Vektoralgebrai feladatok
|
|
- Albert Németh
- 8 évvel ezelőtt
- Látták:
Átírás
1 Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat az a, b és c vektorok segítségével! 1.3 a) Egy szabályos hatszög középpontjából két szomszédos csúcsába mutató vektorok a és b. Írja fel ezek segítségével a hatszög oldal és átló vektorait! b) Egy szabályos hatszög egyik csúcsából két szomszédos csúcsába mutató vektorok a és b. Írja fel ezek segítségével a hatszög oldal és átló vektorait! 1.4 Az O pontból az AB szakasz végpontjaihoz vezető vektorok a és b. Írja fel ezek segítségével az AB szakasz azon P pontjához vezető vektort, melyre =! 1.5
2 Bontsa fel az ABC háromszög A csúcsából a szemközti oldalt 1:3 arányban osztó pontjaihoz vezető vektorokat az A csúcsból kiinduló két oldalvektorral párhuzamos összetevőkre! 1.6 a) Az ABC háromszög A pontját tükrözze a B-re. A tükörkép legyen az A. Bontsa fel a vektort C-ből induló oldalvektorokkal párhuzamos összetevőkre! b) Jelölje az ABCD négyszög AD és BC oldalainak felezőpontjait rendre E és F. Határozza meg az vektort az és vektorok segítségével! 1.7 Egy 300 méter széles 3km/h sebességű folyón kel át egy halász a csónakjával. Ha a csónak sebessége állóvízben 4 km/h és a partra a merőleges irányt tartja, akkor a folyó sodrása miatt lejjebb fog kikötni. a) Mennyivel lejjebb? b) Mennyi idő alatt ér át a túlpartra? 1.8 Legyen a(2;-3), b(-1;5), c(0;3). Írja fel a következő lineáris kombinációk eredményét: a) a+b+c b) a-b-c c) 2a-b-c d) a-3c e) 3(2a-b) 1.9 Állítsuk elő a vektort b1, b2 vektorok lineáris kombinációjaként, ha a = b1 = b2 = 1.10 Állítsuk elő a vektort b1, b2, b3 vektorok lineáris kombinációjaként, ha 1.11 a = b1 = b2 = b3 = Mit írna a p paraméter helyére, ahhoz, hogy az a=, b=, c= vektorok LK-ja előállítsa a d= vektort? 1.12
3 Mekkora volt a kezdősebesség, ha 4 s elteltével a pillanatnyi sebesség (-4;11;8) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s2? 1.13 Számítsd ki az alábbi vektorok skalárszorzatát! g=(14; 2,3; 6,8) h=(3,4; 15; 2,8) 1.14 Csúcsaival adott az alábbi háromszög. Számítsd ki a kerületét és a legnagyobb szögét! A=(12;33;23); B=(14;36;33); C=(22;12;38) 1.15 Add meg az alábbi, csúcsaival adott háromszög A csúcsába mutató magasságvektorát! A=(23;11;34) B=(14; 9; 22) C=(18; 27; 33) 1.16 Számítsd ki a háromszögek területét: a) A(1; 6; 6); B(5; 0; 1); C(2; -1; -4)! 1.17 Add meg az ABC pontok által határolt sík egyenletét? D pont rajta van a síkon? Milyen messze van a síktól? A (8; -1; 2); B (-5;1;0); C (7;-2;2); D (0; 2;8) 1.18 Egy parallelepipedon egy csúcsba futó élvektorai a(12;20;16); b(11;22;33); c(14;7;21). Mekkora az b,c és a,c élű oldallapok hajlásszöge? 1.19 Számítsd ki az alábbi, egy csúcsba futó élvektoraival adott parallelepipedon térfogatát! a(3; 5; 12); b(9; 15; 7); c(1; 8; 2) 1.20 Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s2? 1.21 Mekkora a pillanatnyi sebesség 8 s elteltével, ha a kezdősebesség (8;-6;27) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s2? 1.22 Mekkora volt a kezdősebesség, ha 4 s elteltével a pillanatnyi sebesség (-4;11;8) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s2?
