Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II."

Átírás

1 Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel: a 2 = a 1 q. Megjegyzés: A mértani sorozat bármelyik elemének (a másodiktól kezdve) és az azt megelőző tagjának hányadosa állandó. Ezt az állandó hányadost a sorozat kvóciensének (hányadosának) nevezzük. Jele: q. TÉTEL: (Képzési szabály) Ha egy mértani sorozat első tagja a 1, kvóciense q, akkor n edik tagja megkapható a következő összefüggés segítségével: a n = a 1 q n 1. TÉTEL: A különböző tagokból álló (a n ) mértani sorozat első n elemének összege: S n = a 1 qn 1 q 1. Megjegyzés: Amennyiben q = 1, akkor a sorozat első n tagjának összege: S n = n a 1. TÉTEL: A mértani sorozat bármely elemének négyzete (a másodiktól kezdve) egyenlő a tőle szimmetrikusan elhelyezkedő elemek szorzatával. Jelölés: a n 2 = a n k a n+k. Megjegyzés: Bármely elem abszolút értéke (a másodiktól kezdve) egyenlő a tőle szimmetrikusan elhelyezkedő elemek mértani közepével. Jelölés: a n = a n k a n+k. 1

2 Kamatos - kamat számítása: Ha T n nel jelöljük az n edik év (vagy más időszak) végén felvehető összeget, T 0 lal az induló tőkét (a kezdetkor betett összeget), p vel a százaléklábat (évente ennyi százalékkal növekszik a betett összeg), n nel az évek (vagy más időszakok) számát, akkor a betett összeg növekedése a következő képlettel írható le: T n = T 0 (1 + p 100 )n. Az értékcsökkenés a következő képlettel írható le: T n = T 0 (1 p 100 )n. Gyűjtőjáradék számítása: Ha minden év elején ugyanakkora T 0 értéket teszünk be a bankba, s ez évente p százalékkal kamatozik, akkor az n edik év végén felvehető összeg a következő képlettel írható le: T n = T 0 (1 + p ) ( p 100 )n 1 p 100. Törlesztőrészlet számítása: Ha egy T 0 nagyságú, p százalékos kamatozású kölcsönt kell visszafizetnünk n év alatt úgy, hogy minden évben ugyanakkora T n összeget fizetünk vissza, akkor a T n törlesztő részlet nagysága a következő képlettel írható le: T n = T 0 p ( )n p 100 (1 + p 100 )n 1. Nevezetes összegek: Az első n pozitív természetes szám összege: n = n (n+1) Az első n pozitív természetes szám négyzetének összege: n 2 = 2 n (n+1) (2n+1) 6 Az első n pozitív természetes szám köbének összege: n 3 = n2 (n+1) 2 4 2

3 1. Egy mértani sorozat harmadik eleme 4, hetedik eleme 64. Számítsd ki a sorozat második tagját! Először számítsuk ki a sorozat hányadosát. a 7 = a 3 q 4 64 = 4q 4 q 1 = 2 és q 2 = 2 A feladatnak két sorozat is megoldása, így mindkettőnek ki kell számolnunk a hiányzó adatát: q = 2 esetén: a 3 = a 2 q 4 = 2a 2 a 2 = 2 q = 2 esetén: a 3 = a 2 q 4 = ( 2) a 2 a 2 = 2 2. Egy mértani sorozat első tagja 7, kvóciense 2. Írd fel a sorozat általános (n - edik) tagját! Mennyi a sorozat első 5 tagjának összege? Tagja - e a sorozatnak a 448? Írjuk fel a sorozat általános (n - edik) tagját: a n = a 1 q n 1 a n = 7 2 n 1 Írjuk fel a sorozat első 5 tagjának összegét: S n = a 1 qn 1 q 1 S 5 = = 217 Amennyiben tagja a sorozatnak a 448, akkor legyen a n = 448, s számoljuk ki az n értékét. 7 2 n 1 = n 1 = 64 A kitevőből az ismeretlent logaritmus bevezetésével tüntethetjük el. lg 2 n 1 = lg 64 (n 1) lg 2 = lg 64 n 1 = lg 64 lg 2 Az egyenletet megoldva azt kapjuk, hogy n = 7. Ezek alapján a sorozat hetedik tagja a

4 3. Egy mértani sorozat negyedik és második tagjának különbsége 18. Az ötödik és harmadik tag különbsége 36. Mennyi a sorozat első tagja és hányadosa? Az adatokat a 1 és q segítségével felírva a következő egyenletrendszert kapjuk: a 4 a 2 = 18 a 5 a 3 = 36 } a 1 q 3 a 1 q = 18 a 1 q 4 a 1 q 2 = 36 } a 1 q (q 2 1) = 18 a 1 q 2 (q 2 1) = 36 } A második egyenletet elosztva az első egyenlettel a következő adódik: q = 2. Ezt helyettesítsük vissza az első egyenletbe, s rendezés után azt kapjuk, hogy a 1 = Egy mértani sorozat második eleme 6, ötödik eleme 162. Mennyi olyan tagja van a sorozatnak, amely legalább kétjegyű, legfeljebb háromjegyű? Először számoljuk ki a sorozat első elemét és hányadosát. a 5 = a 2 q = 6q 3 q = 3 a 2 = a 1 q 6 = 3a 1 a 1 = 2 A legkisebb kétjegyű szám a 10, a legnagyobb háromjegyű szám a 999, és tudjuk, hogy a kérdésnek megfelelő tagok ezen két szám közé esnek. A keresett elemeket az általános tag képletével számíthatjuk ki, így felírható a következő: 10 a n n n 1 498,5 A kitevőből az ismeretlent logaritmus bevezetésével tüntethetjük el. lg 15 lg 3 n lg 1498,5 lg 15 n lg 3 lg 1498,5 lg 15 lg 3 n lg 1498,5 lg 3 Ebből az n edik tagra azt kapjuk, hogy 2,5 n 6,65. Mivel n csak egész szám lehet így a következő egyenlőtlenség adódik: 3 n 6. Ezek alapján 4 olyan tagja van a sorozatnak, amely legalább kétjegyű, legfeljebb háromjegyű. 4

