Érdekes geometriai számítások 9.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Érdekes geometriai számítások 9."

Átírás

1 1 Érdekes geometriai számítások 9. Folytatjuk a sorozatot. 9. Téma: Szimmetrikus kontytető tetősíkjai lapszögének maghatározásáról Már több dolgozatunk témája volt két metsződő tetősík közbezárt szögének geometriai szóhasználattal: lapszögének meghatározása, szerkesztéssel és / vagy számítással. Hogy újra elővesszük e témát, annak az az oka, hogy találtunk néhány olyan finomságot, ami ezt indokolja. Most ezeket osztjuk meg az érdeklődő Olvasóval. A régi - új téma az internetenn talált [ 1 ] munkában bukkant fel, és erről néhány dolog eszünkbe jutott. A mondott feladat és megoldásának eredetije részben az 1. ábrán látható. ( Az orosz szöveg részletei felnagyítva könnyen olvashatóak és értelmezhetőek. ) 1. ábra [ 1 ]

2 2 A feladat feldolgozásához tekintsük a 2. ábrát is! 2. ábra Itt két sík lapszögének meghatározására emlékeztetünk. A 2. ábrán élből nézett két sík ϕ hajlásszögét úgy határozzuk meg, hogy vesszük a nor - málisaik hajlásszögét. Az S 1 sík n 1 normálvektora a két sík által közrefogott belső ( kék ) térrész, az S 2 sík n 2 normálvektora pedig a külső ( fehér ) térrész felé mutat. Ekkor a két sík ( itt M pontként megjelenő ) metszésvonala mint forgástengely körül az S 1 síkot az S 2 - be ϕ szöggel beforgatva a normálisok is ϕ szöggel fordulnak el, azaz valóban ϕ szöget zárnak be egymással. Ha nem így irányítjuk a normálisokat, hanem például mindkettő a belső térrész felé mutat, akkor a szemlélet alapján ϕ * = 180 ϕ lesz a közbezárt szögük. Az elemi vektoralgebra tanítása szerint [ 2 ] : cos=. ( 1 ) Ha most a 2. ábra jobb oldali részének megfelelően n 2 helyébe ( n 2 ) - t teszünk, akkor ( 1 ) - gyel: cos = = = cos=cos180, ( 2 ) innen ϕ * = 180 ϕ, ( 3 ) egyezésben a szemlélettel. Ezek előrebocsátása után tekintsük a 3. ábrát is! Az ( 1 ) képlet használatához tehát szert kell tennünk a metsződő síkok normálvektoraira. Ezt úgy tesszük, hogy a mondott síkokat kifeszítő két - két vektornak képezzük a vekto - riális szorzatát, úgy, hogy az így előálló normálvektorok megfeleljenek a 2. ábra bal ol - dalán mutatott irányításnak.

3 3 3. ábra A 3. ábrán a φ 1 és φ 2 hajlású tetősíkokból a metszésvonalukra merőleges segédsík által kimetszett ϕ szöget is feltüntettük, a tető jellemző a, b, c, h vonalas adatai mellett. Most alkalmazzuk az ( 1 ) képletet, az itteni jelölésekkel! cos=. ( 4 ) Részfeladat a tetősíkok normálvektorainak előállítása. Ezek a korábban mondottak szerint: =FE FD, ( 5 ) és =FC FD. ( 6 ) Utóbbiakhoz felsoroljuk a tető, mint szimmetrikus éktest csúcspontjainak helyvektorait, az ábrán is jelölt B( xyz ) koordináta - rendszerben, az ( i, j, k ) egységvektorokkal. Ezek: "0,0,0; $%,0,0; &%,',0; (0,',0; )( *,,- Most ezekkel írhatjuk, hogy,h ); /( *,,0-,h ).

4 4 //) =), innen: /) =) / =0, 2,0. ( 7 ) Majd hasonló módon: //& =&, innen: /& =& / =3 *,,- Megint így eljárva: //( =(, innen: /( =( / =3 *,,-, h 4. ( 8 ), h4. ( 9 ) Most a ( 7 ), ( 8 ), ( 9 ) képletek az egységvektorokkal is: /) = 2 5 ; ( 10 ) /& = * 6,- 5 h 7 ; ( 11 ) /( = * 6,- 5 h 7. ( 12 ) Majd ( 5 ), ( 10 ), ( 11 ) - gyel: =FE FD = * 6,- 5 h 7 4= = 2 * 5 6 2, h 5 7= =2 * 7 2,- 82 h 6=2 h 62 * 7 = 2 3h 6* 7 4, tehát: = 2 3h 6 * 7 4. ( 13 ) Hasonlóképpen: ( 6 ), ( 11 ), ( 12 ) - vel: =FC FD =3 * 6,- 5 h 7 4 3* 6,- 5 h 74= = * * 6 6 *,- 6 5* h 6 7,- * 5 6,-,- 5 5,- h 5 7 h * 7 6 h,- 7 5h h 7 7; folytatva: = *,- 6 5* h 6 7,- * 5 6,- h 5 7 h * 7 6 h,- 7 5; továbbá:

5 5 = *,- 7* h 5,- * 7,- h 6 h * 5 h,- 6; ezzel: = 6 3,- h h, * h* h4 7 3,- * *,-4= = 5 % h 7 %,-, tehát: = % 3h 5,- 74. ( 14 ) A normálvektorok abszolút értéke: = =: 2 3h 6 * h 6* 7 4= =:2 3h 6 62 h * 6 7*< = 7 74=:2 3h *< = 4=2 :h *< =, tehát: =2 :h 3 * 4. ( 15 ) Hasonlóképpen: => =:? % 3h 5,- 74@? % 3h 5,- 74@= =:% Ah 5 52 h,- 5 73, B = % :h 3,- 4, tehát: =% :h 3,- 4. ( 16 ) A normálvektorok skaláris szorzata a ( 13 ), ( 14 ) képletekkel : =?2 3h 6 * = % 2 3h 6 5h,- 7 4@? % 3h 5,- 74@= 6 7* h 7 5*, = = % 2 *,- = % 2,- =, tehát: = % 2,- =. ( 17 ) Ezután a ( 4 ), ( 15 ), ( 16 ) és ( 17 ) képletekkel

6 6 cos= = *< CDE - F tehát: cos= H < :G < 03 H < 4< - :G < 03 H < 4< * :G < 03 CDE CDE < :G < 03 CDE < 4 = H < :G < 03 H < 4< CDE <, :G < 03 CDE < 4 < 4. ( 18 ) Ámde a 3. ábra szerint: H < :G < 03 H < 4< =cosi, ( 19 ) és CDE < :G < 03 CDE < 4 =cosi J, ( 20 ) így ( 18 ), ( 19 ) és ( 20 ) szerint eredményként kapjuk, hogy cos= cosi J cosi. ( 21 ) Ez a képlet már ismerős lehet valahonnan. Valóban, egy korábbi dolgozatunkban melynek címe: Érdekes geometriai számítások 5. Egy fontos szögösszefüggés gömbháromszögtani igazolása felírtuk, illetve a szakirodalom felhasználásával bebizonyítottuk, hogy érvényes az alábbi összefüggés: cosk= cosl cosmsinl sinm cos2. ( C1 ) Itt γ jelenti az α és β hajlású (tető - )síkok lapszögét, ha c azon (eresz -)vonalak által bezárt szög, amelyekből a (tető - )síkok indulnak. Megváltoztatva jelöléseinket: K, L I J, M I, 2 Q, ( C2 ) így ( C1 ) és ( C2 ) szerint: cos= cosi J cosi sini J sini cosq. ( C3 ) Ha az ereszvonalak derékszöget zárnak be egymással, mint az itteni feladatban is, akkor Q=90 cosq=0, ( C4 ) így ( C3 ) és ( C4 ) - gyel:

7 7 cos= cosi J cosi. ( C5 ) Örömmel állapítjuk meg a ( 21 ) és ( C5 ) képletek egyezését. Megjegyzések: M1. Jó tudni, hogy a ( C3 ) képlettel nem csak szimmetrikus, hanem tetszőleges tető - kialakítás esetében is ki tudjuk számítani az összemetsződő tetősíkok egymással bezárt szögét. M2. A ( 18 ) képlet alapján belátható, hogy ~ 2<' esetén cos<0, vagyis a lapszög: tompaszög; ~ 2>' esetén cos>0, vagyis a lapszög: hegyesszög; ~ 2=' esetén cos=0, vagyis a lapszög: derékszög. M3. A ( 21 ) képletet a tetősíkok m i ( i: 1, 2 ) meredekségével is felírhatjuk. Az ismert trigonometriai azonossággal, tekintettel az M2. megjegyzésre is: cos=± J >J0VW < X, ( a ) így ( 21 ) és ( a ) szerint: ± J ±J ±J = ; ( b ) >J0VW < X >J0VW < Y Z >J0VW < Y < ( b ) - t négyzetre emelve: J = J J ; ( c ) J0VW < X J0VW < Y Z J0VW < Y < ( c ) - nek reciprokát véve: 1tg =1tg I J 1tg I ; ( d ) ( d ) jobb oldalát kifejtve: 1tg I J 1tg I =1tg I J tg I tg I J tg I ; ( e ) most ( d ) és ( e ) - vel: 1tg =1tg I J tg I tg I J tg I, innen: tg =tg I J tg I tg I J tg I ; ( f )

