Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha



Hasonló dokumentumok
2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

Gyakorló feladatok II.

1. gyakorlat - Végtelen sorok

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

1. feladatlap megoldása. Analízis II. 1. Vizsgálja meg az alábbi sorokat konvergencia szempontjából! a) n 2 n = 1 1X 1

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Analízis I. gyakorlat

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

2. fejezet. Számsorozatok, számsorok

Matematika I. 9. előadás

Kalkulus I. Első zárthelyi dolgozat szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l n 6n + 8

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Kalkulus II., második házi feladat

Végtelen sorok konvergencia kritériumai

Eötvös Loránd Tudományegyetem Természettudományi Kar

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

Nevezetes sorozat-határértékek

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Bevezető analízis II. példatár

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

2. gyakorlat - Hatványsorok és Taylor-sorok

SOROK Feladatok és megoldások 1. Numerikus sorok

Végtelen sorok. (szerkesztés alatt) Dr. Toledo Rodolfo március Mértani és teleszkopikus sorok 8

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

VII. A határozatlan esetek kiküszöbölése

Sorok és hatványsorok vizsgálata Abel nyomán

I. rész. Valós számok

2.1. A sorozat fogalma, megadása és ábrázolása

Sorozatok. [a sorozat szigorúan monoton nő] (b) a n = n+3. [a sorozat szigorúan monoton csökken] (c) B a n = n+7

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

Feladatok valós számsorozatokkal és sorokkal. 1.Feladatok valós számsorozatokkal

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

Innen. 2. Az. s n = 1 + q + q q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

A1 Analízis minimumkérdések szóbelire 2014

6. Számsorozat fogalma és tulajdonságai

FELADATOK A KALKULUS C. TÁRGYHOZ

Meghökkentő és hihetetlen barangolás a matematikai végtelen birodalmában (Végtelen sorokról) július 6.

Analízis feladatgy jtemény II.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Statisztika 1. zárthelyi dolgozat március 21.

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

Metrikus terek. továbbra is.

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

I. FEJEZET: ANALÍZIS... 3

Függvények határértéke 69. III. Függvények határértéke

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

Taylor-sorok alkalmazása numerikus sorok vizsgálatára

Függvényhatárérték-számítás

Draft version. Use at your own risk!

1. Gyökvonás komplex számból

VÉGTELEN SOROK, HATVÁNYSOROK

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

KOVÁCS BÉLA, MATEMATIKA II.

Diszkrét matematika II., 3. előadás. Komplex számok

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

18. Differenciálszámítás

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

Andai Attila: november 13.

Divergens sorok. Szakdolgozat

BSc Analízis I. előadásjegyzet

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

Egy lehetséges tételsor megoldásokkal

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007

DISZTRIBÚCIÓK. {x R N φ(x) 0}

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

Kalkulus gyakorlat - Megoldásvázlatok

Analízis I. Vizsgatételsor

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Matematika B4 I. gyakorlat

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

10.M ALGEBRA < <

Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.

Matematika A2 tételek

Átírás:

. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =, a mértai sor összegképlete szerit. H agy, akkor már elhayagolhatóa kicsi, ezért s =, emiatt természetes azt modai, hogy A továbbiakba 4 =. a a... alakú ú. végtele sorokat vizsgáluk, ahol -ek valós számok. Ezt a végtele mértai sort a következőképpe jelöljük:.. defiíció (Végtele sor kovergeciája). A végtele sor -edik részletösszege: s = a a. Ha a részletösszegek sorozata az L számhoz kovergál, s = L, akkor azt modjuk, hogy a végtele sor koverges és összege L. Egyébkét a végtele sort divergesek modjuk. Példa:. Mutassa meg, hogy az 3 3 4 ( )... végtele sor koverges és összege. Megoldás: Legye s = 3 3 4 ( ) Mivel k(k) = k k, ezért s = ( ) ( 3 ) ( 3 4 =. ) ( ) Ie. Az s = = q q q... q < eseté koverges, egyébkét diverges, mert s = q q q = q q, ha q és q 0 akkor és csak akkor, ha q <. Megjegyzés: A kovergecia difiíciójából látszik, hogy a végtele sor kovergeciájá em változtat az, ha véges számú tagot hozzáaduk vagy ha elveszük.. tétel (Műveletek sorokkal). Ha és b koverges sorok, továbbá = A és b = B, akkor. ( b ) = A B. ( b ) = A B 3. k = ka, ahol k tetszőleges valós szám. Bizoyítás: Csak.-et bizoyítjuk. A ( b ) - edik részletösszege: s = (a b ) (a b ) ( b ) = (a a ) (b b b ) = A B. Mivel A A és B B, ezért s A B. Példa: Határozza meg a Megoldás: = 3 6 = = = 3 6 sorozat összegét! 6 3 6 = = 3 6 3 = 3, 6 a mértai sor összegképlete alapjá.. Kovergeciakritériumok A végtele sorral kapcsolatba két kérdés fogalmazható meg:. Koverges-e a végtele sor?. Ha a végtele sor koverges, akkor mi az összege? Az alábbi tétel egy szükséges feltételt ad a végtele sor kovergeciájára:

. tétel. Ha a végtele sor koverges, akkor Bizoyítás: Nyilvá = 0. = (a a ) (a a ) = s s Mivel a végtele sor koverges, ezért s = s = L valamely valós L szám eseté. Így = s s = s s = L L = 0 Következméy: Ha a em létezik vagy em véges, akkor a végtele sor diverges. Példák:. végtele sor diverges, mert =. = ( ) végtele sor diverges, mert em létezik a = ( ). Ha a végtele sor eseté = 0, akkor lehet, hogy a végtele sor koverges, de lehet, hogy diverges. Példák:. A = végtele sor koverges és = 0.. A = végtele sor diverges, mert s = ( 3 ) ( 4 5 6 7 )... 8 ( ) 4 4 8 =, ezért a részletösszegek sorozata a -hez tart. A sorozatokál taultuk, hogy egy mooto övő sorozat potosa akkor koverges, ha korlátos. Eek a tételek a következméye az alábbi: 3. tétel. Legye 0 mide pozitív egész eseté. a végtele sor potosa akkor koverges, ha az s részletösszegek sorozata korlátos. A következő kritérium azt mutatja, hogy gyakra a végtele sort egy alkalmas improprius itegrállal összehasolítva megválaszolhatjuk a kovergecia kérdését. 4. tétel (Itegrákritérium). Legye csupa pozitív tagból álló sorozat. Tegyük fel, hogy va olya pozitív egész N és az [N, ) félegyeese csökkeő f(x) függvéy, amelyre = f() mide N eseté. a végtele sor és az improprius itegrál vagy egyszerre N koverges vagy diverges. Bizoyítás: A bizoyításba az N = esetre szorítkozuk (az általáos eset bizoyítása hasolóa k törtéik). Mivel f(x) csökkeő, ezért a k k k, ha k. Ezért egyrészt a a másrészt a 3 k a a a 3 3 a s a = = Ebből látszik, hogy ha az koverges, ami most azt jeleti, hogy felülről korlátos, akkor s is felülről korlátos lesz, tehát koverges. Másrészt, ha diverges, akkor em lesz alulról korlátos, ezért s sem, tehát is diverges.

Példa: A = p ha p, mivel f(x) = x p ha x ; f() = p koverges, ha p > és diverges, függvéy mooto csökkeő és az x dx improprius itegrál a p p-szabály alapjá koverges, ha p > és diverges, ha 0 < p. 5. tétel (Összehasolító kritérium). Legye olya végtele mértai sor, ahol 0.. Ha va olya koverges c sor és N pozitív egész, hogy mide > N eseté c, akkor végtele sor is koverges. (Majorás kritérium). Ha va csupemegatív tagból álló diverges d végtele sor és N pozitív egész szám, hogy mide > N eseté d, akkor sor diverges. (Miorás kritérium) Bizoyítás:. Az s = a, ( N) részletösszegre felső korlát a a a a N =N koverges végtele sor.. A végtele sorak ics felső korlátja, mert ha lee, akkor a d d d N =N felső korlátja lee d részletösszegeiek, tehát d is koverges lee, ami elletmodás. Példa. A sor koverges, mert 0 < és. a = = végtele sor koverges. végtele mértai sor diverges, mert = és a végtele sor diverges. = 6. tétel (Limeszes összehasolító kritériumok). Tegyük fel, hogy valamely pozitív egész N-re igaz, hogy > 0 és b > 0, h > N.. ha = c > 0, akkor és b egyszerre b kovergesek vagy egyszerre divergesek. c. ha b koverges. 3. ha b diverges. = 0 és b koverges, akkor is = és b diverges, akkor is Bizoyítás. Csak.-et bizoyítjuk. A feltétel miatt létezik egy M egész, hogy > M eseté b c < c, c < c < c b, c < b < 3c, c b < < 3c b. Ha b koverges, akkor 3c b is az, ezért az összehasolító kritérium alapjá sor is az. Ha b sor diverges, akkor c b is az, emiatt az összehasolító kritérium alapjá is diverges. Példák. A l = és. A = koverges. 3 = 3 sor koverges, mert = és a l = végtele sor diverges, mert = végtele sor diverges. 7. tétel (Háyadoskritérium). Legye csupa pozitív tagból álló végtele sor. Tegyük fel, hogy = ρ.. ha ρ <, akkor kovergese;. ha ρ >, akkor diverges; 3. ha ρ =, akkor a kritérium em alkalmazható. Bizoyítás.. Tegyük fel, hogy ρ <. létezik r, amelyre ρ < r < és N pozitív egész, hogy a < r, ha N. a N a N < r a N < ra N 3

