KOVÁCS BÉLA, MATEMATIKA I.
|
|
- Endre Kovács
- 8 évvel ezelőtt
- Látták:
Átírás
1 KOVÁCS BÉLA, MATEmATIkA I 15
2 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,, stb A derivált helyen vett helyettesítési értékét szokás a függvény helyhez tartozó differenciálhányadosának is nevezni A derivált előállítását deriválásnak vagy differenciálásnak mondjuk A differenciálhányados geometriai jelentése az görbe helyhez tartozó érintőjének az iránytangense, azaz (31 ábra) 31 ábra A deriválható függvény folytonossága Ha egy függvénynek valamely helyen vagy intervallumon van deriváltja, akkor a függvény itt differenciálható A differenciálhatóságból következik a függvény folytonossága Fordítva azonban ez nincs így Például az függvény az helyen nem differenciálható, ugyanakkor itt (és mindenütt) folytonos
3 Függvények különböző osztályainak kapcsolata 2 DERIVÁLÁSI SZAbÁLYOk Legyenek u, v, f, g differenciálható függvények Ekkor: 1, C állandó 2 3 4, 5 (láncszabály) 6 és Ekkor 7,, akkor Alapfüggvények deriváltjai Az alapfüggvények deriváltja, C állandó
4 , Értelmezzük a függvény második harmadik stb deriváltját Jelölésük: A f függvény differenciálja (32 ábra): (2) 32 ábra 3 A differenciálszámítás középértéktételei Rolle-féle középértéktétel Rolle-féle középértéktétel [1] : Ha az f függvény 1 az [a, b] intervallumon folytonos, 2 intervallumon differenciálható és 3, akkor az intervallumon van legalább egy olyan hely, ahol Lagrange-féle középértéktétel [2]
5 Lagrange-féle középértéktétel : Ha az f függvény 1 intervallumon folytonos, 2 intervallumon differenciálható, akkor az intervallumon van legalább egy olyan hely, hogy (3) Cauchy-féle középértéktétel Cauchy-féle középértéktétel [3] : Ha az f és g függvény 1 intervallumon folytonos, 2 intervallumon differenciálható, 3 3az intervallumon, akkor az intervallumon van olyan hely, hogy (4) 4 MINTAPÉLdÁk Megoldások: láthatók nem láthatók 1 Az (1) formula alapján határozzuk meg az és a függvény deriváltját Megoldás 2 Határozzuk meg az függvény deriváltját, majd ezt felhasználva, teljes indukcióval igazoljuk, hogy
6 természetes szám) Megoldás Az igazolása: 1 -re, igaz 2 Feltételezzük, hogy -ra igaz, vagyis 3 Bizonyítjuk -re: Az állítás tehát öröklődik k -ról -re, így az minden természetes számra igaz (közben felhasználtuk a szorzat deriválási szabályát) 3 Az függvény az helyen nem differenciálható, mert itt nem folytonos 4 Ismerve,, shx és chx deriváltját, határozzuk meg thx és deriváltját Megoldás A tört deriválási szabályát alkalmazzuk 5 Ismerve tgx deriváltját, határozzuk meg arctgx deriváltját Megoldás Az arctgx függvény tgx inverze A 6 deriválási szabályt alkalmazzuk: Ekkor 6 Határozzuk meg az alábbi függvények deriváltját: Megoldások
7 7 Határozzuk meg az alábbi függvények deriváltját: Megoldások 8 Határozzuk meg az alábbi összetett függvények deriváltját: Megoldások Alkalmazzuk a láncszabályt, ahol Tekintettel arra, hogy,, ezért (
8 9 Határozzuk meg az alábbi függvények deriváltját: a) b) c) Megoldások a),, Így b), Itt a külső függvény, vagyis a 3 kitevőjű hatványfüggvény A belső függvény Tehát c) A külső függvény, a belső függvény Ennek így is kell lennie, hiszen, és ennek deriváltja cosx 10 Határozzuk meg az harmadik deriváltját Megoldás,, 11 Írjuk fel az alábbi függvények hatodik deriváltját:
9 a) b) c) d) Megoldások a),,,,, b),, c), d),,,,, 12 Határozzuk meg az alábbi függvények n-edik deriváltját, egész): a) b) c) Megoldások a),,, Innen már lehet következtetni, hogy, ha n páros és, ha n páratlan Ez felírható így is: b),,,, Innen látható, hogy c),,,
10 13 Deriváljuk az alábbi függvényeket: a) b) Megoldások Képezzük előbb mindkét oldal logaritmusát, majd deriváljunk mindkét oldalon a) Innen b) Innen 14 Állítsuk elő az deriváltat az alábbi implicit függvények esetén: a) b) c) Megoldások Mindhárom esetben y úgy tekintendő, mint x -nek a függvénye, azaz egyenletek mindkét oldalát, majd fejezzük ki innen -t Deriváljuk az a) b) c) 15 Határozzuk meg az alábbi paraméteresen adott függvények esetében az és deriváltat: a) b) Megoldások A 7 deriválási szabály szerint, és ebből következően a),,, Tehát