5 5. Egy növekvő mértani sorozat első három tagjának összege 31. Az első és harmadik tag összege 26. Mennyi a sorozat első tagja és kvóciense? Az adatokat felírva a következő egyenletrendszert kapjuk: a 1 + a 3 = 26 a 1 + a 2 + a 3 = 31 } a 1 + a 1 q 2 = 26 a 1 + a 1 q + a 1 q 2 = 31 } A második egyenletből az elsőt kivonva, rendezés után a következő adódik: a 1 = 5 q. Ezt helyettesítsük vissza az első egyenletbe, s azt kapjuk, hogy 5 + 5q = 26. q Ebből a következő másodfokú egyenlet adódik: 5q 2 26q + 5 = 0. A megoldó képlet segítségével azt kapjuk, hogy az egyenlet megoldásai q 1 = 5 és q 2 = 1 5. Mivel a sorozat növekvő, ezért a q 2 nem felel meg a feladatnak. A q 1 = 5 visszahelyettesítése után a következő adódik: a 1 = 5 5 = Egy mértani sorozat első három tagjának összege 112, a következő három tagjának összege 14. Mennyi a sorozat első tagja és hányadosa? Az adatokat felírva a következő egyenletrendszert kapjuk: a 1 + a 1 q + a 1 q 2 = 112 a 1 q 3 + a 1 q 4 + a 1 q 5 = 14 } a 1 (1 + q + q 2 ) = 112 a 1 q 3 (1 + q + q 2 ) = 14 } A második egyenletet elosztva az első egyenlettel, rendezés után a következő adódik: q = 1 2. Ezt visszahelyettesítve az első egyenletbe, rendezés után azt kapjuk, hogy a 1 = 64. 5

6 7. Egy mértani sorozat harmadik tagja 36 tal nagyobb a másodiknál. E kéttag szorzata 243. Mennyi a sorozat első tagja? Legyen a 3 = a Írjuk fel a szöveg alapján a következő egyenletet: a 2 (a ) = 243. Ebből rendezés után a következő másodfokú egyenlet adódik: a a = 0. A megoldó képlet segítségével kapjuk, hogy az egyenlet megoldása a 21 = 9 és a 22 = 27. Ha a 2 = 9, akkor a 3 = 27 és q = 3. Ekkor a 1 = 3. Ha a 2 = 27, akkor a 3 = 9 és q = 1 3. Ekkor a 1 = Egy mértani sorozat ötödik és hetedik tagja is 12. Mennyi az első tíz tag összege? A szöveg alapján írjuk fel a következő egyenletet: 12 = ( 12) q 2. Ezt rendezve azt kapjuk, hogy az egyenlet megoldása q 1 = 1 és q 2 = 1. Ha q = 1, akkor a 1 = 12 és S 10 = 10 ( 12) = 120. Ha q = 1, akkor a 1 = 12 és S 10 = 12 ( 1) = Hány tagot kell összeadnunk az első tagtól kezdve az a n = 3 2 n sorozatból, hogy az összeg 1 milliónál nagyobb legyen? A szöveg alapján a következő adatokat tudjuk: a 1 = 6 és q = 2. Írjuk fel az első n tag összegét: 6 2n Az egyenlőtlenség megoldása: n 17,34. Ezek alapján legalább 18 tagot kell összeadni a feltétel teljesüléséhez. 6

7 10. Egy számtani sorozat második tagja 7, s e sorozat első, harmadik és nyolcadik tagja egy mértani sorozat három egymást követő tagja. Határozd meg a mértani sorozat hányadosát! A mértani sorozat tagjai: 7 d 7 + d 7 + 6d A mértani sorozat definíciója szerint a szomszédos tagok hányadosa megegyezik, vagyis felírhatjuk a következő törtes egyenletet: 7 + d = 7 + 6d. 7 d 7 + d Az egyenlet rendezése után a következő másodfokú egyenlet adódik: d 2 3d = 0. A megoldó képlet segítségével azt kapjuk, hogy az egyenlet megoldásai d 1 = 0 és d 2 = 3. Ezek alapján, ha d = 0, akkor a sorozat tagjai 7; 7; 7, vagyis q = 1. Ha pedig d = 3, akkor a sorozat tagjai 4; 10; 25, vagyis q = Egy számtani sorozat első négy tagjához rendre 5 öt, 6 ot, 9 et és 15 öt adva egy mértani sorozat egymást követő tagjait kapjuk. Határozd meg a mértani sorozat hányadosát! A számtani sorozat tagjai: a 2 d a 2 a 2 + d a 2 + 2d A mértani sorozat tagjai: a 2 d + 5 a a 2 + d + 9 a 2 + 2d + 15 A mértani sorozat alapján felírhatjuk a következő egyenletrendszert: a = a 2 + d + 9 a 2 d + 5 a a 2 + d + 9 a = a 2 + 2d + 15 a 2 + d + 9 } Az egyenletrendszert rendezve azt kapjuk, hogy a 2 = 2d. Ezt visszahelyettesítve adódik, hogy d 1 = 3 és d 2 = 3. Ha d = 3, akkor a 2 = 6 és a sorozat tagjai: 8; 12; 18; 27. Ezek alapján q = 3 2. Ha d = 3, akkor a 2 = 6 és a sorozat tagjai: 2; 0; 0; 3. Ez nem mértani sorozat. 7

