XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, 2015. április 8-12."

Átírás

1 XXIV NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szbdk, 05 április 8- X évfolym A XXIV Nemzetközi Mgyr Mtemtik Verseny tiszteletére Frici rjzolt Szbdk főterére egy 4 oldlú szbályos sokszöget Hány olyn egyenlő szárú háromszöget rjzolhtn, melynek minden csúcs ennek sokszögnek egy csúcs, minden oldl ennek sokszögnek egy átlój? H, y, z 3,5, kkor igzold, hogy 5 3y y 5 5y 3z yz 5 5z 3 z 5 Mikor állht fenn z egyenlőség? 3 Hány olyn egyenlőszárú trpéz létezik, melynek kerülete 05 z oldlk mérőszám egz szám? 4 Htározd meg mindzokt z egyenlőtlenség egyetlen vlós számokt, melyekre z 0 megoldásár sem igz, hogy 5 Oldd meg következő egyenletet vlós számok hlmzán: Egy konve négyszöget átlói négy háromszögre bontnk H mind négy háromszög területének mértéke egz szám, kkor végződhet-e 05-re négy terület mértékének szorzt? Lehet-e ez szorzt olyn egz szám, melynek utolsó négy jegye 05, zz lehet-e, h t, t, t3, t 4 jelöli háromszögek területeinek mértékét? t t t t A feldtok kidolgozásár 40 perc áll rendelkezre Jó munkát!

2 A XXIV NMMV FELADATAINAK MEGOLDÁSAI X évfolym X/ A XXIV Nemzetközi Mgyr Mtemtik Verseny tiszteletére Frici rjzolt Szbdk főterére egy 4 oldlú szbályos sokszöget Hány olyn egyenlő szárú háromszöget rjzolhtn, melynek minden csúcs ennek sokszögnek egy csúcs, minden oldl ennek sokszögnek egy átlój? (Erdős Gábor, Ngyknizs, Mgyrország) Megoldás: Rögzítsük z egyik csúcsot, legyen ez szárk metszpontj Számozzuk meg csúcsokt úgy, hogy ez legyen z -es, számozás pedig z órmuttó járásánk megfelelő iránybn folymtos A szomszédos csúcsok nem lehetnek háromszög lpji, mert kkor háromszög oldl nem átló lesz, hnem oldl De minden, z -es csúcsból induló átlór merőleges átló igen Ilyenek: 3-ból 3-b, 4- ből -be, 5-ből -be,, -ből 4-be Ilyen átlóból 0 drb vn Ugynez elmondhtó minden csúcsr, így kpunk háromszöget Mit számoltunk többször? A szbályos háromszögeket, zokt mindhárom csúcsuknál megszámoltuk Mivel ilyen háromszögből 8 drb vn (pl z előbbi számozás szerint z, 9, 7 csúcsok áltl lkotott háromszög, illetve ennek elforgtottji), így ezeket háromszor számoltuk, tehát kétszer ki kell vonni őket A megfelelő háromszögek szám tehát X/ H, y, z 3,5, kkor igzold, hogy 5 3y y 5 5y 3z yz 5 5z 3 z 5 Mikor állht fenn z egyenlőség? (Kovács Bél, Sztmárnémeti, Erdély) Megoldás: A gyökjelek ltti kifejezek szorzttá lkíthtók: A feldt feltétele mitt z, y, z vlós számokr teljesül, hogy 3 0, 5 0, y 3 0, 5y 0, 5 0, tehát gyökös kifejezek értelmezettek Alklmzzuk mindegyik gyökös kifejezre számtni mértni középrányosok közötti összefüggt Ekkor 3 5 y ( 3)(5 y), y 3 5 z ( y 3)(5 z), ( 3)(5 y) ( y 3)(5 z) ( z 3)(5 ) z 30 z z 3 5 ( z 3)(5 ) Összedv fenti egyenlőtlenségeket megkpjuk bizonyítndó egyenlőtlenséget, zz ( 3)(5 y) ( y 3)(5 z) ( z 3)(5 ) 3 5 y y 3 5 z z Egyenlőség kkor áll fenn, h zárójeleken belül levő kifejezek megegyeznek, zz h 35 y, y35 z z35, ez pedig z y z eset