8 8 ( f ) - ből négyzetgyököt vonva: tg=±>tg I J tg I J tg I J tg I. ( g ) Most el kell dönteni, hogy a gyökjel előtt melyik előjel tartandó meg. Ehhez vegyük figyelembe, hogy ~ mivel 0 <I J, I <90, így 0<2]^I J,cosI <1, ~ ezért 0<2]^I J cosi <1, ~ innen 0> cosi J cosi > 1, ~ így ( 21 ) szerint 1<cos<0 ; ~ eszerint 90 <<180 ; ~ de ekkor tg<0, ~ így ( g ) - ben a negatív előjel veendő. Ezzel: tg= >tg I J tg I J tg I J tg I. ( h ) Most az _ J =tgi J, ( i ) _ =tgi ( j ) jelölésekkel és ( h ) - val: tg= >_ J J _. ( k ) ( k ) - t ( 1 ) - gyel szorozva: tg=>_ J J _. ( l ) Most figyelembe véve, hogy tg=tg =tg180, ( m ) így ( i ) és ( m ) - mel kapjuk, hogy tg180 =>_ J J _, ( n ) ( n ) - ből: 180 =arctg?>_ J J ( o ) majd ( o ) - ból: =180 arctg?>_ J J ( p )

9 9 A ( p ) képlettel közvetlenül számítható a szokásos kialakítású szimmetrikus kontytető tetősíkjainak egymással bezárt szöge, a tetősíkok ( i ) és ( j ) képletekkel adott meredek - sége ismeretében. Számpélda Egy másik korábbi dolgozatunkban melynek címe: Az ötszög keresztmetszetű élszarufa keresztmetszetének kialakításáról található az alábbi ábra - rész: 4. ábra Ezen azt szemléltettük, hogy adott I J,I, Q=90 tetőadatok esetén milyen γ 1 és γ 2 szögek alatt kell levágni az élszarufát, hogy azok pontosan illeszkedjenek a tetősíkokhoz. Az általunk itt keresett szög, valamint az ottani γ 1 és γ 2 szögek közti összefüggés a 4. ábráról is leolvashatóan: =180 γ J γ. ( P1 ) Most ( p ) és ( P1 ) összevetéséből: γ J γ = arctg?>_ J J ( P2 ) Az ottani számpélda adatai: tgi J = c, tgi =1; d = 90. ( P3 ) Az ottani eredmények: K J =17, , K =36, ( P4 ) Ezután ( P2 ) bal oldala, ( P4 ) - gyel is: γ J γ =17, , =53, ( P5 )

10 10 Most ( P2 ) jobb oldala az ( i ), ( j ) és ( P3 ) képletek szerint: arctg?>_ J J c c 14 k=53, ( P6 ) Örömmel jelenthetjük, hogy ( P5 ) és ( P6 ) pontosan ugyanazt az eredményt adja, tehát képleteink jól működnek. Végül a két sík lapszöge ( P1 ) és ( P5 ) - tel: ϕ = 126, M4. A ( 21 ) képletből adódik a =arccos cosi J cosi ( 22 ) képletalak - változat is. M5. Lehet némi félreértés a síkok hajlásszöge és a síkok lapszöge kifejezések haszná - lata során. Ezzel kapcsolatban [ 3 ] - ra utalunk. Eszerint: ~ két sík hajlásszöge nem lehet derékszögnél nagyobb; ebből adódik, hogy a tetősíkok és a vízszintes sík által bezárt hegyesszög valóban hajlásszög; ~ két sík lapszöge esetén meg kell mondani, melyik szögtartományra gondolunk, egyéb - ként a lapszög tetszőleges lehet, ahogyan azt az M2. megjegyzésben taglaltuk is. M6. Ha komolyan vesszük az M5. megjegyzésben foglaltakat, akkor a ( 20 ) képletben szereplő φ 1 szöget nem igazán nevezhetjük hajlásszögnek; hiszen az M2. megjegyzésben éppen a ( 20 ) - ban található ( b c) mennyiség előjelétől tetük függővé cos φ 1, ezzel együtt pedig cosϕ előjelét is. Márpedig M5. szerint a hajlásszög koszinusza nem lehet negatív. Eszerint azt is mondhatjuk, hogy az M5. - ben tett fogalmi korlátozás miatt akár előnyösebb is lehet a ( 18 ), mint a ( 21 ) képlet használata. M7. Az előbb vázolt problémákat áthidalhatjuk, ha egyszerűen csak a síkok közbezárt szögéről beszélünk, legyen az hajlásszög vagy lapszög. Ha szükséges, megemlítjük, hogy az éppen milyen szögtartományba esik. Ez lehet, hogy nem annyira szakszerű szóhaszná - lat, viszont talán nem okoz félreértést. M8. A [ 4 ] munkában a következőt találtuk: Két sík hajlásszögét a következőképpen határozzuk meg: ha a két sík párhuzamos, akkor hajlásszögük 0. Ha nem párhuzamosak, akkor metszésvonaluk egy tetszőleges pontjában