a N a N < r a N < ra N < r a N és általába a Nm < r m a N. s felülről becsülhető a a a a N a N ra N r a N = a a a N a N ( r r... ) koverges sorral, így is koverges.. Ha ρ >, akkor létezik N, hogy N eseté 3. A ezért >, a N < a N < a N <... ezért a sorozat tagjai em tartaak a 0-hoz, így a a végtele sor diverges. és = = sorokra teljesül, hogy ρ = = és az első egy diverges, a második pedig egy koverges sor. Példák. A. A = = ()!, ezért = végtele sor koverges, mert = és ()! = = 0 <. végtele sor diverges, mert = = () és így () = >. 8. tétel (Gyökkritérium). Legye csupa pozitív tagból álló végtele sor. Tegyük fel, hogy a = ρ.. ha ρ <, akkor kovergese;. ha ρ >, akkor diverges; 3. ha ρ =, akkor a kritérium em alkalmazható. és Bizoyítás:. Ha a = ρ <, akkor egy rögzített ρ < r < eseté létezik N, hogy < r, < r, h N, alkalmas pozitív egész N eseté. Meg kell mutatuk, hogy s, ( N) felülről korlátos. Nyilvá:. Ha s = a a N a N a N < a a N r N r N r a a N r N r N a a N rn r. a = ρ >, akkor létezik N, hogy >, h N, ezért >, h N és így 0, ezért a végtele sor diverges. Példa: A végtele sor koverges, mert = = <. A következő tételbe ú. alteráló sorokkal foglalkozuk. Legyeek > 0. az a a a 3 a 4 váltakozó előjelű végtele sort alteráló sorak modjuk. 9. tétel (Leibiz-kritérium). A feti alteráló sor koverges, ha mooto csökkeő és = 0. Bizoyítás. A m-edik részletösszeg: s m = (a a ) (a 3 a 4 ) (a m a m ). s (m) = s m (a m a m ), ahol a mooto csökkeés miatt (a m a m ) 0. Igy az s m sorozat mooto övő. Másrészt s m = a (a a 3 ) (a 4 a 5 ) (a m a m ) a m a, megit csak a mooto csökkeés miatt. Mivel s m mooto ő és felülről korlátos, emiatt létezik a s m. De m s m = (s m a m) = m m s m a m = s m, m m m 4

ezért létezik a véges s. Példa: A ( ) = 3 4 = alteráló sor koverges, mert = mooto csökkeve tart a 0-hoz.. defiíció. A végtele sor abszolút koverges, ha koverges. Példa A = ( ) = 4 9 6... végtele sor a Leibiz kritérium szerit koverges, és a tagok abszolút értékét véve a = = 4 9 6... is koverges sor lesz az itegrál kritérium szerit, tehát az eredeti sor abszolút koverges. 3. defiíció. A koverges végtele sor feltételese koverges, ha diverges. Példa A = ( ) = 3 4... sor a Leibiz-kritérium szerit koverges, de a tagok abszolút értékét véve a = 3 4... = ú. harmoikus sor már diverges lesz az itegrálkritérium alapjá. 0. tétel. Ha a végtele sor abszolút koverges, akkor koverges is Bizoyítás. Legye c =. 0 c Mivel koverges, emiatt is koverges és így az összehasolító kritérium alapjá c is koverges végtele sor. De = ( ) = c és mivel két koverges végtele sor külöbsége is koverges, emiatt is koverges. 5