8 12. Egy növekvő számtani sorozat első három elemének összege 54. Ha az első elemet változatlanul hagyjuk, a másodikat 9 - cel, a harmadikat 6 - tal csökkentjük, akkor egy mértani sorozat három egymást követő elemét kapjuk. Határozd meg a számtani sorozat és a mértani sorozat tagjait! A számtani sorozat tagjai: a 2 d a 2 a 2 + d A mértani sorozat tagjai: a 2 d a 2 9 a 2 + d 6 A számtani sorozat tagjait összeadva a következő adódik: a 2 = 18. Ezt helyettesítsük vissza a mértani sorozat tagjaiba: 18 d d A mértani sorozat definíciója szerint a szomszédos tagok hányadosa megegyezik, vagyis felírhatjuk a következő törtes egyenletet: 9 18 d 12 + d =. 9 Az egyenlet rendezése után a következő másodfokú egyenlet adódik: d 2 6d 135 = 0. A megoldó képlet segítségével azt kapjuk, hogy az egyenlet megoldásai d 1 = 15 és d 2 = 9. Mivel növekvő számtani sorozatról van szó, így a d 2 nem felel meg a feladatnak. Ezek alapján, ha d = 15, akkor a számtani sorozat tagjai 3, 18, 33; a mértanié pedig 3, 9, Egy számtani sorozat első öt tagjának összege 20. A második, a harmadik és az ötödik tag ebben a sorrendben egy mértani sorozat három egymást követő tagja. Határozd meg a számtani sorozat és a mértani sorozat tagjait! A számtani sorozat tagjai: a 3 2d a 3 d a 3 a 3 + d a 3 + 2d A mértani sorozat tagjai: a 3 d a 3 a 3 + 2d A számtani sorozat tagjait összeadva a következő adódik: a 3 = 4. 8

9 Ezt helyettesítsük vissza a mértani sorozat tagjaiba: 4 d d A mértani sorozat definíciója szerint a szomszédos tagok hányadosa megegyezik, vagyis felírhatjuk a következő törtes egyenletet: 4 = 4 + 2d 4 d 4. Az egyenlet rendezése után a következő hiányos másodfokú egyenlet adódik: 2d 2 4d = 0. Az egyenlet bal oldalát alakítsuk szorzattá a következőképpen: 2d (d 2) = 0. Ebből következik, hogy az egyenlet megoldásai d 1 = 0 és d 2 = 2. Ezek alapján, ha d = 2, akkor a számtani sorozat tagjai 0, 2, 4, 6, 8; a mértanié pedig 2, 4, 8. Amennyiben d = 0, akkor a számtani sorozat tagjai 4, 4, 4, 4, 4; a mértanié pedig 4, 4, Egy mértani sorozat első három tagjának összege 35. Ha a harmadik számot 5 - tel csökkentjük, egy számtani sorozat három egymást követő tagját kapjuk. Határozd meg a számtani sorozat és a mértani sorozat tagjait! A számtani sorozat tagjai: a 2 d a 2 a 2 + d A mértani sorozat tagjai: a 2 d a 2 a 2 + d + 5 A számtani sorozat tagjait összeadva a következő adódik: a 2 = 10. Ezt helyettesítsük vissza a mértani sorozat tagjaiba: 10 d d A mértani sorozat definíciója szerint a szomszédos tagok hányadosa megegyezik, vagyis felírhatjuk a következő törtes egyenletet: d = 15 + d 10. Az egyenlet rendezése után a következő másodfokú egyenlet adódik: d 2 + 5d 50 = 0. 9

10 A megoldó képlet segítségével azt kapjuk, hogy az egyenlet megoldásai d 1 = 5 és d 2 = 10. Ezek alapján, ha d = 5, akkor a számtani sorozat tagjai 5, 10, 15; a mértanié pedig 5, 10, 20. Amennyiben d = 10, akkor a számtani sorozat tagjai 20, 10, 0; a mértanié pedig 20, 10, Egy mértani sorozat első három elemének összege 42. Ugyanezek a számok egy növekvő számtani sorozat első, második és hatodik elemei. Melyek ezek a számok? A számtani sorozat tagjai: a 1 a 1 + d a 1 + 5d A mértani sorozat tagjai: a 1 a 1 + d a 1 + 5d A számtani sorozat tagjait összeadva a következő adódik: a 1 = 14 2d. Ezt helyettesítsük vissza a mértani sorozat tagjaiba: 14 2d 14 d d A mértani sorozat definíciója szerint a szomszédos tagok hányadosa megegyezik, vagyis felírhatjuk a következő törtes egyenletet: 14 d 14 2d = d 14 d. Az egyenlet rendezése után a következő hiányos másodfokú egyenlet adódik: 7d 2 42d = 0. Az egyenlet bal oldalát alakítsuk szorzattá a következőképpen: 7d (d 6) = 0. Ebből következik, hogy az egyenlet megoldásai d 1 = 0 és d 2 = 6. Ezek alapján, ha d = 0, akkor a 1 = 14 és a mértani sorozat tagjai 14, 14, 14. Amennyiben d = 6, akkor a 1 = 2 és a mértani sorozat tagjai 2, 8,