11 11 merőlegest állítunk e metszésvonalra mindkét síkban, s a kapott félegyenesek hajlásszögét mondjuk a két sík hajlásszögének ( 6.8. ábra). 4. ábra. 4. ábra forrása: [ 4 ] Érdekes, hogy itt nem beszélnek lapszögről, csak hajlásszögről. Viszont erről nem kötik ki, korábban sem, hogy nem lehet nagyobb a derékszögnél. Az a gyanúnk, hogy a külön - böző szerzők nem egészen ugyanazt a terminológiát alkalmazzák. Ezért aztán e sorok írójának sem fáj a feje nagyon amiatt, hogy a különféle szög - elnevezéseket egymás szinonimájaként használja. M9. A 3. ábrán a tetősíkok normálisának ábrázolásakor felhasználtuk azt a geometriai tételt, miszerint ha egy egyenes merőleges egy sík két metsző egyenesére, akkor minden egyenesére merőleges, tehát merőleges a síkra. [ 3 ]. E tétel alapján mondhatjuk, hogy a 4. ábrán jelölt szög úgy is előállítható, hogy a két sík metszésvonalára merőleges síkot állítunk, a metszésvonal egy tetszőleges pontjában. E merőleges sík a metsződő síkokból kimetsz egy - egy egyenest, melyek a keresett szöget zárják be. Ugyanis a metsződő két sík metszésvonalára külön - külön állított merőleges egyenesek egy síkot határoznak meg, és mivel ezek az egyenesek külön - külön merőlege - sek a metszésvonalra, akkor az általuk kifeszített sík is merőleges a metszésvonalra. Ezt a tényt felhasználva rajzoltuk meg a 3. ábrán a B ereszsarokból induló élgerinc mint az a és b ereszvonalakból induló, φ 1 és φ 2 hajlású tetősíkok metszésvonala merőleges metszésével adódó ϕ lapszöget. M10. A ( 3 ) képletre vezető számítást azért tettük oda, mert ezzel akartuk szemléltetni azt a körülményt, hogy a dolgozat elvi alapját képező ( 1 ) képlet használata során miért kell

12 12 nagyon ügyelni a metsződő síkok normálisának helyes felvételére. Ellenkező esetben komoly zavarok léphetnek fel az eredmény - képletekben, illetve azok értelmezésében. M11. A ( b ) egyenlet jobb oldalán is kitettük a ± jeleket, arra az esetre, ha mégis úgy döntenénk, hogy a φ 1 és φ 2 szögeket nem korlátozzuk a hajlásszög meghatározásának megfelelően. Az utána következő négyzetre emelés ezeket amúgy is eltüntette, majd pedig a ( g ) egyenletet követő választás során a φ 1 és φ 2 szögeket hajlásszög - nek vettük. A számítás részletezésének tehát nem csak az a haszna, hogy bárki könnyebben követheti, hanem az is, hogy példát ad arra is, hogy ha valaki saját képletet akar kreálni, akkor az előjelekről hogyan hozhat saját döntést. M12. E dolgozat címében a lapszög szó egyes számban szerepel. Valóban, szimmetrikus tető esetében mindegyik lapszög ugyanaz, mert a 3. ábráról leolvashatóan mindig csak φ 1 és φ 2 hajlásszögű tetősíkok metsződhetnek, ugyanazt a ϕ lapszöget eredményezve. M13. Az a tény, hogy az [ 1 ] forrás egyetemi tankönyv ( volt? ), senkit ne riasszon el a téma tanulmányozásától! Sőt! Örüljünk, hogy a kis hazánkban még nem is létező tető - geometriai szakirodalom egy újabb értékes és érdekes fejezettel bővült! Irodalom: [ 1 ] P. Sz. Mogyenov: Analityicseszkaja geometrija Izdatyelsztvo Moszkovszkogo Unyiverszityeta, 1967., sztr [ 2 ] Obádovics J. Gyula: Matematika 15. kiadás, Scolar Kiadó, Budapest, 1998., 537. o. [ 3 ] Reiman István: Matematika Typotex Kiadó, Budapest, 2011., 240. ~ 241. o. [ 4 ] Gerőcs László ~ Vancsó Ödön: Matematika Akadémiai Kiadó, Budapest, 2010., 267. o. Sződliget, június 30. Összeállította: Galgóczi Gyula mérnöktanár