3 X/3 Hány olyn egyenlőszárú trpéz létezik, melynek kerülete 05 z oldlk mérőszám egz szám? (Szbó Mgd, Szbdk, Vjdság) IMegoldás: Legyenek z oldlk rendre, hol legyen b Ekkor érvényes z c b c egyenlőtlenség feldt feltétele lpján, c, b, c b c 05,,3,,007, b, c Az vlmely rögzített értékére z hlmzból b értéke bármely -nál kisebb érték lehet, de pritásbn különbözőek kell hogy legyenek Ennek lpján lehetőségek szám, ekkor c Z értéke egyértelmű trpéz is egyértelműen meghtározott z oldlivl A trpézok keresett szám: IIMegoldás: Jelölje trpéz rövidebb lpját, c szárkt, hosszbb lp pedig z ábr lpján legyen Ekkor 05, honnn Mivel b c, vehetjük, hogy b c, c Z c d 008 b b b b c0075, hol d Z Most teljesül, hogy A feldt feltételeivel ekkor ekvivlens z, hogy d c, Mivel 007, így H, kkor d d c d,,3,,503 A trpézok keresett szám tehát bd05 d 503 d d d d d, honnn c d, d,,007 d cd 007 c, d Z cd

4 X/4 Htározd meg mindzokt z vlós számokt, melyekre z egyenlőtlenség egyetlen Megoldás: H egyetlen megoldásr igz, hogy Az / 0 H melyre H 0 0, kkor z, így pozitív, mikor 0 0 megoldásár sem igz, hogy (Csikós Pjor Gizell, Szbdk, Vjdság) megoldásr sem igz, hogy vgyis, hogy egyenlet számok, honnn 0 0, kkor minden esetén másodfokú, gyökei z egyenlőtlenséget kpjuk, mely hlmzbn vn olyn, kkor megfelelő prbolánk minimum vn (felfelé nyíló) kkor vgy megoldáshlmzból, melyre 3 H 0 pozitív, mikor kkor Mivel bármely, így 0 0 sem lehetséges esetén tlálhtó olyn, kkor megfelelő prbolánk mimum vn (lefelé nyíló) kkor Ezek szerint keresett H z, illetve számokr feltétel mellett kell, hogy teljesüljön feltétel kell hogy teljesüljön X/5 Oldd meg következő egyenletet vlós számok hlmzán: Megoldás: A négyzetgyökös kifejez kkor értelmezett, h egyenletet következő lkr hozzuk: is érvényes, (Bíró Bálint, Eger, Mgyrország) Először z Vezessük be z helyettesítt Az egyenletben szereplő tört nevezője mitt nyilvánvló, hogy Könnyen beláthtó, hogy 0 55 ez pedig zt jelenti, hogy csk 0 állht fenn Ezzel jelölsel z eredeti egyenlet: 3 lkb írhtó, melyből két lehetséges esetet írhtunk fel: (A) 3,,