11 16. Egy mértani sorozat három egymást követő tagjához rendre 1 - et, 14 - et és 2 - t adva egy számtani sorozat három egymást követő tagját kapjuk, melyek összege 150. Határozd meg a számtani sorozat és a mértani sorozat tagjait! A számtani sorozat tagjai: a 2 d a 2 a 2 + d A mértani sorozat tagjai: a 2 d 1 a 2 14 a 2 + d 2 A számtani sorozat tagjait összeadva a következő adódik: a 2 = 50. Ezt helyettesítsük vissza a mértani sorozat tagjaiba: 49 d d A mértani sorozat definíciója szerint a szomszédos tagok hányadosa megegyezik, vagyis felírhatjuk a következő törtes egyenletet: d = 48 + d 36. Az egyenlet rendezése után a következő másodfokú egyenlet adódik: d 2 d 1056 = 0. A megoldó képlet segítségével azt kapjuk, hogy az egyenlet megoldásai d 1 = 33 és d 2 = 32. Ezek alapján, ha d = 33, akkor számtani sorozat tagjai 17, 50, 83; a mértanié pedig 16, 36, 81. Amennyiben d = 32, akkor számtani sorozat tagjai 82, 50, 18; a mértanié pedig 81, 36, Egy számtani sorozat három egymást követő tagjához rendre 6 - ot, 7 - et és 12 - t adva egy olyan mértani sorozat három egymást követő tagját kapjuk, melyek szorzata Határozzuk meg a számtani sorozat és a mértani sorozat tagjait! A számtani sorozat tagjai: a 2 d a 2 a 2 + d A mértani sorozat tagjai: a 2 d + 6 a a 2 + d + 12 A mértani sorozat elemeire igaz, hogy egy elem négyzete egyenlő a tőle szimmetrikusan elhelyezkedő elemek szorzatával, vagyis felírhatjuk a következő egyenletet: (a 2 d + 6) (a 2 + d + 12) = (a 2 + 7) 2. 11

12 A szöveg alapján így felírhatjuk a következő egyenletet: (a 2 + 7) (a 2 + 7) 2 = Az egyenletet rendezve azt kapjuk, hogy a 2 = 17. Ezt helyettesítsük vissza a mértani sorozat tagjaiba: 23 d d A mértani sorozat definíciója szerint a szomszédos tagok hányadosa megegyezik, vagyis felírhatjuk a következő törtes egyenletet: d = 29 + d 24. Az egyenlet rendezése után a következő másodfokú egyenlet adódik: d 2 + 6d 91 = 0. A megoldó képlet segítségével azt kapjuk, hogy az egyenlet megoldásai d 1 = 7 és d 2 = 13. Ezek alapján, ha d = 7, akkor a számtani sorozat tagjai 10, 17, 24; a mértanié pedig 16, 24, 36. Amennyiben d = 13, akkor a számtani sorozat tagjai 30, 17, 4; a mértanié pedig 36, 24, Egy mértani sorozat három egymást követő tagjának szorzata 64. Ha az első elemhez hozzáadunk 1 et, a másodikhoz 4 et, a harmadikhoz pedig 5 öt, akkor egy számtani sorozat három egymást követő tagját kapjuk. Melyek a sorozatok tagjai? A mértani sorozat tagjai: a 2 q a 2 a 2 q A számtani sorozat tagjai: a 2 q + 1 a a 2 q + 5 A mértani sorozat tagjait összeszorozva a következő adódik: a 2 = 4. Ezt helyettesítsük vissza a számtani sorozat tagjaiba: 4 q q + 5 A számtani sorozat definíciója szerint a szomszédos tagok különbsége megegyezik, vagyis felírhatjuk a következő egyenletet: 8 ( 4 + 1) = 4q q 12

13 Az egyenlet rendezése után a következő másodfokú egyenlet adódik: 2q 2 5q + 2 = 0. A megoldó képlet segítségével azt kapjuk, hogy az egyenlet megoldásai q 1 = 2 és q 2 = 1 2. Ezek alapján, ha q = 2, akkor a mértani sorozat tagjai 2, 4, 8; a számtanié pedig 3, 8, 13. Amennyiben q = 1, akkor a mértani sorozat tagjai 8, 4, 2; a számtanié pedig 9, 8, Egy mértani sorozat első tagja 0, 1. Az első négy tag összege 1 gyel nagyobb a sorozat hányadosánál. Határozd meg a sorozat első négy tagját! A szöveg alapján felírhatjuk a következő egyenletet: 0,1 q4 1 q 1 = q + 1. Ezt alakítsuk át a következőképpen: 0,1 (q2 + 1) (q 1) (q + 1) q 1 = q + 1. Ezt megoldva azt kapjuk, hogy q 1 = 1, q 2 = 3 és q 3 = 3. Ezek alapján három sorozat is megfelel az adott feltételnek: Ha q = 1, akkor a sorozat első négy tagja: a 1 = 0,1; a 2 = 0,1; a 3 = 0,1; a 4 = 0,1. Ha q = 3, akkor a sorozat első négy tagja: a 1 = 0,1; a 2 = 0,3; a 3 = 0,9; a 4 = 2,7. Ha q = 3, akkor a sorozat első négy tagja: a 1 = 0,1; a 2 = 0,3; a 3 = 0,9; a 4 = 2, Öt szám közül az első három egy mértani, a négy utolsó pedig egy számtani sorozat egymást követő tagjai. A négy utolsó szám összege 20, a második és az ötödik szám szorzata 16. Melyik ez az öt szám? Legyen az öt szám: a; b; c; d; e. A számtani sorozat tulajdonságából a következő adódik: b + e = c + d. 13

14 A szöveg alapján felírhatjuk a következő egyenletrendszert: b + e = 10 b e = 16 } Az első egyenletet átrendezve adódik, hogy b = 10 e. Ezt behelyettesítve a második egyenletbe, a következő adódik: e 2 10e + 16 = 0. A megoldó képlet segítségével azt kapjuk, hogy az egyenlet megoldásai e 1 = 2 és e 2 = 8. Amennyiben e = 2, akkor b = 8. Ekkor a számtani sorozat tulajdonságából azt kapjuk, hogy c = 6 és d = 4. A mértani sorozat tulajdonságából pedig 8 a = 6 8 adódik, vagyis a = Amennyiben e = 8, akkor b = 2. Ekkor a számtani sorozat tulajdonságából azt kapjuk, hogy c = 4 és d = 6. A mértani sorozat tulajdonságából pedig 2 = 4 adódik, vagyis a = 1. a 2 Ezek alapján a lehetséges számötösök: 1; 2; 4; 6; 8 és 8; 6; 4; 2; A Papp család betesz a bankba Ft - ot 5 évre, évi 7 % - os kamatozással. Mennyi pénzt vehetnek ki az ötödik év végén? (Az értéket ezres kerekítéssel add meg!) A kamatos - kamat számítás képletével a következő adódik: ,07 5 = Ezek alapján 5 év után kb Ft - ot vehet majd ki a bankból a Papp család. 22. Beteszünk a bankba Ft - ot évi 11 % - os kamatozással. Mennyi év után vehetjük ki a pénzünket, ha minimum Ft - ot szeretnénk kivenni majd? A kamatos - kamat számítás képletével felírhatjuk a következő egyenlőtlenséget: ,11 n ,11 n 20 14