4 1.23 Számítsa ki az alábbi vektorok skalárszorzatát! a) a=(13;34) b=(24;19) b) a=(3;4;7) b=(6;8;9) c) x=(45;12,5) y=(19,5;28) d) g=(14; 2,3; 6,8) h=(3,4; 15; 2,8) e) a=(2;3;6) b=(4;7;10) c=(8;5;9) f) a=(11;13;15) b=(3;7;18) c=(2;4;9) 1.24 Vízszintes talajon húzunk 120 N erővel 5 m-es távon egy testet. Az elmozdulás és az erőhatás vektora párhuzamos. Mekkora munkát végeztünk? 1.25 Mekkora munkát végeztünk, ha az erő F=(12; 23,5; 3,4) N, az út pedig s=(2; 11; 14,3) m? N erőt fejtettünk ki, és 1620 J munkát végeztünk. Mekkora volt az elmozdulás, ha az erővektor és az elmozdulás-vektor 60 -ot zártak be? 1.27 Mekkora munkát végeztünk, ha az erő F=(34; 24,3; 18,9) N, az út pedig s=(21; 13,2; 8,9) m? 1.28 Mekkora az x irányú elmozdulás, ha a kifejtett erő F=(10;8;6) N, az y irányú elmozdulás 2m, a z irányú 4m, a munka pedig 420 J? 1.29 Számítsd ki a két vektor által meghatározott szöget! a) a (2; 10; 7) b(8; -3; 3) b) a=(-3;6;23) és b=(14;-5;11) c) a=(-6;26;31) és b=(-13;-5;41) 1.30 Csúcsaival adott egy háromszög. Számítsuk ki kerületét és a bezárt szögeket! a) A(12;6;18) B(23;7;19) C(4;18;33) b) A(21;16;8) B(21;27;9) C(3;8;13) c) A=(2,5; 3,8; 6,2); B=(6,4; 3,2; 4,4); C=(5,2; 2,4; 6,8) d) A=(12;33;23); B=(14;36;33); C=(22;12;38)
5 1.31 Ortogonálisak, azaz merőlegesek-e az alábbi vektorok? a) a=(3,6; 2,8); b=(3,5; -6) b) x=(3; 4,5); y=(-9; 6) c) a=(2; 6; 7) b=(3; -1; 0) 1.32 Adjuk meg úgy b vektor hiányzó koordinátáját, hogy b merőleges legyen a-ra! a) a=(2,4; -3,2; 5,6); b=(-1,2; 5,6; z) b) a=(2,3; 4,3; -8,6) b=(3,4; y; 12,5) c) a=(3,3; -4,5; 2,1) b=(x; 2,3; 1,1) d) a=(13,7; 0,5; 2,3) b=(2,2; 0,6; z) 1.33 Adjuk meg az a vektor b vektorra vetített szakasz hosszát! a) a= (2,5; 6,3; 7,8); b= (3,3; 4,4, 2,1) b) a= (8,6; -3,4; 2,6); b= (4,6; 7,4; -3,2) 1.34 Add meg a b vektorra vetített a vektort! a) a = (3;-5;8) b = (4,1,-1) b) a(-2;3;4) b(5;-6;8) c) a(23,5; 34,2; 28,6) b(23,2; 11,4; 35,4) 1.35 Add meg az alábbi háromszög A csúcsába mutató magasságvektorát! a) A (1,5; 