö ú ú Á Ö

Részletesebben

Í ö ö ű ú ö ö Í ö ü ö ü

Í ö ö ű ú ö ö Í ö ü ö ü Í Í ö ú ö ö ö ö ű ö ö ö ö Í ű ű ö ü ú ö ú ú ű Í ö ö ű ú ö ö Í ö ü ö ü ö ú ü ü ö ú ö ű ö Í ű ú ú ö ú ú ű Á É Á ö ű ú Í ö ö ü Í ú ö ú ö ö Í ű ö Í ú ö ö ö Í ö ö ö ö ö Í ö ö ö Í ö ö ö ö Í ű ö Í ú ö Í ö ö ű

Részletesebben

ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö

ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö Í Á Ö Ú Á Á Ó Á ö ú ú ö ú ú ö ü ü ű ü ű ö ö ü ű ö ü ö ú ö ü ú ö ö ü ü ö ü ű ö ö ü ű ö ö ú ö ö ú ú ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö ü ö ü ö ö ü ö ö ú ö ü ű ö ü

Részletesebben

ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü

ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü ő É ő ő ő ő É Ü Ö Ö Ö Í Ö Ö Ö ő Ó Ó Ö Ö Á É É É ő Á É Á Á Ú Á Ú Ö Ö Á Ú Ö Á ű Á ú ő ő ü ü Ó ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü ő ő ő ő Á ü ú ú

Részletesebben

ű ú ó ó ü í Á Á ú ó ó ó ó ó ó ó ó ó ó ó ó ó ó í ó ü É ű ü ó í ü í í í í í ó í ü í í ó ó Á

ű ú ó ó ü í Á Á ú ó ó ó ó ó ó ó ó ó ó ó ó ó ó í ó ü É ű ü ó í ü í í í í í ó í ü í í ó ó Á ü ű ú í í ü í ű ú ó ó ü í Á Á ú ó ó ó ó ó ó ó ó ó ó ó ó ó ó í ó ü É ű ü ó í ü í í í í í ó í ü í í ó ó Á ó ű ó í Á í ó ü í ó ó í ü ü ű ó í ü í í ü í í í ó í ó í ü ó Ó í ó ó ó í í í ü Í ó ó í í í í ó í í

Részletesebben

É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű

É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű ő ő ű ú Á ő ű ő ő ő ő Ö Ö Í Á É Á ő Ö Ö Í ő ő ő ő É ő ő ú ú ú ő Á Ö É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű ő ű ő ú Á ő ű ő ő ő ő ő ő Ö ő ú ú Ö ő ő ű ú Á ő ú Ó ű Ó ú ú ú ő ő ú ú ő ő ú ő Ú ú

Részletesebben