15 A kitevőből az ismeretlent logaritmus bevezetésével tüntethetjük el. lg 1,11 n lg 20 n lg 1,11 lg 20 n lg 20 lg 1,11 28,7 Ezek alapján kb. 29 év után vehetjük ki a pénzünket a bankból. 23. Egy autó ára újonnan Ft. Mennyi százalékkal csökken az autó ára minden évben, ha 3 év után Ft - ért tudjuk majd eladni? (A megoldást egészre kerekítve add meg!) A kamatos - kamat számítás képletével felírhatjuk a következő egyenletet: (1 p 100 )3 = Az egyenlet rendezése után a következő adódik: p 12,06. Ezek alapján kb. 12 % - kal csökken minden évben az autó ára. 24. Egy bankba a Kovács család minden év elején betesz Ft - ot, mely év végén 5 % - ot kamatozik. 20 év után mekkora összeget tudnak majd kivenni a bankból? (Az értéket ezres kerekítéssel add meg!) Az első év végén kivehető összeg: ,05. A második év végén: ( , ) 1,05 = , ,05. A huszadik év végén felvehető összeg: , , ,05 = ,05 (1 + 1, ,05 19 ) = ,05 1 1, , Ezek alapján 20 év után kb Ft - ot vehet majd ki a bankból a Kovács család. A gyűjtőjáradék számítás képletébe való behelyettesítéssel ellenőrizhetjük a kapott megoldást. 15

16 25. Valaki 40 éves korában életbiztosítást köt a következő feltételekkel. Minden év elején azonos összeget fizet be a biztosító társasághoz, és 70 éves korában 5 millió forintot kap. A befizetett pénz 8 % - kal kamatozik. Mekkora összeget kell befizetnie minden év elején? (Az értéket ezres kerekítéssel add meg!) Legyen az évente befizetett összeg: x. Ekkor az első év végén a kamatozással keletkező összeg: x 1,08. A második év végén: (x 1,08 + x) 1,08 = x 1, x 1,08. A harmincadik év végén felvehető összeg: x 1, x 1, x 1,08 = x 1,08 (1 + 1, ,08 29 ) = = x 1,08 1 1, ,08 1 Ebből felírható a következő egyenlet: x 1,08 1 1, ,08 1 = Az egyenlet rendezése után a következő adódik: x Ezek alapján kb Ft - ot kell befizetnie az illetőnek minden év elején. A gyűjtőjáradék számítás képletébe való behelyettesítéssel ellenőrizhetjük a kapott megoldást. 26. Kovács Zoltán 30 évesen lakást szeretne venni. Ehhez felvesz 9 millió kölcsönt, 15 évre évi 7 % - os kamatozással. Mekkora lesz az éves törlesztőrészlete? (A törlesztőrészletet ezres kerekítéssel add meg!) Legyen az éves törlesztőrészlet: x. A 15. év végére visszafizetendő összeg: , Mivel a befizetett összeg is kamatozik minden év végén, így a 15. év végére befizetett összeg: x 1, x 1, x 1, x 1,07 + x = = x (1 + 1,07 + 1, ,07 14 ) = x 1 1, ,

17 Ebből felírható a következő egyenlet: x 1 1, ,07 1 = ,0715. Az egyenlet rendezése után a következő adódik: x Ezek alapján az éves törlesztőrészlet kb Ft lesz. A törlesztőrészlet számítás képletébe való behelyettesítéssel ellenőrizhetjük a kapott megoldást. 27. A Futó család új lakást akar vásárolni. Ehhez kölcsönt vesznek fel, méghozzá 10 millió Ft - ot 20 évre, évi 6 % - os kedvezményes kamatra. Minden év végén úgy törlesztenék a kölcsönt és kamatait, hogy 20 éven át minden évben ugyanakkora összeget akarnak befizetni. Mekkora legyen ez az összeg? (Az értéket ezres kerekítéssel add meg!) Legyen az éves törlesztőrészlet: x. Az első év végén fennmaradó összeg: ,06 x. A második végén: ( ,06 x) 1,06 x = ,06 2 x 1,06 x. A huszadik év végén: ,06 20 x 1,06 19 x 1,06 18 x 1,06 x = ,06 20 x (1 + 1,06 + 1, ,06 19 ) = ,06 20 x 1 1, ,06 1 Ebből felírható a következő egyenlet: ,06 20 x 1 1, ,06 1 = 0. Az egyenlet rendezése után a következő adódik: x Ezek alapján az éves törlesztőrészletnek kb Ft nak kell lennie. A törlesztőrészlet számítás képletébe való behelyettesítéssel ellenőrizhetjük a kapott megoldást. 17