3,5; 7) B(1;3;5) C(2;4;6) b) A (2; 3,4; 6) B (0; 1,2; 3) C (3; 7; 8,2) c) A=(23;11;34) B=(14; 9; 22) C=(18; 27; 33) 1.36 Számítsuk ki az alábbi vektoriális szorzatokat! a) (2;3;4) (1;4;7 ) b) ( -12;6;-9) (13;5;-7 ) c) (23;-32;11 ) (13;5;-7 ) d) (33;45;2 ) (11;0;7 ) e) (-3,4; 5, 6; -1,2 ) (8; -2,3; 0) 1.37 Számítsd ki az alábbi paralelogramma területét! A(2;3;5) B(5;3;5) C(6;6;5) D(3;6;5) 1.38 Számítsd ki a háromszögek területét! a) A(2,3; 4,5; 1,8) B(3,2; 5,6; 0,1) C(0; 3,2; 2,6) b) A(2; 5; 7); B(3; 6; 8); C(0; 1; 9) c) A(1; 6; 6); B(5; 0; 1); C(2; -1; -4)
6 1.39 Számítsd ki a háromszög területét, melynek 2 oldalvektora (1;2;3) és (4;0;8)! 1.40 Add meg az alábbi A,B,C pontokkal meghatározott síkok egyenletét! a) A(2; 4; 8); B(0; 3; 6) C(3;7;10) b) A(1; -5; 0); B(-4; 2; 1) C(2;-7;11) c) A(4; 6; -3); B(2; 4; -7); C(-1; 3; 4) 1.41 Add meg az ABC pontok által határolt sík egyenletét! D pont rajta van a síkon? a) A (5; -4; 2); B (0; 7; -3); C (3; -1; 8); D (3; 0,4; 0) b) A (-3; -5; 2) B (-5;-10; 0) C (-2;-6;1) D (4; 3; -2) c) A (5; -4; 2); B (0; 7; -3); C (3; -1; 8); D (3; 0,4; 0) d) A (8; -1; 2); B (-5;1;0); C (7;-2;2); D (0; 2;8) 1.42 Számítsuk ki az A,B,C pontok által meghatározott sík és D pont távolságát, ha A(2;2;2;) B(3;4;5) C(8;6;4) D(10;6;8) 1.43 A,B,C,D pontok meghatároznak egy tetraédert. Mekkora a test D csúcsába húzott magassága, ha a) A(2;3;4;) B(-5; 10; 8) C(0; -4; 9) D(12; 6; 3) b) A(2;5;-6;) B(-7; 20; -18) C(10; 14; 12) D(-8; 7; 13) c) A(12;3;6;) B(17; 2; 8) C(0; 4; 22) D(28; 12; 3) 1.44 Számítsd ki az alábbi síkok hajlásszögét! 2x+3y-z=2 x-5y+2z= Határozd meg az ABCD tetraéder q lapja (ACD) és egy normálvektorával adott sík szögét! A (1; 2; -3) B (5; 0; 1) C (3; -1; -2) D (4; 5; 1) n(-3,1,5) 1.46 Egy tetraéder négy csúcsa: A(2;4;6); B(8;9;10); C(-6;-4;-2); D(-7;5;-3). Add meg az ABC és BCD lapok hajlásszögét! 1.47 Egy parallelepipedon egy csúcsba futó élvektorai a(12;20;16); b(11;22;33); c(14;7;21). Mekkora az a,b és a,c élű oldallapok hajlásszöge?
7 1.48 Egy parallelepipedon egy csúcsba futó élvektorai a(12;20;16); b(11;22;33); c(14;7;21). Mekkora az a,b és b,c élű oldallapok hajlásszöge? 1.49 Egy parallelepipedon egy csúcsba futó élvektorai a(12;20;16); b(11;22;33); c(14;7;21). Mekkora az b,c és a,c élű oldallapok hajlásszöge? 1.50 Számítsd ki az alábbi, egy csúcsba futó élvektoraival adott parallelepipedon térfogatát! a) a(12; 16; 20); b(8; 10; 12); c(9; 18;27) b) a(3; 5; 12); b(9; 15; 7); c(1; 8; 2) c) A(4; 8; 12); B(3;7;9); C(7;15;23); D(13;11;9) 1.51 Add meg a háromszög kerületét, és területét! A (2; -1; 6) B (1; 4; 5) C (-1; 3; -3) 1.52 Egy rombusz három csúcsa A(2;3;5); B(-1;0;8); C(6;-9;2). Add meg a negyedik csúcsot! 1.53 Egy parallelepipedon A (0;2;13) csúcsba futó éleit az B (-5; 3; 2); C (8; 14; -11) és D (2; -4; 16) csúcsok határolják Oldja meg az alábbi, összefüggő feladatokat! a) Milyen messze vannak egymástól az A(1,2,3) és a B(4,-2,6) pontok? b) Számítsa ki az A, B és a C(-3,4,-2) pontok által meghatározott háromszög kerületét, területét, szögeit, C csúcsán áthaladó magasságvektorának koordinátit! c) Írja fel az A, B és a C(-3,4,-2) pontok által meghatározott sík egyenletét ax+by+cz=d formában! A sík tartópontjaként használja az A pontot! Adja meg az imént meghatározott sík és a (2, 3, 2) helyvektor által bezárt szöget! d) Bontsa fel az a vektort a b vektorral párhuzamos és arra merőleges összetevőkre!) a= (1, 1, b=(1, 0, 1). Mekora e két vektor által kifeszített háromszög területe? 1.55 A szögek kiszámítása nélkül döntse el, hogy az alábbi vektorpárok hegyes-, derék- vagy tompaszöget zárnak-e be. A megadott koordináták az i, j, k bázisra vonatkoznak: a) (4,-2, 6) és (-3,4,-2) ;
8 b) (1,2,3) és (4,-2,6); c) (1,1,1) és (-10, 7, 3); 1.56 Legyen az ABC háromszög három csúcsa: A(2,4,3), B(-3,1,6), C(0,-4,4). Számítsa ki a háromszög X-Y síkra vett merőleges vetületének területét! 1.57 Legyen az ABC háromszög három csúcsa: A(2,4,3), B(-3,1,6), C(0,-4,4). Számítsa ki a a háromszög legnagyobb szögét, és az X-Y síkra vett merőleges vetületének területét! 1.58 Adottak a következő pontok: A(1; 2;0),B(2,3,1),C( 1,2,2), D(3,1,4). a.) Írja fel az A ponton átmenő, BCD síkkal párhuzamos sík egyenletét! b.) Mekkora az a.) -ban kiszámított sík és az x 2y + z + 3 = 0 egyenlettel megadott sík által bezárt szög? 1.59 Egy Nap körül keringő űrszonda háromszög alakú napelem panelével fedezi energiaszükségletét. A panelt három egymásra merőleges, a háromszög csúcsaiba futó kar tartja, és egy merevítő rúd, amelyik a háromszög közepe táján érintkezik a panellel, és merőleges a felületére. Mind a négy rúd a szonda oldalán, egy pontban van rögzítve. Az egymásra merőleges karok hosszúsága 2m, 2m illetve 3m, s ez utóbbi éppen a Nap irányába mutat. Azoknak a fotonoknak a fluxusa, amelyekre a napelem érzékeny, 1, /(m2s), azaz a Nap irányára merőlegesen 1 m2 felületre másodpercenként 1, db hasznos foton érkezik. Ha minden foton két elektront lök ki a napelem félvezetőjének paneljéből, akkor mennyi elektron termelődik egy másodperc alatt? Mekkora szögben esik a napfény a napelem felületére (azaz mekkora a felület normálisa és a Nap iránya által bezárt szög)? Milyen hosszú az a merevítő rúd, amely a háromszög alakú panelre merőleges? 1.60 Egy háromszög csúcspontjainak koordinátái: A(-2; -1), B(4; -3), C(4; 5). A B csúcsból induló magasságvonal az AC oldalt a T pontban metszi. Mekkora az AT szakasz hossza? 1.61 a)az a( 3; 4) és b(1; y) vektorok 60 -os szöget zárnak be egymással. Mekkora az y? b) Határozza meg a skalárszorzat felhasználásával a c = (2, y0, z0) vektort úgy, hogy merőleges legyen az a = (2, 3, 0) és a b = (1, 2, -2) vektorokra! 1.62 Mekkora szöget zár be egymással egy kocka két kitérő helyzetű lapátlóegyenese?
Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
RészletesebbenKoordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
RészletesebbenHa a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
RészletesebbenGyakorló feladatok vektoralgebrából
Gyakorló feladatok ektoralgebrából Az alábbi feladatokban, hasak nem jelezzük másként, az i, j, k bázist használjk.. a.) Milyen messze annak egymástól az A(,,) és a B(4,-,6) pontok? b.) Számítsa ki az
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
RészletesebbenVektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2?
Vektoralgebra Elmélet: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf Mikor érdemes más, nem ortonormált bázist alkalmazni? Fizikában a ferde hajításoknál megéri úgynevezett ferdeszögű koordináta-rendszert
RészletesebbenTérgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?
Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504
RészletesebbenÁbrahám Gábor A háromszög és a terület Feladatok. Feladatok
I. Klasszikus, bevezető feladatok Feladatok 1. Az alábbi feladatokban hányad része a satírozott rész területe az eredeti négyszög területének? a) Egy paralelogramma valamely belső pontját összekötjük a
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria II.
Geometria II. Síkidomok, testek: A sík feldarabolásával síkidomokat, a tér feldarabolásával testeket kapunk. Törött vonal: A csatlakozó szakaszok törött vonalat alkotnak. DEFNÍCIÓ: (Sokszögvonal) A záródó
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Koordináta-gomtria szürkíttt háttrű fladatrzk nm tartoznak az érinttt témakörhöz azonban szolgálhatnak fontos információval az érinttt fladatrzk mgoldásához! 1)
RészletesebbenA 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny. MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták) Javítási-értékelési útmutató Kérjük a javító tanárokat,
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.
Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.
Részletesebben4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!
(9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora
RészletesebbenOsztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
Részletesebben3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
RészletesebbenTrigonometria és koordináta geometria
Tantárgy neve Trigonometria és koordináta geometria Tantárgy kódja MTB1001 Meghirdetés féléve I. Kreditpont 4k Összóraszám (elm+gyak) 30+30 Számonkérés módja Gyakorlati jegy (2 zárthelyi dolgozat) Előfeltétel
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria V.
Térgeometria V. 1. Egy 4, 6 dm átmérőjű, 5 dm magasságú, 7, dm sűrűségű hengerből a lehető legnagyobb szabályos nyolcoldalú oszlopot kell készíteni. Mekkora lesz a tömege? Az oszlop magassága a henger
RészletesebbenAzonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
RészletesebbenA döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
Részletesebben1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Órai kidolgozásra: 1. feladat Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk,
RészletesebbenÉ -matek: Csak azoknak, akik a kudarcfélelem nélküli és sikeres Érettségi vizsgára készülnek!
Huszk@ Jenő 3.. É-matek matek Módszertani segédlet csak diá koknak! Hogyan elemezzük ki a feladatot? Hogyan alkossunk önmagunk számára szemléletes modellt? Hogyan keressük meg a modell és a matematikai
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
RészletesebbenOsztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek
Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.
RészletesebbenA parabola és az egyenes, a parabola és kör kölcsönös helyzete
66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely
Részletesebben6) Határozza meg a következő halmazokat! A= {deltoidok} {téglalapok}; B= {négyzetek} {húrnégyszögek} (2pont)
(8/1) Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz, melyik hamis! a) Van olyan rombusz, amely téglalap is. (1pont) b) Minden paralelogrammának pontosan két szimmetriatengelye
RészletesebbenKoordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenA skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
RészletesebbenVEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]
Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =
RészletesebbenMásodrendű felületek
Azon pontok halmaza a térben, melyek koordinátái kielégítik az egyenletet, ahol feltételezzük, hogy az a, b, c, d, e, f együtthatók egyszerre nem tűnnek el. Minden másodrendű felülethez hozzárendelünk
RészletesebbenElső sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
Részletesebben2) 2005/0513/4 Egy kör sugara 6 cm. Számítsa ki ebben a körben a 120 -os középponti szöghöz tartozó körcikk területét!