5 vgy Az (A) egyenletből (B) 4 3 következik, ez zonbn z 55 z 0 feltételek mellett nem teljesülhet, hiszen z egyenlet két oldlánk előjele eltérő Ezért z (A) egyenletnek nincs megoldás A (B) egyenletből zt kpjuk, hogy vontkozó kkor teljesül, h Az 55 Ismeretes pozitív számokr nevezetes egyenlőtlenség, melyben z egyenlőség pontosn összefügg szerint tehát: 55 Ez z egyenlőség ismét kétféleképpen lehetséges: (C), vgy (D) 55 A (C) egyenlet megoldás Egyszerű számolássl ellenőrizhető, hogy ezek számok vlóbn kielégítik z eredeti egyenletet, ezért feldt megoldáshlmz 55 55, (D) egyenlet megoldás pedig M 55,59 59 X/6 Egy konve négyszöget átlói négy háromszögre bontnk H mind négy háromszög területének mértéke egz szám, kkor végződhet-e 05-re négy terület mértékének szorzt? Lehet-e ez szorzt olyn egz szám, melynek utolsó négy jegye 05, zz lehet-e t t t3 t4 05, h t, t, t3, t 4 jelöli háromszögek területeinek mértékét? (Ktz Sándor, Bonyhád, Mgyrország) Megoldás: Legyenek négyszög csúcsi, z átlók metszpontj pedig E Az átlók behúzásávl keletkezett négy háromszög területe legyen, Az háromszögek mgsság ugynz, ezért területeik rány Ugynígy háromszögekre megkphtó, hogy 4 ABE t : t BE : ED t : t BE : ED 3 AED CBE A két egyenlőségből A, B, C, D CED t t t t 3 4 dódik (Ezzel beláttuk, hogy egy konve négyszög átlói áltl meghtározott négy háromszög területe közül két-két szemközti szorzt egyenlő) Eszerint négy háromszög területének szorzt: Mivel t, t, t3, t4 egz számok, így szorztuk z előzőek szerint négyzetszám Viszont h egy négyzetszám 5-re végződik, kkor utolsó előtti jegye, hiszen 0k 5 00k 00k 5, t, t t t t t t z első két tg összege két 0-r, z egz összeg 5-re végződik t A négy terület mértékének szorzt tehát nem végződhet 05-re A B D t 4 t 3 E t t 3 t t 4 C

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2007. jnuár 27. MATEMATIKA FELADATLAP 8. évfolymosok számár 2007. jnuár 27. 11:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást

Részletesebben

A VI. FEKETE MIHÁLY EMLÉKVERSENY

A VI. FEKETE MIHÁLY EMLÉKVERSENY A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály 5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,

Részletesebben

( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN

( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN Shultz János EGYENLŐLENSÉGEK A HÁOMSZÖG GEOMEIÁJÁBAN Igzoljuk hogy egy szályos háromszög első pontját súsokkl összekötő három szkszól mindig szerkeszthető háromszög Egy tégllp elsejéen vegyünk fel egy

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x

Részletesebben

Wassily Leontieff Az amerikai gazdaság szerkezete 1919-1939 c. úttörő munkájára támaszkodó modellek több száz egyenletet és ismeretlent tartalmaztak.

Wassily Leontieff Az amerikai gazdaság szerkezete 1919-1939 c. úttörő munkájára támaszkodó modellek több száz egyenletet és ismeretlent tartalmaztak. Wssily Leontieff Az meriki gzdság szerkezete 99-99 c. úttörő munkájár támszkodó modellek több száz egyenletet és ismeretlent trtlmztk. Szovjetunióbn Leonyid Kntorovics modelljeivel célj z volt, hogy második

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

Tudtad? 11. Ezt a kérdést azért tesszük fel, mert lehet, hogy erre még nem gondoltál.

Tudtad? 11. Ezt a kérdést azért tesszük fel, mert lehet, hogy erre még nem gondoltál. Tudtd? 11. Ezt kérdést zért tesszük fel mert lehet hogy erre még nem gondoltál. Most tekintsük z 1. árát! 1. ár Forrás: http://vmek.oszk.hu/0100/015/html/04/img/-14.jpg Itt különöző tetőlkokt szemlélhetünk.