18 28. András munkába állás során két ajánlat közül választhat. Az első szerint a kezdő fizetése Ft lenne és minden hónapban Ft tal növelnék meg az előző havi jövedelmét. A második szerint a kezdő fizetése Ft lenne és minden hónapban az előző havi jövedelmét 3 % - kal növelnék. Melyik ajánlatot válassza, ha 5 évre tervez előre, s a legtöbbet szeretné keresni ezen időszak alatt, s melyiket, ha az utolsó hónapban? Változik e az álláspontja, ha legalább 6 évre tervez? Az 5 év alatt összesen 60 hónapon keresztül kap fizetést András. Az első ajánlat során a fizetések egy számtani sorozat egymást követő tagjai. A sorozat első tagja , differenciája Számítsuk ki az utolsó havi fizetését: a 60 = = Számítsuk ki az 5 év alatt szerzett összjövedelmét: S 60 = = A második ajánlat során a fizetések egy mértani sorozat egymást követő tagjai. A sorozat első tagja , kvóciense 1,03. Számítsuk ki az utolsó havi fizetését: a 60 = , Számítsuk ki az 5 év alatt szerzett összjövedelmét: S 60 = , , Ezek alapján 5 év elteltével, az utolsó hónapot szem előtt tartva a másodikat, az összjövedelmet figyelve pedig az elsőt kell választania. Végül számítsuk ki a 6 éves (72 hónap) összjövedelmeket: S 72 = = S 72 = , , Ezek alapján 6 év elteltével minden tekintetben a második ajánlat lesz a kedvezőbb. 18

19 29. Egy 60 - os szög egyik szárán jelölünk ki egy P pontot. Ebből a másik szárra állítsunk merőlegest, amelynek talppontja a másik száron legyen P 1. Innen újabb merőleges metszi ki az előző szárból P 2 t. Folyatassuk ezt végtelensokszor. A PP 1 szakaszt jelöljük a 1 gyel. Mekkora lesz a nyolcadik merőleges szakasz hossza, illetve az első nyolc szakasz hosszának összege? Tekintsük a következő ábrát: Legyen az OP távolság x. Tekintsük az első néhány merőleges szakasz hosszát: a 1 = x sin 60 = x 3 2 ; a 2 = a 1 sin 30 = x 3 4 ; a 3 = a 2 sin 30 = x 3 8 ; A merőleges szakaszok hosszai mértani sorozatot alkotnak, ahol q = 1 2. Ezek alapján a megoldások: a 8 = x 3 2 (1 2 )7 = x S 8 = x 3 ( ) = x = x ,725x 19

20 30. Egy egységnégyzetnek felezzük meg az oldalait, s a második négyzet az oldalfelező pontok alkotta négyszög lesz. Ezután ennek felezzük meg az oldalait és kapunk egy kisebb négyzetet. 100 lépés után mennyi lesz a keletkező négyzetek kerületeinek és területeinek összege? Tekintsük a következő ábrát: Tekintsük az első néhány négyzetoldal hosszát: a 1 = 2 2 ; a 2 = a = 1 2 ; a 3 = a = 2 4 ; Tekintsük az első néhány kerület nagyságát: K 1 = 2 2; K 2 = 2; K 3 = 2; Tekintsük az első néhány terület nagyságát: T 1 = 1 2 ; T 2 = 1 4 ; T 3 = 1 8 ; A kerületek és területek mértani sorozatot alkotnak, ahol q = 2 2, illetve q = 1 2. Ezek alapján a megoldások: 100 S K100 = 2 2 ( 2 2 ) 1 9, S T100 = 1 2 (1 2 ) = 1 20

21 31. A 7 egység oldalhosszúságú négyzet oldalait osszuk fel az egyik csúcspontjától kezdve 3: 4 aránybban. A kapott osztópontok ismét négyzetet határoznak meg. Ennek az oldalait is osszuk fel az adott arányban. Folytassuk ezt végtelen sokszor. Mekkora lesz a hetedik négyzet oldala, illetve az első hét négyzet kerületének, területének összege? Tekintsük a következő ábrát: Tekintsük az első néhány négyzetoldal hosszát: a 1 = 7; a 2 = a = 5; a 3 = a = 25 7 ; Tekintsük az első néhány kerület nagyságát: K 1 = 28; K 2 = 20; K 3 = ; Tekintsük az első néhány terület nagyságát: T 1 = 49; T 2 = 25; T 3 = ; Az oldalak, a kerületek és a területek mértani sorozatot alkotnak, ahol q = 5 25, illetve q = Ezek alapján a megoldások: a 7 = 7 ( 5 7 )6 = ,93 S K7 = 28 (5 7 ) ,17 S T7 = 49 (25 49 ) = 49 21

22 32. Egy a oldalú négyzetbe érintőkört írunk, ebbe négyzetet, amibe ismét kört. Ezt így folytatva mekkora lesz a hatodik négyzet oldala, illetve a hatodik kör sugara? Mekkora az első hat négyzet, illetve kör kerületének összege? Tekintsük a következő ábrát: Legyen a négyzetek oldalhossza a 1 ; a 2 ;, a beírt körök sugarának hossza: r 1 ; r 2 ;. Tekintsük az első néhány négyzetoldal hosszát: a 1 = a; a 2 = a = a 2 2 ; a 3 = a = a 1 2 ; Tekintsük az első néhány sugár hosszát: r 1 = a = a 1 2 ; r 2 = a = a 2 4 ; r 3 = a = a 1 4 ; Tekintsük az első néhány négyzet kerületét: K 1 = 4a; K 2 = a 2 2; K 3 = 2a; Tekintsük az első néhány kör kerületét: k 1 = a π; k 2 = a 2 2 π; k 3 = a 1 2 π; Az oldalak, sugarak és kerületek mértani sorozatot alkotnak, ahol q =

23 Ezek alapján a megoldások: a 6 = a ( 2 5 ) = a r 6 = a ( 2) = a S ak6 = 4a ( 2 2 ) = 4a 6 S rk6 = a π ( 2 2 ) = 4a = a π 7 (2 + 2) (2 + 2) = a 11,95a ,39a 33. Egy derékszögű háromszög oldalai rendre egy mértani sorozat egymást követő tagjai. Mekkorák a háromszög szögei? Legyenek a háromszög oldalai: a 1 a 1 q a 1 q 2 Alkalmazzuk a Pitagorasz tételt: a a 1 2 q 2 = a 1 2 q 4. Ebből rendezés után a következő egyenlet adódik: q 4 q 2 1 = 0. Legyen b = q 2, s a behelyettesítés után azt kapjuk, hogy b 2 b 1 = 0. A megoldó képlet segítségével kapjuk, hogy az egyenlet megoldásai b 1 = 1+ 5 A b 2 értéke nem felel meg a feladatnak. 2 és b 2 = A b 1 visszahelyettesítése után a következő adódik: q 2 = A háromszög szögeit így kiszámíthatjuk a szögfüggvények segítségével: sin α = a 1 a 1 q 2 = 1 q 2 = α 38,17 cos β = a 1 a 1 q 2 = 1 q 2 = β 51,83 23