SÍKGEOMETRIA 2004-2014 1) 2004/mfs/12 Kör alakú amfiteátrum küzdőterének két átellenes pontjában áll egy-egy gladiátor, az uralkodó a pálya szélén ül. A gladiátorok egyenes vonalban odafutnak az uralkodóhoz.
Részletesebben1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január 8. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULS EMELT SZINT. Egy atlétika csapat alapozást tart. Robbanékonyságukat és állóképességüket 0 méteres síkfutással fejlesztik. Összesen
Részletesebben7. előadás. Vektorok alkalmazásai
7. előadás Vektorok alkalmazásai Terület Tétel: Ha egy tetraéder lapjaira merőlegesen olyan kifelé mutató vektorokat állítunk, melyek hossza arányos az adott lap területével, akkor az így kapott 4 vektor
RészletesebbenBudapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet
Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet Példatár a Bevezető matematika tárgyhoz Amit tudni kell a BSC képzés előtt Összeállította: Kádasné dr. V. Nagy Éva egyetemi docens Szerkesztette:
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
RészletesebbenI. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók
Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A
RészletesebbenElektronikus tananyag MATEMATIKA 10. osztály II. félév
Elektronikus tananyag MATEMATIKA 0. osztály II. félév A hasonlósági transzformáció és alkalmazásai. Párhuzamos szelők és szelőszakaszok A párhuzamos szelők tétele TÉTEL: Ha egy szög szárait párhuzamos
RészletesebbenJavítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
RészletesebbenPitagorasz tételének általánosítása n-dimenzióra
Pitagorasz tételének általánosítása n-dimenzióra Ajánlom ezt az írást Lázárné Kántor Irénnek, a kolozsvári Báthory István Líceum volt matematika tanárának és igazgatójának, aki bevezetett a matematika
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria II.
Térgeometria II. 1. Hány részre osztja a teret a kocka lapjainak 6 síkja? Tekintsük a következő ábrát: Oldalnézetből a következő látjuk: Ezek alapján a teret 3 9 = 27 részre osztja fel a kocka lapsíkjai.
RészletesebbenKoordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
RészletesebbenFöldrajzi helymeghatározás
A mérés megnevezése, célkitűzései: Földrajzi fokhálózat jelentősége és használata a gyakorlatban Eszközszükséglet: Szükséges anyagok: narancs Szükséges eszközök: GPS készülék, földgömb, földrajz atlasz,
Részletesebben3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy
1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba
RészletesebbenÉv végi összefoglalás
. évfolyam I. témakör: Hatvány, gyök, aritmus Tört kitevőjű hatványok eponenciális függvények eponenciális egyenletek, egyenlőtlenségek, egyenletrendszerek aritmus fogalma aritmus függvények aritmus azonosságai
RészletesebbenHASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egserő, hasonlósággal kapcsolatos feladatok 1. Határod meg a, és sakasok hossát! cm cm 2, cm 2. Határod meg a,,, u és v sakasok hossát! 2 v 2 . Határod meg a,,, u és
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrzek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
RészletesebbenForgómozgás alapjai. Forgómozgás alapjai
Forgómozgás alapjai Kiterjedt test általános mozgása Kísérlet a forgómozgásra Forgómozgás és haladó mozgás analógiája Merev test általános mozgása Gondolkodtató kérdés Összetett mozgások Egy test általános
Részletesebben10. évfolyam, negyedik epochafüzet
10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...
Részletesebben6. modul Egyenesen előre!
MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenFeladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
Részletesebben9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes
9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenÉrettségi feladatok: Térgeometria
Érettségi feladatok: Térgeometria 2003. Próba 4. Legalább mekkora átmérőjű hengeres fatörzsből lehet kivágni olyan gerendát, amelynek keresztmetszete egy 20 cm 21 cm-es téglalap? 2004. Próba 18. Egy síkon
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
RészletesebbenArany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
RészletesebbenMATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
RészletesebbenÉpületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
RészletesebbenTartalomjegyzék. I. A lineáris algebra forrásai 7. 1 Vektorok 11. 2 Lineáris egyenletrendszerek és megoldásuk 53
Tartalomjegyzék I. A lineáris algebra forrásai 7 1 Vektorok 11 Vektorok a 2- és 3-dimenziós térben 11 Irányított szakasz, kötött és szabad vektor 11 Vektor magadása egy irányított szakasszal 12 Vektor
Részletesebbenλ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0
Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.
Részletesebben( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN
Shultz János EGYENLŐLENSÉGEK A HÁOMSZÖG GEOMEIÁJÁBAN Igzoljuk hogy egy szályos háromszög első pontját súsokkl összekötő három szkszól mindig szerkeszthető háromszög Egy tégllp elsejéen vegyünk fel egy
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2007. NOVEMBER 24.) 3. osztály
3. osztály Anna, Béla és Csaba összesen 36 diót talált a kertben. Annának és Bélának együtt 27, Bélának és Csabának együtt 19 diója van. Mennyi diót találtak külön-külön a gyerekek? Gondoltam egy kétjegyű
RészletesebbenKoordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. Az írásbeli vizsga időtartama: 240 perc Név Tanárok neve Email Pontszám STUDIUM GENERALE MATEMATIKA
RészletesebbenFeladatok MATEMATIKÁBÓL a 12. évfolyam számára
Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa
RészletesebbenÁramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
RészletesebbenPárhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák
Részletesebben1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,00 250,00 kpa,
1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,0 250,0 kpa, pontossága 3% 2 osztás. Mekkora a relatív hibája a 50,0 kpa, illetve a 210,0 kpa értékek mérésének? rel. hiba_tt
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenMAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
Részletesebben2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m]
1. Elektrosztatika 1. Egymástól 30 m távolságban rögzítjük az 5 µ C és 25 µ C nagyságú töltéseket. Hová helyezzük a 12 µ C nagyságú töltést, hogy egyensúlyban legyen? [9,27 m] 2. Egymástól 130 cm távolságban
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
Részletesebben[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.C ÉS 13.B OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013.09. 01. Oldal/összes: 1/6 Fájlnév:ME-III.1.1. Tanmenetborító SZK-DC- 2013 MATEMATIKA
RészletesebbenElsőfokú egyenletek...
1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1
Részletesebben10. évfolyam, ötödikepochafüzet
10. évfolyam, ötödikepochafüzet (Hasonlóság, trigonometria) Tulajdonos: ÖTÖDIK EPOCHAFÜZET TARTALOM I. Geometriai transzformációk... 3 I.1. A geometriai transzformációk ismétlése... 3 I.2. A vektorok ismétlése...
RészletesebbenMATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
É RETTSÉGI VIZSGA 2015. október 22. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenA 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 521 03 Gépgyártástechnológiai technikus Tájékoztató A vizsgázó az első lapra írja
Részletesebben5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenGYAKORLÓ FELADATOK A VEKTORTEREK, MÁTRIXOK, LINEÁRIS EGYENLETRENDSZEREK, LINEÁRIS LEKÉPEZÉSEK, KOMPLEX SZÁMOK témakörökhöz.
GYAKORLÓ FELADATOK A VEKTORTEREK MÁTRIXOK LINEÁRIS EGYENLETRENDSZEREK LINEÁRIS LEKÉPEZÉSEK KOMPLEX SZÁMOK témakörökhöz. 6 taaszi. zárthelyihez gyakorlás Sok feladathoz an megoldás ezek az anyag égén találhatók.
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
RészletesebbenLineáris algebra jegyzet
Lineáris algebra jegyzet Készítette: Jezsoviczki Ádám Forrás: Az előadások és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04 A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!
Részletesebben54 481 01 1000 00 00 CAD-CAM
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
RészletesebbenMATEMATIKA ÉRETTSÉGI 2012. május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 01. május 8. KÖZÉPSZINT 1) Egy mértani sorozat első tagja 3, hányadosa első hat tagjának összegét! n n 1 Sn na1 d, ebből: S I.. Adja meg a sorozat ( pont) 6 63.( pont) ) Írja fel annak
Részletesebben2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
RészletesebbenKosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
Részletesebben