Részletesebben

& t a 1749. 1751. 1751. V = t $ M = (9 $ 13 $ sin 48,6 )(25 $ sin 68,3 ) á 2038, 6 cm

& t a 1749. 1751. 1751. V = t $ M = (9 $ 13 $ sin 48,6 )(25 $ sin 68,3 ) á 2038, 6 cm Hsáb 79 75 7 Tekintsük z 7 ábrát Felhsználjuk, hogy prlelogrmm átlóink négyzetösszege egyenlô z oldlink négyzetösszegével Az ACGE prlelogrmmábn: AG + EC (AE + AC ) A BDHF prlelogrmmábn: DF + BH (BF + DB

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög

Részletesebben

11. évfolyam feladatsorának megoldásai

11. évfolyam feladatsorának megoldásai évolym eldtsoránk megoldási Oldjuk meg természetes számok hlmzán következő egyenleteket x ) y 6 x! 3 b) y 6 3 ) Átrendezve megoldndó egyenlet y 6 x! 3 H x 0, kkor H x, kkor H x, kkor H x 3, kkor H x, kkor

Részletesebben

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2 A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:

Részletesebben

Geometria. A geometria vagy mértan a geo+metros= földmérés szóból ered, görög tudósok és egyiptomi földmérnökök tapasztalataira épül.

Geometria. A geometria vagy mértan a geo+metros= földmérés szóból ered, görög tudósok és egyiptomi földmérnökök tapasztalataira épül. Geometri A geometri vgy mértn geo+metros= földmérés szóól ered, görög tudósok és egyiptomi földmérnökök tpsztltir épül. Az euklideszi geometri lpfoglmkr, lpreláiókr és xiómákr épül. - lpfoglmk: például

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

Óravázlatok: Matematika 2. Tartományintegrálok

Óravázlatok: Matematika 2. Tartományintegrálok Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.

Részletesebben

Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.

Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos

Részletesebben

Koordináta - geometria I.

Koordináta - geometria I. Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor

Részletesebben

Ptolemaios-tétele, Casey-tétel, feladatok

Ptolemaios-tétele, Casey-tétel, feladatok Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor

Részletesebben

Végeredmények, emelt szintû feladatok részletes megoldása

Végeredmények, emelt szintû feladatok részletes megoldása Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt1 feltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2016. jnuár 16. 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 4. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2016. jnuár 16. 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

A torokgerendás fedélszerkezet erőjátékáról 1. rész

A torokgerendás fedélszerkezet erőjátékáról 1. rész A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk

Részletesebben

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?

Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata? Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A

Részletesebben

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása) Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei

Részletesebben

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb: Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

VI. Kétismeretlenes egyenletrendszerek

VI. Kétismeretlenes egyenletrendszerek Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV. Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 < Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

Szélsőérték problémák elemi megoldása I. rész Izoperimetrikus problémák Tuzson Zoltán, Székelyudvarhely

Szélsőérték problémák elemi megoldása I. rész Izoperimetrikus problémák Tuzson Zoltán, Székelyudvarhely Szélsőérték problémák elemi megoldás I. rész Izoperimetrikus problémák uzson Zoltán, Székelyudvrhely Ebben dolgoztbn szélsőértékek számolásávl fogllkozunk, de csupán csk elemi módszereket hsználunk. Ez

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 20. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

PÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében

PÁLYÁZATI ÚTMUTATÓ. a Társadalmi Megújulás Operatív Program keretében PÁLYÁZATI ÚTMUTATÓ Társdlmi Megújulás Opertív Progrm keretében Munkhelyi képzések támogtás mikro- és kisválllkozások számár címmel meghirdetett pályázti felhívásához Kódszám: TÁMOP-2.1.3/07/1 v 1.2 A projektek

Részletesebben

A skatulya-elv alkalmazásai

A skatulya-elv alkalmazásai 1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

A parabola és az egyenes, a parabola és kör kölcsönös helyzete

A parabola és az egyenes, a parabola és kör kölcsönös helyzete 66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely

Részletesebben

Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/

Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/ Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr. Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny. MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny. MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták) A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták) Javítási-értékelési útmutató Kérjük a javító tanárokat,

Részletesebben

Ábrahám Gábor A háromszög és a terület Feladatok. Feladatok

Ábrahám Gábor A háromszög és a terület Feladatok. Feladatok I. Klasszikus, bevezető feladatok Feladatok 1. Az alábbi feladatokban hányad része a satírozott rész területe az eredeti négyszög területének? a) Egy paralelogramma valamely belső pontját összekötjük a

Részletesebben

Konfár László Kozmáné Jakab Ágnes Pintér Klára. sokszínû. munkafüzet. Harmadik, változatlan kiadás. Mozaik Kiadó Szeged, 2012

Konfár László Kozmáné Jakab Ágnes Pintér Klára. sokszínû. munkafüzet. Harmadik, változatlan kiadás. Mozaik Kiadó Szeged, 2012 Konfár László Kozmáné Jk Ágnes Pintér Klár sokszínû munkfüzet 8 Hrmdik, változtln kidás Mozik Kidó Szeged, 0 Szerzõk: KONFÁR LÁSZLÓ áltlános iskoli szkvezetõ tnár KOZMÁNÉ JK ÁGNES áltlános iskoli szkvezetõ

Részletesebben

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Nevezetes középértékek megjeleése külöböző feldtokb Vrg József, Kecskemét Hrmic éves tári pályámo sokszor tpsztltm, hogy tehetséges tulók

Részletesebben

Nagy András. Számelméleti feladatgyűjtemény 2009.

Nagy András. Számelméleti feladatgyűjtemény 2009. Nagy András Számelméleti feladatgyűjtemény 2009. Tartalomjegyzék Tartalomjegyzék... 1 Bevezetés... 2 1. Feladatok... 3 1.1. Természetes számok... 3 1.2. Oszthatóság... 5 1.3. Legnagyobb közös osztó, legkisebb

Részletesebben

3. Matematikai logika (megoldások)

3. Matematikai logika (megoldások) (megoldások) 1. Hamis, ugyanis P, Q és R logikai értékét behelyettesítve kapjuk: (P Q) R = (1 0) 0 = 0 0 = 0. (Ebben és a további feladatok megoldásában alkalmazzuk a D 3.1 denícióit. A megoldást célszer

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára ÚJ FELADATLAP 8. évfolym AMt3 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór ÚJ FELADATLAP NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti

Részletesebben

MATEMATIKA 9. osztály I. HALMAZOK. Számegyenesek, intervallumok

MATEMATIKA 9. osztály I. HALMAZOK. Számegyenesek, intervallumok MATEMATIKA 9. osztály I. HALMAZOK Számegyenesek, intervllumok. Töltsd ki tábláztot! Minden sorbn egy-egy intervllum háromféle megdás szerepeljen!. Add meg fenti módon háromféleképpen következő intervllumokt!

Részletesebben

II. Lineáris egyenletrendszerek megoldása

II. Lineáris egyenletrendszerek megoldása Lieáris egyeletredszerek megoldás 5 II Lieáris egyeletredszerek megoldás Kettő vgy három ismeretlet trtlmzó egyeletredszerek Korábbi tulmáyitok sorá láttátok, hogy vgy ismeretlet trtlmzó lieáris egyeletredszerek

Részletesebben

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA

TERMOELEKTROMOS HŰTŐELEMEK VIZSGÁLATA 9 MÉRÉEK A KLAZKU FZKA LABORATÓRUMBAN TERMOELEKTROMO HŰTŐELEMEK VZGÁLATA 1. Bevezetés A termoelektromos jelenségek vizsgált etekintést enged termikus és z elektromos jelenségkör kpcsoltár. A termoelektromos

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym AMt2 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály 5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Mgyr Mtemtik Verseny onyhá, 011. március 11 15. 11. osztály 1. felt: Igzoljuk, hogy ármely n 1 természetes szám esetén. Megolás: Az összeg tgji k k 1+ k = = 1+ + n +... < 1+ 1+ n 3 1+ k

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen

Részletesebben

VB-EC2012 program rövid szakmai ismertetése

VB-EC2012 program rövid szakmai ismertetése VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s

Részletesebben

Bevezetés. Alapműveletek szakaszokkal geometriai úton

Bevezetés. Alapműveletek szakaszokkal geometriai úton 011.05.19. Másodfokú egyenletek megoldás geometrii úton evezetés A középiskoli mtemtik legszerteágzóbb része másodfokú egyenletek megoldás. A legismertebb módj természetesen megoldóképlet hsznált. A képlet

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

Egy látószög - feladat

Egy látószög - feladat Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük

Részletesebben

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória 1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel

Részletesebben

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): --- A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 2007. jnuár 26. MATEMATIKA FELADATLAP 4. évfolymosok számár 2007. jnuár 26. 15:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást

Részletesebben

Matematika érettségi 2015 május 5

Matematika érettségi 2015 május 5 ( ) A 6-tl vló oszthtóság feltétele, hogy szám oszthtó legyen -vel és -ml. 60 6 64 66 68 X {;8} X {;8} A minden tgdás: vn olyn A brn tgdás: nem brn Vn olyn szekrény, melyik nem brn (A) A D 49 b 4 ( 0)

Részletesebben

IV. Algebra. Algebrai átalakítások. Polinomok

IV. Algebra. Algebrai átalakítások. Polinomok Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol

Részletesebben

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b

1. NAP 9. OSZTÁLY. Lackó József, Csíkszereda 2. Az ab,, a b XVII ERDÉLYI MAGYAR MATEMATIKAVERSENY CSÍKSZEREDA 007 FEBRUÁR 8- NAP 9 OSZTÁLY Igzoljuk, hogy mide * \ {} eseté 5 ( ) Lckó József, Csíkszered Az b,, b számok eseté htározzuk meg z Ex ( ) x b x kifejezés

Részletesebben

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3. MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik

Részletesebben

Középiskolai matematika szakköri Feladatok a Fibonacci számok témaköréből Melczer Kinga

Középiskolai matematika szakköri Feladatok a Fibonacci számok témaköréből Melczer Kinga Középiskolai matematika szakköri Feladatok a Fibonacci számok témaköréből Melczer Kinga 1 feladat Mekkora lesz a nyúlállományunk az év végére, ha van egy nyúlpárunk, amely a második hónaptól kezdve szaporodik,

Részletesebben

A VARIÁCIÓSZÁMÍTÁS ALAPÖSSZEFÜGGÉSEI, ÉS GYAKORLATI ALKALMAZÁSA I. BEVEZETÉS, MOTIVÁCIÓ, PROBLÉMAFELVETÉS

A VARIÁCIÓSZÁMÍTÁS ALAPÖSSZEFÜGGÉSEI, ÉS GYAKORLATI ALKALMAZÁSA I. BEVEZETÉS, MOTIVÁCIÓ, PROBLÉMAFELVETÉS Szolnoki Tuományos Közlemények XV. Szolnok, 011. Prof. Dr. Szolcsi Róert 1 A VARIÁCIÓSZÁMÍTÁS ALAPÖSSZEFÜGGÉSEI, ÉS GYAKORLATI ALKALMAZÁSA I. BEVEZETÉS, MOTIVÁCIÓ, PROBLÉMAFELVETÉS A szerző célj emuttni

Részletesebben

Másodfokú egyenletek, egyenletrendszerek, egyenlôtlenségek

Másodfokú egyenletek, egyenletrendszerek, egyenlôtlenségek Másodfokú egyenletek 9. ) x < - ; b) x > 75;, c) x # - ; d) x #. 4 4 5 94. ) > - ; b) Minden vlós számr igz. c) m > 4; d) n $ -. 9 95. ) $ ; b) b < 4; c) c < - ; d) d #. 96. Nullár rendezés után vizsgáljuk

Részletesebben

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)

Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4) Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Vonyarcvashegyi Eötvös Károly Általános Iskola 2014. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

ÉT: x R ÉK: y R ZH: x = 0 SZÉ: - SZMN páratlan fv. n a

ÉT: x R ÉK: y R ZH: x = 0 SZÉ: - SZMN páratlan fv. n a A htváyozás iverz műveletei. (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté De.: :... Oly téyezős szorzt, melyek mide téyezője. : htváyl : kitevő : htváyérték A htváyozás zoossági egész

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk

Részletesebben