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 2 1 = 217.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 2 1 = 217. Megoldások 1. Egy mértani sorozat harmadik eleme 4, hetedik eleme 64. Számítsd ki a sorozat második tagját! Először számítsuk ki a sorozat hányadosát: a 7 = a 3 q 4 64 = 4q 4 q 1 = 2 és q 2 = 2 Ezek alapján

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban: SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok

SZÁMTANI SOROZATOK. Egyszerű feladatok SZÁMTANI SOROZATOK Egyszerű feladatok. Add meg az alábbi sorozatok következő három tagját! a) ; 7; ; b) 2; 5; 2; c) 25; 2; ; 2. Egészítsd ki a következő sorozatokat! a) 7; ; 9; ; b) 8; ; ; 9; c) ; ; ;

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Egy sorozat első tagja ( 5), a második tagja. Minden további tag a közvetlenül előtte álló két tag összegével egyenlő. Mennyi a sorozat első 7 tagjának összege? A szöveg alapján írjuk fel

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Egy háromszög egyik oldala 10 cm hosszú, s a rajta fekvő két szög 50 és 70. Számítsd ki a hiányzó szöget és oldalakat! Legyen a = 10 cm; β = 50 és γ = 70. A két szög ismeretében a harmadik

Részletesebben

Sorozatok - kidolgozott típuspéldák

Sorozatok - kidolgozott típuspéldák 1. oldal, összesen: 8 oldal Sorozatok - kidolgozott típuspéldák Elmélet: Számtani sorozat: a 1 a sorozat első tagja, d a különbsége a sorozat bármelyik tagját kifejezhetjük a 1 és d segítségével: a n =

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet: 1 1 = 7. 5 Ezt rendezve

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Matematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus

Matematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus Matematika szintfelmérő dolgozat a 018 nyarán felvettek részére 018. augusztus 1. (8 pont) Oldjuk meg a következő egyenletet a valós számok halmazán: 6 4 x 13 6 x + 6 9 x = 0 6 ( ) x 4 13 9 6 4 x 13 6

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT MATEMATIKA ÉRETTSÉGI 008. október. EMELT SZINT ) Oldja meg a valós számok halmazán az alábbi egyenleteket: a) b) lg 8 0 6 I. (5 pont) (5 pont) a) A logaritmus értelmezése alapján: 80 ( vagy ) Egy szorzat

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Kisérettségi feladatsorok matematikából

Kisérettségi feladatsorok matematikából Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

Érettségi feladatok: Sorozatok

Érettségi feladatok: Sorozatok Érettségi feladatok: Sorozatok 2005. május 10. 8. Egy mértani sorozat első tagja 8, hányadosa 2. Számítsa ki a sorozat ötödik tagját! 14. Egy számtani sorozat második tagja 17, harmadik tagja 21. a) Mekkora

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok! Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )

Részletesebben

JAVÍTÓ VIZSGA 12. FE

JAVÍTÓ VIZSGA 12. FE JAVÍTÓ VIZSGA 12. FE TEMATIKA: Koordináta-geometria (vektorok a koordináta-rendszerben, egyenes egyenlete, két egyenes metszéspontja, kör egyenlete, kör és egyenes metszéspontjai) Sorozatok (számtani-

Részletesebben

I. A négyzetgyökvonás

I. A négyzetgyökvonás Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA)

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Oktatási Hivatal A 016/017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Egy húrtrapéz pontosan

Részletesebben

Egyenletek, egyenlőtlenségek VIII.

Egyenletek, egyenlőtlenségek VIII. Egyenletek, egyenlőtlenségek VIII. 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet:

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =

Részletesebben

Koordinátageometria Megoldások

Koordinátageometria Megoldások 005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm 5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam 01/01 1. Ha egy kétjegyű szám számjegyeit felcseréljük, akkor a kapott kétjegyű szám értéke az eredeti szám értékénél 108 %-kal nagyobb. Melyik ez a kétjegyű szám? Jelölje a kétjegyű számot xy. 08 A feltételnek

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam 01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat

Részletesebben

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy

Részletesebben

Sorozatok begyakorló feladatok

Sorozatok begyakorló feladatok Sorozatok begyakorló feladatok I. Sorozatok elemeinek meghatározása 1. Írjuk fel a következő sorozatok első öt elemét és ábrázoljuk az elemeket n függvényében! a n = 4n 5 b n = 5 n 2 c n = 0,5 n 2 d n

Részletesebben

Hogyan folytatnád? Gellért-hegy, Kékes. /Kilimandzsáró,, Mount Everest,Mount Blanc/ Háromszögszámok

Hogyan folytatnád? Gellért-hegy, Kékes. /Kilimandzsáró,, Mount Everest,Mount Blanc/ Háromszögszámok SOROZATOK Alapok Hogyan folytatnád? Gellért-hegy, Kékes. /Kilimandzsáró,, Mount Everest,Mount Blanc/ Háromszögszámok. 1, 1, 2, 3, 5,. 1,4,7,10,.. 1, 2,4,8,16,32,.(Sakktábla és búza története) 1, ½,1/3,

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van! 1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

4. A kézfogások száma pont Összesen: 2 pont

4. A kézfogások száma pont Összesen: 2 pont I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

Bolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás.