11 , b),,, Tehát, 16 Állítsuk elő az deriváltat az alábbi, poláris koordinátákkal adott görbék esetén: a) b) Megoldások Írjuk fel a görbék paraméteres egyenletrendszerét, ha, a paraméter, miközben a) b) 17 Deriváljuk az alábbi függvényeket: a), g és k állandó b), A,, állandók c), c állandó Megoldások a) b) c)
12 18 Számítsuk ki az alábbi függvények helyhez tartozó deriváltját Mekkora itt az görbe érintőjének a hajlásszöge: a), b), c), Megoldások a) Az iránytangens:, ahonnan az érintő hajlásszöge: b),, c), 19 Mekkora szögben metszi az görbe az x tengelyt? Megoldás A görbe ott metszi az x tengelyt, ahol, azaz Innen A görbe metszési szögén a metszésponthoz tartozó érintő hajlásszögét értjük A derivált: Az helyen (a metszéspontban) az iránytangens: Tehát az helyen a görbe 45 fokos szögben metszi az x tengelyt Hasonlóan az helyen, tehát (33 ábra) 33 ábra
13 20 Melyik pontban lesz az görbe érintője párhuzamos az egyenessel? Megoldás Az egyenes iránytangense Az görbe érintőjének iránytangense A két iránytangensnek egyenlőnek kell lennie, azaz Innen Ezen a helyen a görbe pontjának ordinátája Tehát az pontban lesz párhuzamos a görbe érintője az egyenessel 21 Legyen egy pont mozgásegyenlete, ahol t jelenti az időt másodpercben, s pedig a megtett utat centiméterben Melyik időpillanatban lesz a pont sebessége 4800 cm/sec? Megoldás A sebesség az első deriválttal egyenlő, azaz A feltétel szerint, ahonnan másodperc 22 Határozzuk meg az alábbi függvények differenciálját Számítsuk is ki a differenciál értékét, ha és :,,, Megoldások Használjuk a (2) formulát:,,, 23 Írjuk fel az függvényre a Rolle-tételt az intervallum esetén Számítsuk ki a tételben szereplő értéket Megoldás A tétel feltételei teljesülnek, ugyanis a függvény mindenütt differenciálható (így folytonos is), és Mivel, ezért a tétel alakja: Innen Tehát két érték létezik, és mindkét érték az (1 3) intervallumban van (34 ábra)
14 24 Írjuk fel a Lagrange-féle középértéktételt az alábbi függvényekre, majd számítsuk ki értékét: a), b), Megoldások a), így a (3) alakja b), így a tétel alakja: Átalakítás után Azt kaptuk tehát, hogy az parabola esetén az intervallum közepén van 25 Határozzuk meg az görbén azt a pontot, amelyben a görbe érintője párhuzamos a (1 0), (10 ln 10) pontokon átmenő szelővel (35 ábra) Megoldás A Lagrange-féle középértéktételben szereplő értékeket kell meghatározni Jelen esetben,, a = 1, b = 10 A tétel alakja:
15 Tehát a kérdéses pont az pont, ahol 26 Írjuk fel a Cauchy-féle középértéktételt az, függvények esetére a intervallumon Megoldás A (4) formulát kell felírni, ha, Mivel,, ezért a tétel alakja:, Innen az is látszik, hogy ha, akkor, és ezért 5 FELAdATOk Határozza meg az alábbi függvények deriváltját, és próbálja azt a lehető legegyszerűbb alakra hozni:
16
17 36 37 Határozza meg az alábbi függvények n-edik deriváltját: Határozza meg az és deriváltakat az alábbi, paraméteresen adott függvények esetén: Számítsa ki az alábbi függvények differenciálhányadosát: Határozza meg az deriváltat az alábbi, implicit módon adott függvények esetén:
18 54 Számítsa ki az alábbi függvények adott helyhez tartozó differenciálhányadosát: 55, Állítsa elő az alább megadott függvények differenciálját, majd számítsa ki a differenciál értékét az adott x és dx esetén: 59, x = 3, dx = 0, , x = 1, dx = 0,05 62, x = 0, dx = 0,2 Számítsa ki a Lagrange-féle középértéktételben szereplő értékét az alábbi függvények és adott intervallum esetén: 63, 64, 65 Igazolja, hogy ha, akkor tetszőleges intervallum esetén a Lagrange-féle középértéktételben szereplő értéke 66 Számítsa ki a Lagrange-féle középértéktételben szereplő értékét mind az, mind a függvény esetében, a intervallumot tekintve Ezután számítsa ki a Cauchy-féle középértéktételben szereplő értékét is 67 A Lagrange-féle középértéktétel alakban is felírható, ahol Írja fel a tételnek ezt az alakját az függvény esetére, majd számítsa ki határértékét, ha 68 Az x = a és x = b hely legyen a kétszer differenciálható f függvénynek kétszeres zérushelye, azaz legyen és Igazolja, hogy ekkor az függvénynek az intervallumban van legalább két zérushelye 69 A Lagrange-féle középértéktételt felhasználva igazolja, hogy, ha
19 70 A Rolle-féle középértéktételt felhasználva igazolja, hogy az egyenlet gyökei valósak, ha Állapítsa meg azokat az intervallumokat, ahová a gyökök esnek 71 Számítsa ki értékét, ha 72 Igazolja, hogy az és deriváltja megegyezik (ha ) [1] Ejtsd: [roll] Michel Rolle ( ) francia matematikus nyomán [2] Ejtsd: [lágranzs] Joseph-Louis Lagrange ( ) olasz születésű francia matematikus nyomán [3] Ejtsd: [kosi] Augustin-Louis Cauchy ( ) francia matematikus nyomán Digitális Egyetem, Copyright Kovács Béla, 2011
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
RészletesebbenMATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
RészletesebbenLineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
Részletesebben(Gyakorló feladatok)
Differenciálszámítás (Gyakorló feladatok) Programtervező matematikus szakos hallgatóknak az Analízis 3. című tárgyhoz Összeállította: Szili László L-Sch -sel hivatkozunk a Leindler Schipp jegyzetre 2004.
RészletesebbenAnalízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
RészletesebbenArany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
RészletesebbenJelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
RészletesebbenAnalízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem
Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
RészletesebbenFeladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 12 XII. STATIsZTIKA ellenőrző feladatsorok 1. FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 6.10, 0.01, 6.97, 6.03, 3.85, 1.11,
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
RészletesebbenA döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
RészletesebbenVektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
RészletesebbenA parabola és az egyenes, a parabola és kör kölcsönös helyzete
66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely
RészletesebbenAzonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
Részletesebben2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
RészletesebbenOsztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
RészletesebbenGAZDASÁGI MATEMATIKA 1. 1. Gyakorlat
GAZDASÁGI MATEMATIKA 1. 1. Gyakorlat Bemutatkozás Chmelik Gábor óraadó BGF-KKK Módszertani Intézeti Tanszéki Osztály chmelik.gabor@kkk.bgf.hu http://www.cs.elte.hu/ chmelik Fogadóóra: e-mailben egyeztetett
Részletesebben3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
RészletesebbenDifferenciálszámítás és alkalmazásai
Differenciálszámítás és alkalmazásai Szakdolgozat Írta: Katona Edina Mária Matematika Bsc szak Tanári szakirány Témavezető: Sikolya Eszter, adjunktus Alkalmazott Analízis és Számításmatematika Tanszék
RészletesebbenKoordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
RészletesebbenAlgebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
Részletesebben1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
RészletesebbenELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:
RészletesebbenHa a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
RészletesebbenPárhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
RészletesebbenVektoralgebrai feladatok
Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat
RészletesebbenFüggvényvizsgálat. Végezzük el az alábbi függvények teljes függvényvizsgálatát:
Végezzük el az alábbi függvények teljes függvényvizsgálatát: Függvényvizsgálat. f HL := 4-4. f HL := - 4 + 8. f HL := 5 + 5 4 4. f HL := 5. f HL := 6. f HL := - 9. f HL := + + 0. f HL := - 7. f HL :=.
RészletesebbenAnalízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
RészletesebbenGazdasági matematika I.
I. évfolyam TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. 2011/2012 I. félév Tantárgy megnevezése Tantárgyi útmutató Gazdasági Matematika I. (Analízis) Tantárgy kódja: Tantárgy jellege/típusa: Módszertani
RészletesebbenAz analízis alapjai és üzleti alkalmazásai
Az analízis alapjai és üzleti alkalmazásai Szakdolgozat Írta: Komjáti Dóra Matematika Bsc szak Matematikai elemző szakirány Témavezető: Mincsovics Miklós Emil, óraadó Alkalmazott Analízis és Számításmatematikai
RészletesebbenHalmazok és függvények
Halmazok és függvények Óraszám: 2+2 Kreditszám: 6 Meghirdető tanszék: Analízis Debrecen, 2005. A tárgy neve: Halmazok és függvények (előadás) A tárgy oktatója: Dr. Gilányi Attila Óraszám/hét: 2 Kreditszám:
RészletesebbenJavítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
RészletesebbenKözépiskolai matematika szakköri Feladatok a Fibonacci számok témaköréből Melczer Kinga
Középiskolai matematika szakköri Feladatok a Fibonacci számok témaköréből Melczer Kinga 1 feladat Mekkora lesz a nyúlállományunk az év végére, ha van egy nyúlpárunk, amely a második hónaptól kezdve szaporodik,
RészletesebbenTrigonometria és koordináta geometria
Tantárgy neve Trigonometria és koordináta geometria Tantárgy kódja MTB1001 Meghirdetés féléve I. Kreditpont 4k Összóraszám (elm+gyak) 30+30 Számonkérés módja Gyakorlati jegy (2 zárthelyi dolgozat) Előfeltétel
Részletesebben3. Matematikai logika (megoldások)
(megoldások) 1. Hamis, ugyanis P, Q és R logikai értékét behelyettesítve kapjuk: (P Q) R = (1 0) 0 = 0 0 = 0. (Ebben és a további feladatok megoldásában alkalmazzuk a D 3.1 denícióit. A megoldást célszer
RészletesebbenMBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális
RészletesebbenA SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli
Részletesebben9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
RészletesebbenMinta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok
RészletesebbenMágneses szuszceptibilitás vizsgálata
Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
RészletesebbenEgyszerű áramkörök vizsgálata
A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)
RészletesebbenMatematika POKLICNA MATURA
Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét
RészletesebbenKérdések és feladatok
Kérdések és feladatok 1. A mesében több szám is szerepel. Próbáld meg felidézni ezeket, majd töltsd ki a táblázatot! Ügyelj, hogy a páros és a páratlan számok külön oszlopba kerüljenek! Hány napos volt
RészletesebbenBEVEZETÉS AZ ANALÍZISBE
BEVEZETÉS AZ ANALÍZISBE Székelyhidi László A felsőbb matematika kapujában Jelen kiadvány a Palotadoktor Bt. kiadásában készült. A munkát lektorálta: Lovas Rezső (Debreceni Egyetem, Matematikai Intézet)
RészletesebbenDifferenciál egyenletek (rövid áttekintés) d x 2
Differeniál egenletek (rövid áttekintés) Differeniálegenlet: olan matematikai egenlet, amel eg vag több változós ismeretlen függvén és deriváltjai közötti kasolatot írja le. Fontosabb tíusok: közönséges
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Koordináta-gomtria szürkíttt háttrű fladatrzk nm tartoznak az érinttt témakörhöz azonban szolgálhatnak fontos információval az érinttt fladatrzk mgoldásához! 1)
RészletesebbenMatematika példatár 2.
Matematika példatár 2. Sorok, függvények határértéke és Csabina, Zoltánné Matematika példatár 2.: Sorok, függvények határértéke és Csabina, Zoltánné Lektor: PhD. Vigné dr Lencsés, Ágnes Ez a modul a TÁMOP
RészletesebbenMásodrendű felületek
Azon pontok halmaza a térben, melyek koordinátái kielégítik az egyenletet, ahol feltételezzük, hogy az a, b, c, d, e, f együtthatók egyszerre nem tűnnek el. Minden másodrendű felülethez hozzárendelünk
RészletesebbenMatematika példatár 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 2 MAT2 modul Sorok, függvények határértéke és folytonossága Aszimptoták SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
Részletesebben2. Interpolációs görbetervezés
2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,
RészletesebbenHasználható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép és készülékszerelő
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Részletesebben1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Órai kidolgozásra: 1. feladat Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk,
RészletesebbenKidolgozott. Dudás Katalin Mária
Dudás Katalin Mária Kidolgozott matematikatételek mérnökök számára Ez a könyv műfaját tekintve az összefoglaló kézikönyv és az egyetemi jegyzet közé helyezhető. Tömören összegyűjti a mérnöki tanulmányok
RészletesebbenLécgerenda. 1. ábra. 2. ábra
Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel
RészletesebbenAz analízis néhány közgazdaságtani alkalmazása
Az analízis néhány közgazdaságtani alkalmazása Szakdolgozat Írta: Simon Anita Matematika Bsc szak Matematikai elemző szakirány Témavezető: Sikolya Eszter, adjunktus Alkalmazott Analízis és Számításmatematikai
RészletesebbenTémakörök az osztályozó vizsgához. Matematika
Témakörök az osztályozó vizsgához Idegenforgalmi és Informatikus osztályok (9.A/9.B) 1. A halmazok, számhalmazok, ponthalmazok 2. Függvények 3. A számelmélet elemei. Hatványozás. 0 és negatív kitevőjű
RészletesebbenAnalízis példatár. Országh Tamás. v0.2. A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a
Analízis példatár v0.2 A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthető példatárak közt. Országh Tamás Budapest, 2005-2010 1 Mottó: Ki kéne vágni minden
RészletesebbenMATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. október 8. EMELT SZINT I. ) Kinga 0. születésnapja óta kap havi zsebpénzt a szüleitől. Az első összeget a 0. születésnapján adták a szülők, és minden hónapban 50 Fttal többet adnak,
RészletesebbenÁramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
RészletesebbenKosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
Részletesebben2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
RészletesebbenADATBÁZIS-KEZELÉS. Funkcionális függés, normál formák
ADATBÁZIS-KEZELÉS Funkcionális függés, normál formák KARBANTARTÁSI ANOMÁLIÁK beszúrási anomáliák törlési anomáliák módosítási anomáliák DOLG_PROJ(Dszsz, Pszám, Dnév, Pnév, Órák) 2 MÓDOSÍTÁSI ANOMÁLIÁK
RészletesebbenDiszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 1. Gyakorlat Bogya Norbert Bolyai Intézet 2012. szeptember 4-5. Bogya Norbert (Bolyai Intézet) Diszkrét matematika I. gyakorlat 2012. szeptember 4-5. 1 / 21 Információk
RészletesebbenGeometriai példatár 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 2 GEM2 modul Metrikus feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi
RészletesebbenKözépszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
RészletesebbenKombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
RészletesebbenFÜGGVÉNYEK, SOROZATOK
FÜGGVÉNYEK, SOROZATOK A FÜGGVÉNYFOGALOM ELŐKÉSZÍTÉSE 1-6. OSZTÁLY Adott szabály követése Szabályfelismerés és szabálykövetés Szabályfelismerés és szabály megadása szöveggel, képlettel EGYENES ÉS FORDÍTOTT
Részletesebben1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
RészletesebbenJANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet
RészletesebbenMATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések
MATLAB 4. gyakorlat Lineáris egyenletrendszerek, leképezések Menetrend Kis ZH MATLAB függvények Lineáris egyenletrendszerek Lineáris leképezések Kis ZH pdf MATLAB függvények a szkriptekhez hasonlóan az
Részletesebben2004. december 1. Irodalom
LINEÁRIS LEKÉPEZÉSEK I. 2004. december 1. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
RészletesebbenG Szabályfelismerés 2.2. 2. feladatcsomag
ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján
RészletesebbenFordítóprogramok Készítette: Nagy Krisztián
Fordítóprogramok Készítette: Nagy Krisztián Reguláris kifejezések (FLEX) Alapelemek kiválasztása az x karakter. tetszőleges karakter (kivéve újsor) [xyz] karakterhalmaz; vagy egy x, vagy egy y vagy egy
RészletesebbenMatematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
Részletesebben1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
RészletesebbenHatározatlan integrál
. fejezet Határozatlan integrál Határozatlan integrál D. Azt mondjuk, hogy az egyváltozós valós f függvénynek a H halmazon primitív függvénye az F függvény, ha a H halmazon f és F értelmezve van, továá
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 080 ÉETTSÉGI VIZSG 009. május. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM Egyszerű, rövid feladatok
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 006. május 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 006. május 18. 1:00 Az írásbeli vizsga időtartama: 0 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM
RészletesebbenKOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 2 II TÖbbVÁLTOZÓS FÜGGVÉNYEk INTEGRÁLÁSA 1 Kettős INTEGRÁL Legyen f(x,y) a T tartományon nemnegatív kétváltozós függvény Jelölje V azt a hengerszerű testet, amelyet alulról a
RészletesebbenTANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2014/2015-ös tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani
RészletesebbenPRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
RészletesebbenAz aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!
1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,
RészletesebbenÉT: x R ÉK: y R ZH: x = 0 SZÉ: - SZMN páratlan fv. n a
A htváyozás iverz műveletei. (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté De.: :... Oly téyezős szorzt, melyek mide téyezője. : htváyl : kitevő : htváyérték A htváyozás zoossági egész
Részletesebben[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
Részletesebben