Érdekes geometriai számítások Téma: Szimmetrikus kontytető tetősíkjai lapszögének meghatározásáról

Érdekes geometriai számítások Téma: Szimmetrikus kontytető tetősíkjai lapszögének meghatározásáról 1 Folytatjuk a sorozatot. Érdekes geometriai számítások 9. 9. Téma: Szimmetrikus kontytető tetősíkjai lapszögének meghatározásáról Már több dolgozatunk témája volt két metsződő tetősík közbezárt szögének

Részletesebben

Egy érdekes nyeregtetőről

Egy érdekes nyeregtetőről Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!

Részletesebben

Érdekes geometriai számítások 10.

Érdekes geometriai számítások 10. 1 Érdekes geometriai számítások 10. Találtunk az interneten egy könyvrészletet [ 1 ], ahol egy a triéder - geometriában fontos összefüggést egyszerű módon vezetnek le. Ennek eredményét összevetjük más

Részletesebben

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.

Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. 1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú

Részletesebben

Aszimmetrikus nyeregtető ~ feladat 2.

Aszimmetrikus nyeregtető ~ feladat 2. 1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

A tűzfalakkal lezárt nyeregtető feladatához

A tűzfalakkal lezárt nyeregtető feladatához 1 A tűzfalakkal lezárt nyeregtető feladatához Bevezetés Ehhez először tekintsük az 1. ábrát! 1 Itt azt szemlélhetjük, hogy hogyan lehet el - kerülni egy épület tűzfalának eláztatását. A felső ábrarészen

Részletesebben

Fa rudak forgatása II.

Fa rudak forgatása II. Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

Az élszarufa és a szelemenek kapcsolódásáról

Az élszarufa és a szelemenek kapcsolódásáról Az élszarufa és a szelemenek kapcsolódásáról A következőkben a címbeli viszonylag nehéz anyagrész megvilágítását szeretnénk elősegíteni főként szép és jó ábrákkal.. ábra forrása: http://www.dikraus.at/ingenieurbau/baustatik/baustatikflyer/s6_0.pdf.

Részletesebben

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban

Részletesebben

A gúla ~ projekthez 2. rész

A gúla ~ projekthez 2. rész 1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú

Részletesebben

A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét

A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A szabadforgácsolást [ 1 ] az alábbiak szerint definiálja, ill. jellemzi. Ha a forgácsolószerszám élének minden pontjában a forgácsolási

Részletesebben

Ellipszis átszelése. 1. ábra

Ellipszis átszelése. 1. ábra 1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva

Részletesebben

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon

Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk

Részletesebben

A gúla ~ projekthez 1. rész

A gúla ~ projekthez 1. rész 1 A gúla ~ projekthez 1. rész Megint találtunk az interneten valami érdekeset: az [ 1 ], [ 2 ], [ 3 ] anyagokat. Úgy véljük, hogy az alábbi téma / témakör kiválóan alkalmas lehet projekt - módszerrel történő

Részletesebben

Síkbeli csuklós rúdnégyszög egyensúlya

Síkbeli csuklós rúdnégyszög egyensúlya Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen

Részletesebben

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették

Részletesebben

Egy sajátos ábrázolási feladatról

Egy sajátos ábrázolási feladatról 1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:

Részletesebben

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most

Részletesebben

Egy másik érdekes feladat. A feladat

Egy másik érdekes feladat. A feladat Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög

Részletesebben

Egy kinematikai feladat

Egy kinematikai feladat 1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú

Részletesebben

Egy érdekes statikai - geometriai feladat

Egy érdekes statikai - geometriai feladat 1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani

Részletesebben

A manzárdtetőről. 1. ábra Forrás: http://upload.wikimedia.org/wikipedia/commons/0/0a/drawing_in_perspective_ of_gambrel-roofed_building.

A manzárdtetőről. 1. ábra Forrás: http://upload.wikimedia.org/wikipedia/commons/0/0a/drawing_in_perspective_ of_gambrel-roofed_building. A manzárdtetőről Az építőipari tanulók ácsok, magasépítő technikusok részére kötelező gyakorlat a manzárdtetőkkel való foglalkozás. Egy manzárd nyeregtetőt mutat az. ábra.. ábra Forrás: http://upload.wikimedia.org/wikipedia/commons/0/0a/drawing_in_perspective_

Részletesebben

Az egyenes ellipszishenger ferde síkmetszeteiről

Az egyenes ellipszishenger ferde síkmetszeteiről 1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges

Részletesebben

Fénypont a falon Feladat

Fénypont a falon Feladat Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.

Részletesebben

Kúp és kúp metsződő tengelyekkel

Kúp és kúp metsződő tengelyekkel Kúp és kúp metsződő tengelyekkel Előző dolgozatainkban [ ED ], [ ED ], [ ED 3 ], [ED 4 ] már láttuk, hogyan lehet meghatározni a két legegyszerűbb forgástest a henger és a kúp áthatási görbéinek egyenleteit.

Részletesebben

w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;

w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ; A négysuklós mehanizmus alapfeladata másképpen Előző dolgozatunkban melynek íme: A négysuklós mehanizmus alapfeladatáról egy általunk legegyszerűbbnek gondolt megoldási módot ismertettünk. Ott megemlítet

Részletesebben

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ] 1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Henger és kúp metsződő tengelyekkel

Henger és kúp metsződő tengelyekkel Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis

Részletesebben

Kocka perspektivikus ábrázolása. Bevezetés

Kocka perspektivikus ábrázolása. Bevezetés 1 Kocka perspektivikus ábrázolása Bevezetés Előző három dolgozatunkban ~ melyek címe: 1. Sínpár perspektivikus ábrázolása, 2. Sínpár perspektivikus ábrázolása másként, 3. Sínpár perspektivikus ábrázolása

Részletesebben

Egy újabb látószög - feladat

Egy újabb látószög - feladat 1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes

Részletesebben

A merőleges axonometria néhány régi - új összefüggéséről

A merőleges axonometria néhány régi - új összefüggéséről 1 A merőleges axonometria néhány régi - új összefüggéséről Most néhány régebben már megbeszélt összefüggés újabb igazolását adjuk meg, illetve más, eddig még nem látott képlet - alakokat állítunk elő.

Részletesebben

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt

Részletesebben

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához 1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent

Részletesebben

Egy geometriai szélsőérték - feladat

Egy geometriai szélsőérték - feladat 1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete 1 Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész Eltérő keresztmetszet - magasságú szarufák esete Az alábbi ábrát találtuk az interneten 1. ábra 1. ábra forrás( ok ): http://www.sema-soft.com/de/forum/files/firstpfettenverschiebung_432.jpg

Részletesebben

A főtengelyproblémához

A főtengelyproblémához 1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási

Részletesebben

A hordófelület síkmetszeteiről

A hordófelület síkmetszeteiről 1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük

Részletesebben

Egy általánosabb súrlódásos alapfeladat

Egy általánosabb súrlódásos alapfeladat Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!

Részletesebben

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi

Részletesebben

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. 1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:

Részletesebben

A véges forgatás vektoráról

A véges forgatás vektoráról A véges forgatás vektoráról Az idők során sokszor olvastuk azt a mondatot a mechanika - könyvekben hogy a végtelen kis szögelfordulások az elemi forgások vektornak tekinthetők [ ] Természetesen adódik

Részletesebben

Tető nem állandó hajlású szarufákkal

Tető nem állandó hajlású szarufákkal 1 Tető nem állandó hajlású szarufákkal Már korábbi dolgozatainkban is szó volt a címbeli témáról. Most azért vettük újra elő, mert szép és érdekes ábrákat találtunk az interneten, ezzel kapcsolatban, és

Részletesebben

A csavarvonal axonometrikus képéről

A csavarvonal axonometrikus képéről A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:

Részletesebben

A térbeli mozgás leírásához

A térbeli mozgás leírásához A térbeli mozgás leírásához Az idők során már többször foglalkoztunk a címbeli témával; az előzmények vagyis a korábbi dolgozatok: ~ KD : Az R forgató mátrix I Az R forgató mátrix II ~ KD : A véges forgatás

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

A bifiláris felfüggesztésű rúd mozgásáról

A bifiláris felfüggesztésű rúd mozgásáról 1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.

Részletesebben

Érdekes geometriai számítások 5. Folytatjuk a sorozatot. 5. Téma: Egy fontos szögösszefüggés gömbháromszögtani igazolása

Érdekes geometriai számítások 5. Folytatjuk a sorozatot. 5. Téma: Egy fontos szögösszefüggés gömbháromszögtani igazolása Érdekes geometriai számítások 5. Folytatjuk a sorozatot. 5. Téma: Egy fontos szögösszefüggés gömbháromszögtani igazolása Egy korábbi dolgozatunkban címe: Érdekes geometriai számítások 3. egy képletre csak

Részletesebben

Az ötszög keresztmetszetű élszarufa keresztmetszeti jellemzőiről

Az ötszög keresztmetszetű élszarufa keresztmetszeti jellemzőiről 1 Az ötszög keresztmetszetű élszarufa keresztmetszeti jellemzőiről Bevezetés A kontytetők és az összetett alaprajzú tetők akár nyeregtetők szerkezeti elemei között megtaláljuk az él - és a vápaszarufákat

Részletesebben

További adalékok a merőleges axonometriához

További adalékok a merőleges axonometriához 1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés

Részletesebben

A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra.

A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1 A Lenz - vektorról Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1. ábra forrása: [ 1 ] Ez nem régen történt. Meglepett, hogy eddig ez kimaradt. Annál is inkább, mert

Részletesebben

A lengőfűrészelésről

A lengőfűrészelésről A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású

Részletesebben

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 ) 1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai

Részletesebben

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Felső végükön egymásra támaszkodó szarugerendák egyensúlya 1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra

Részletesebben

Szög. A Wikipédiából, a szabad enciklopédiából:

Szög. A Wikipédiából, a szabad enciklopédiából: Szög A Wikipédiából, a szabad enciklopédiából: http://hu.wikipedia.org/wiki/szög A sík egy pontjából kiinduló két félegyenes a síkot két tartományra osztja. Az egyik tartomány és a két félegyenes szöget

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Gyakorlás: fedélidom - közepelés paralelogramma - szerkesztéssel

Gyakorlás: fedélidom - közepelés paralelogramma - szerkesztéssel Gyakorlás: fedélidom - közepelés paralelogramma - szerkesztéssel Korábbi dolgozatainkban melyek címe: ~ A szintvonalas eljárásról, ~ Az ereszsarok szögének két részre osztása paralelogramma - szerkesztéssel

Részletesebben

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról 1 Az elforgatott ellipszisbe írható legnagyobb területű téglalapról Előző dolgozatunkban melynek címe: Az ellipszisbe írható legnagyobb területű négyszögről már beharangoztuk, hogy találtunk valami érdekeset

Részletesebben

Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról

Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról 1 Az ötszög keresztmetszetű élszarufa kis elmozdulásainak számításáról Előző dolgozatunkban melynek címe: ED: Az ötszög keresztmetszetű élszarufa σ - feszültségeinek számításáról elkezdtük / folytattuk

Részletesebben

A síkbeli Statika egyensúlyi egyenleteiről

A síkbeli Statika egyensúlyi egyenleteiről 1 A síkbeli Statika egyensúlyi egyenleteiről Statikai tanulmányaink egyik mérföldköve az egyensúlyi egyenletek belátása és sikeres alkalmazása. Most egy erre vonatkozó lehetséges tanulási / tanítási útvonalat

Részletesebben

A középponti és a kerületi szögek összefüggéséről szaktanároknak

A középponti és a kerületi szögek összefüggéséről szaktanároknak A középponti és a kerületi szögek összefüggéséről szaktanároknak Középiskolai tanulmányaink fontos része volt az elemi síkgeometriai tananyag. Ennek egyik nevezetes tétele így szól [ 1 ] : Az ugyanazon

Részletesebben

A magától becsukódó ajtó működéséről

A magától becsukódó ajtó működéséről 1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:

Részletesebben

Koordináta-geometria II.

Koordináta-geometria II. Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással

Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Előző dolgozatunkban jele: ( E ), címe: Szimmetrikusan szélezett körkeresztmetszet geometriai jellemzőinek meghatározása

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

A kör és ellipszis csavarmozgása során keletkező felületekről

A kör és ellipszis csavarmozgása során keletkező felületekről 1 A kör és ellipszis csavarmozgása során keletkező felületekről Előző dolgozatunkban melynek címe: Megint a két csavarfelületről levezettük a cím - beli körös felület - család paraméteres egyenletrendszerét,

Részletesebben

A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése

A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése Bevezetés A Hooke -, vagy Kardán - csukló a gyakorlatban széles körben elterjedt gépelem. Feladata a forgó mozgás átszármaztatása

Részletesebben

Egy kötélstatikai alapfeladat megoldása másként

Egy kötélstatikai alapfeladat megoldása másként 1 Egy kötélstatikai alapfeladat megoldása másként Most megint egyik kedvenc témánkat vesszük elő. Bízunk benne, hogy az itt előforduló ismétlések szükségesek, ámde nem feleslegesek. A más módon való megoldás

Részletesebben

Ellipszis perspektivikus képe 2. rész

Ellipszis perspektivikus képe 2. rész 1 Ellipszis perspektivikus képe 2. rész Dolgozatunk 1. részében nem mentünk tovább a matematikai kifejtésben. Ezzel mintegy felhagytunk a belső összefüggések feltárásával. A jelen 2. részben megkíséreljük

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Vontatás III. A feladat

Vontatás III. A feladat Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat

Részletesebben

Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról

Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról 1 Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról Korábban már több egyszerűbb tető - alak geometriáját leírtuk. Most egy kicsit nehezebb feladat megoldását tűzzük ki

Részletesebben

Profilmetsződésekről, avagy tórusz és körhenger áthatásáról

Profilmetsződésekről, avagy tórusz és körhenger áthatásáról 1 Profilmetsződésekről, avagy tórusz és körhenger áthatásáról Megesik, hogy nem értjük, amit olvasunk. Ez történt az [ 1 ] szakmai segédkönyv eseté - ben is. Ennek oka lehet ismereteink hiánya, a pontatlan

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Az elliptikus hengerre írt csavarvonalról

Az elliptikus hengerre írt csavarvonalról 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II. Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük

Részletesebben

Lépcső beemelése. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával.

Lépcső beemelése. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával. 1 Lépcső beemelése Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával. 1. ábra forrása: [ 1 ] Itt példákat látunk előregyártott vasbeton szerkezeti elemek kötéllel / lánccal történő emelésére,

Részletesebben

Poncelet egy tételéről

Poncelet egy tételéről 1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,

Részletesebben

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf87 2017-09-05

Részletesebben

Kiegészítés a merőleges axonometriához

Kiegészítés a merőleges axonometriához 1 Kiegészítés a merőleges axonometriához Időnként találunk egy szép és könnyebben érthető levezetést, magyarázó ábrát, amit érdemesnek gondolunk a megosztásra. Most is ez történt, az [ 1 ] és [ 3 ] művek

Részletesebben

Összefüggések egy csonkolt hasábra

Összefüggések egy csonkolt hasábra Összefüggések egy sonkolt hasábra Az idők során ár többször készítettünk hasonló dolgozatokat. Ne baj: az isétlés sose árt. Most tekintsük az. ábrát!. ábra Eszerint úgy is képzelhetjük hogy egy téglalap

Részletesebben

A Cassini - görbékről

A Cassini - görbékről A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

Kecskerágás már megint

Kecskerágás már megint 1 Kecskerágás már megint Az interneten találtuk az újabb kecskerágós feladatot 1. ábra. 1. ábra forrása: [ 1 ] A feladat ( kicsit megváltoztatva az eredeti szöveget ) Egy matematikus kecskét tart a kertjében.

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Szökőkút - feladat. 1. ábra. A fotók forrása:

Szökőkút - feladat. 1. ábra. A fotók forrása: Szökőkút - feladat Nemrégen Gyulán jártunk, ahol sok szép szökőkutat láttunk. Az egyik különösen megtetszett, ezért elhatároztam, hogy megpróbálom elemi módon leírni a ízsugarak, illete az általuk leírt

Részletesebben

Keresztezett pálcák II.

Keresztezett pálcák II. Keresztezett pálcák II Dolgozatunk I részéen a merőleges tengelyű pálcák esetét vizsgáltuk Most nézzük meg azt az esetet amikor a pálcák tengelyei nem merőlegesen keresztezik egymást Ehhez tekintsük az

Részletesebben

t, u v. u v t A kúpra írt csavarvonalról I. rész

t, u v. u v t A kúpra írt csavarvonalról I. rész A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem

Részletesebben