Bolyai János Matematikai Társulat. 1. Az a és b valós számra a 2 + b 2 = 1 teljesül, ahol ab 0. Határozzuk meg az. szorzat minimumát. Megoldás. Bolyai János Matematikai Társulat Oktatási Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 005/00-os tanév első iskolai) forduló haladók II. kategória nem speciális

Részletesebben

Matematika érettségi emelt 2013 május 7. 4 x 3 4. x 3. nincs megoldása

Matematika érettségi emelt 2013 május 7. 4 x 3 4. x 3. nincs megoldása 4 4 0 0 nincs megoldása 4 0 4 4 Z A { 4; ;, 1;0;1;} A B { 4; ; ; 1;0} A B { 6; 5; 4; ; ; 1;0;1;} A \ B {1;} 0 0 4 4 4 7 1 Z B { 6; 5; 4; ; ; 1;0} AE AE AB 46 BE 19 A hosszabbik körív: 8,8 o 60 o 0 79cm

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

MATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 010. október 19. KÖZÉPSZINT 1) Adott az A és B halmaz: Aa; b; c; d, B a; b; d; e; f felsorolásával az A I.. Adja meg elemeik B és A B halmazokat! A B a; b; d A B a; b; c; d; e; f Összesen:

Részletesebben

7. 17 éves 2 pont Összesen: 2 pont

7. 17 éves 2 pont Összesen: 2 pont 1. { 3;4;5} { 3; 4;5;6;7;8;9;10} A B = B C = A \ B = {1; }. 14 Nem bontható. I. 3. A) igaz B) hamis C) igaz jó válasz esetén, 1 jó válasz esetén 0 pont jár. 4. [ ; ] Más helyes jelölés is elfogadható.

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

PRÓBAÉRETTSÉGI MEGOLDÁSA: MATEMATIKA, KÖZÉP SZINT. 3, ahonnan 2 x = 3, tehát. x =. 2

PRÓBAÉRETTSÉGI MEGOLDÁSA: MATEMATIKA, KÖZÉP SZINT. 3, ahonnan 2 x = 3, tehát. x =. 2 FELADATSOR MEGOLDÁSA I. rész 1.1.) a) igaz b) hamis. 1..) A helyes megoldás: b) R = r 1..) x = 7 = ahonnan x = tehát x =. 1.4.) Az oszlopdiagramból kiolvasható hogy a két üzem termelése között a legnagyobb

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Számtani- és mértani sorozatos feladatok (középszint)

Számtani- és mértani sorozatos feladatok (középszint) Számtani- és mértani sorozatos feladatok (középszint) (KSZÉV Minta (2) 2004.05/II/16) a) Egy számtani sorozat első tagja 9, különbsége pedig 4. Adja meg e számtani sorozat első 5 tagjának az összegét!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Geometriai feladatok, 9. évfolyam

Geometriai feladatok, 9. évfolyam Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32

Részletesebben

Pénzügyi számítások 1. ÁFA. 2015. december 2.

Pénzügyi számítások 1. ÁFA. 2015. december 2. Pénzügyi számítások 2015. december 2. 1. ÁFA Nettó ár= Tiszta ár, adót nem tartalmaz, Bruttó ár=fogyasztói ár=adóval terhelt érték= Nettó ár+ ÁFA A jelenlegi ÁFA a nettó ár 27%-a. Összefüggések: bruttó

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

1. Feladatsor. I. rész

1. Feladatsor. I. rész . feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható

Részletesebben

A kör. A kör egyenlete

A kör. A kör egyenlete A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +

Részletesebben

Megyei matematikaverseny évfolyam 2. forduló

Megyei matematikaverseny évfolyam 2. forduló Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000

Részletesebben

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós

Részletesebben

SZÁZALÉKSZÁMÍTÁS FELADATOK

SZÁZALÉKSZÁMÍTÁS FELADATOK SZÁZALÉKSZÁMÍTÁS FELADATOK 1. Határozza meg 700-nak a 13%-át! 91 2. Határozza meg 700-nak a 221%-át! 1547 3. B Határozza meg 8 000 Ft 72%-ának a 23%-át! 1325 Ft 4. B Mennyi a bruttó éves fizetése annak

Részletesebben

Az 1. forduló feladatainak megoldása

Az 1. forduló feladatainak megoldása Az 1. forduló feladatainak megoldása 1. Bizonyítsa be, hogy a kocka éléből, lapátlójából és testátlójából háromszög szerkeszthető, és ennek a háromszögnek van két egymásra merőleges súlyvonala! Megoldás:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x

A(a; b) = 2. A(a; b) = a+b. Példák A(37; 49) = x 2x = x = : 2 x = x = x 10. osztály:nevezetes középértékek Összeállította:Keszeg ttila 1 1 számtani közép efiníció 1. (Két nemnegatív szám számtani közepe) Két nemnegatív szám számtani közepének a két szám összegének a felét

Részletesebben

MATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT

MATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT MATEMATIKA ÉRETTSÉGI 005. október 5. EMELT SZINT 1) Egy háromszög két csúcsa A B I. 8; ; 1;5 a C csúcs pedig illeszkedik az y tengelyre. A háromszög köré írt kör egyenlete: x y 6x 4y 1 0. a) Adja meg a

Részletesebben

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete? 1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

II. forduló, országos döntő május 22. Pontozási útmutató

II. forduló, országos döntő május 22. Pontozási útmutató Apáczai Nevelési és Általános Művelődési Központ 76 Pécs, Apáczai körtér 1. II. forduló, országos döntő 01. május. Pontozási útmutató 1. feladat: Két természetes szám összege 77. Ha a kisebbik számot megszorozzuk

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III. Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -

Részletesebben

Abszolútértékes és gyökös kifejezések Megoldások

Abszolútértékes és gyökös kifejezések Megoldások Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben