A döntő feladatai. valós számok!
|
|
- Alíz Jónásné
- 8 évvel ezelőtt
- Látták:
Átírás
1 OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és y x!. Egy tengelyesen szimmetrikus trapéz párhuzamos oldalai AB és CD. A DC; CB és BD szakaszok hosszai ebben a sorrendben egy növekvő számtani sorozat három egymást követő tagjai. Az AD; AB és AC szakaszok hosszai ebben a sorrendben szintén egy növekvő számtani sorozat három egymást követő tagjai. Határozza meg a trapéz oldalai hosszának arányát!. Anna dobókockájának lapja fehér, lapja fekete, Bori dobókockájának minden lapja fehér. a) Bori be akarja festeni a kockája néhány lapját feketére úgy, hogy ha a festés után egyszerre dobnak a kockáikkal, akkor az azonos szín dobásának 7 valószínűsége legyen. 8 Hány lapot fessen be Bori? b) Mutassa meg, hogy Bori nem tudja úgy festeni a kockáját, hogy az azonos szín dobásának valószínűsége legyen! c) A Bori által feketére festett lapok számához rendeljük hozzá az azonos szín dobásának valószínűségét! Adja meg ennek a függvénynek az értékkészletét!
2 OKTV 006/007. A döntő feladatainak megoldásai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y Megoldás: x és y x! Írjuk fel az x ( a + d) x + ad bc 0 másodfokú egyenlet gyökei és együtthatói közötti összefüggéseket: () x x a + d illetve +, () x x ad bc. ( pont) Az y ( a + d + abc + bcd) y + ( ad bc) 0 egyenlet elsőfokú tag együtthatójának ellentettjét alakítva kapjuk: a + d + abc + bcd a + d + ( a + d) bc, () a + d + abc + bcd ( a + d) ( a + d)( ad bc). Az () és () összefüggéseket ()-ba helyettesítve: a műveletek elvégzése és rendezés után: () a b + abc + bcd ( x + x ) ( x + x ) xx +, a b + abc + bcd x + + x. ( pont) Másrészt az y ( a + b + abc + bcd) y + ( ad bc) 0 nulladfokú tagjába ()-t helyettesítve : ( ad bc) ( x x (5) ( ad bc) x x ( pont) )
3 OKTV 006/007. () és (5) felhasználásával az y ( a + d + abc + bcd) y + ( ad bc) 0 egyenlet felírható a következő képpen is: (6) y ( x + x ) y + x x 0. (6) bal oldalát szorzattá alakíthatjuk: (7) ( y x )( y x ) 0. A (7) egyenlet gyökei pedig valóban az x és x valós számok. ( pont) Az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenletnek akkor vannak valós gyökei, ha D ( a + b + abc + bcd) ( ad bc) 0. Ez a feltétel () és (5) segítségével ( + x ) x x 0 azaz ( x ) 0 x, x alakú lesz. Ez utóbbi minden x és x valós számra teljesül, ez pedig pontosan azt jelenti, hogy ha az x ( a + d ) x + ad bc 0 egyenletnek vannak valós gyökei, akkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet valós gyökei is léteznek ( pont) összesen: 0 pont
4 OKTV 006/007.. Egy tengelyesen szimmetrikus trapéz párhuzamos oldalai AB és CD. A DC; CB és BD szakaszok hosszai ebben a sorrendben egy növekvő számtani sorozat három egymást követő tagjai. Az AD; AB és AC szakaszok hosszai ebben a sorrendben szintén egy növekvő számtani sorozat három egymást követő tagjai. Határozza meg a trapéz oldalai hosszának arányát! Megoldás: Készítsünk a feltételeknek megfelelő ábrát! Az ábrán merőlegest bocsátottunk a C illetve D pontokból az AB szakaszra, a merőlegesek talppontjai P illetve Q. D C.. A Q P B Legyen AB a, BC b és CD c, továbbá AC e! A tengelyes szimmetria miatt nyilvánvaló, hogy DA b és BD e. Az AQ illetve BQ befogók hossza: () illetve () a c AQ, a + c BQ. ( pont)
5 OKTV 006/007. A feltételek miatt a feladatban két növekvő számtani sorozat - egymást követő tagja szerepel, fenti jelöléseinkkel ezek a következők: () c ; b; e, () b ; a; e. Legyen a () sorozat differenciája d! Mivel a sorozat növekvő, ezért nyilvánvaló, hogy d > 0. A számtani sorozat tulajdonsága miatt: (5) c b d és és e b + d. ( pont) A () számtani sorozatra teljesül, hogy e + b a, azaz (5)-öt behelyettesítve: b + d d (6) a b +. ( pont) Az ADQ és BDQ háromszögek derékszögűek, ezért () és () felhasználásával a Pitagorasz-tétel alapján felírjuk, hogy: (7) a c a + c b e. ( pont) az (5) és (6) kifejezéseiből következik, hogy egyrészt másrészt a c d, a + c b d. ( pont)
6 OKTV 006/007. Ezeket, illetve az ugyancsak (5)-ből kapott beírjuk (7)-be: e b + d összefüggést d b d b ( b + d). ( pont) Elvégezve a műveleteket, rendezés és egyszerűsítés után a (8) b 5bd d 0 egyenletre jutunk. Tekintsük (8)-at b -ben másodfokú egyenletnek, a megoldóképlet segítségével kapjuk, hogy: b d és b d. Figyelembe véve a d > 0 feltételt a b d nem megoldás. ( pont) Ezért b d. Így (5) és (6) szerint: 7d a ; 6d b ; d c. ( pont) Ebből következően az ABCD trapéz oldalai hosszának aránya: AB : BC : CD : DA 7 : 6 : : 6. ( pont) összesen: 0 pont
7 OKTV 006/007.. Anna dobókockájának lapja fehér, lapja fekete, Bori dobókockájának minden lapja fehér. a) Bori be akarja festeni a kockája néhány lapját feketére úgy, hogy ha a festés után egyszerre dobnak a kockáikkal, akkor az azonos szín dobásának valószínűsége 8 7 legyen. Hány lapot fessen be Bori? b) Mutassa meg, hogy Bori nem tudja úgy festeni a kockáját, hogy az azonos szín dobásának valószínűsége legyen! c) A Bori által feketére festett lapok számához rendeljük hozzá az azonos szín dobásának valószínűségét! Adja meg ennek a függvénynek az értékkészletét! Megoldás: Tegyük fel, hogy Bori x számú lapot festett be. Először vizsgáljuk azt az eseményt, hogy mindketten feketét dobnak! Jelöljük A -val azt az eseményt, hogy Anna feketét dob, és B -vel azt, hogy Bori dob feketét Ezek valószínűségei a következők: P ( A) 6, illetve x P ( B). ( pont) 6 Az A és B egymástól független események, ezért annak valószínűsége, Hogy mindketten feketét dobnak, P P P, ( AB) ( A) ( B) azaz () x P ( A B). ( pont) 6
8 OKTV 006/007. Másodszor vizsgáljuk azt, hogy mindketten fehéret dobnak. Legyen C illetve D az az esemény, hogy Anna illetve Bori fehéret dob! Ezek valószínűségei: P ( C) illetve 6 6 x P( D). ( pont) 6 Mivel a dobások egymástól függetlenek, így annak valószínűsége, hogy mindketten fehéret dobnak: () (6 x) P( C D). ( pont) 6 Az azonosan fekete, illetve azonosan fehér szín dobása egymást kizáró események, ezért az azonos szín dobásának valószínűsége az () és () valószínűségek összege: rendezés és egyszerűsítés után: x (6 x) P( A B + C D) +, 6 6 () x P( A B + C D). ( pont) 8 Bori kívánsága szerint ez 8 7 kell, hogy legyen. () x A () egyenlet megoldása x 5, ezért a feladat a) részének kérdésére az a válaszunk, hogy Borinak a saját kockája 5 lapját kell feketére befestenie ahhoz, hogy az azonos szín dobásának valószínűsége 7 legyen. 8 ( pont)
9 OKTV 006/007. A feladat b) kérdése szerint az azonos szín dobásának valószínűsége lenne. Ez a (5) x 8 egyenlet megoldásából kapott x mellett teljesülne. 5 (5) megoldása: x, ez nem egész, így nem lehet kocka lapjainak száma. Ezért az azonos szín dobásának valószínűsége valóban nem lehet. A c) kérdésre adandó válaszhoz először határozzuk meg az f (x) -szel Jelölt függvény értelmezési tartományát! ( pont) Mivel Bori a kockájának 0,,,,, 5 vagy 6 lapját festheti be feketére, ezért: D { 0;;;;;5;6 }. ( pont) f () alapján a függvény értékkészletének elemei kiszámíthatók, így rendre azt kapjuk, hogy: 5 7 R f ; ; ; ; ; ;. ( pont) összesen: 0 pont
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
RészletesebbenMATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
RészletesebbenAnalízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
RészletesebbenKoordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
RészletesebbenOsztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
Részletesebben1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
RészletesebbenLineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
Részletesebben1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
RészletesebbenVektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
RészletesebbenG Szabályfelismerés 2.2. 2. feladatcsomag
ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
Részletesebben2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
RészletesebbenAnalízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
RészletesebbenMAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
Részletesebben2004. december 1. Irodalom
LINEÁRIS LEKÉPEZÉSEK I. 2004. december 1. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
RészletesebbenA 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny. MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták) Javítási-értékelési útmutató Kérjük a javító tanárokat,
RészletesebbenI. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók
Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A
RészletesebbenAzonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
RészletesebbenPárhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák
RészletesebbenTérgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?
Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504
RészletesebbenMatematika III. 1. Kombinatorika Prof. Dr. Závoti, József
Matematika III. 1. Kombinatorika Prof. Dr. Závoti, József Matematika III. 1. : Kombinatorika Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
RészletesebbenMátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A =
Mátrixok 25. február 23.. Feladat: Legyen A ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A deníciók alapján ( + 3 + 3 + A + B 2 + 4 + + ( 4 2 6 2 ( ( 3 3 2 4 A B 2 4
RészletesebbenJelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
RészletesebbenA skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január 8. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULS EMELT SZINT. Egy atlétika csapat alapozást tart. Robbanékonyságukat és állóképességüket 0 méteres síkfutással fejlesztik. Összesen
Részletesebben3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
RészletesebbenA Hozzárendelési feladat megoldása Magyar-módszerrel
A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független
RészletesebbenIV.5. GARÁZS 1. A feladatsor jellemzői
IV.5. GARÁZS 1. Tárgy, téma A feladatsor jellemzői Lineáris egyenlet, egyenletrendszer. Elsőfokú függvény. Többismeretlenes problémák megoldása egyenletrendszerek felírásával algebrai úton, illetve intuitív
RészletesebbenA parabola és az egyenes, a parabola és kör kölcsönös helyzete
66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely
RészletesebbenHa a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
RészletesebbenElektronikus tananyag MATEMATIKA 10. osztály II. félév
Elektronikus tananyag MATEMATIKA 0. osztály II. félév A hasonlósági transzformáció és alkalmazásai. Párhuzamos szelők és szelőszakaszok A párhuzamos szelők tétele TÉTEL: Ha egy szög szárait párhuzamos
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.
Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
Részletesebben( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN
Shultz János EGYENLŐLENSÉGEK A HÁOMSZÖG GEOMEIÁJÁBAN Igzoljuk hogy egy szályos háromszög első pontját súsokkl összekötő három szkszól mindig szerkeszthető háromszög Egy tégllp elsejéen vegyünk fel egy
RészletesebbenJavítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
RészletesebbenFordítóprogramok Készítette: Nagy Krisztián
Fordítóprogramok Készítette: Nagy Krisztián Reguláris kifejezések (FLEX) Alapelemek kiválasztása az x karakter. tetszőleges karakter (kivéve újsor) [xyz] karakterhalmaz; vagy egy x, vagy egy y vagy egy
RészletesebbenLécgerenda. 1. ábra. 2. ábra
Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel
RészletesebbenVektoralgebrai feladatok
Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat
RészletesebbenELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:
RészletesebbenAlgebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
RészletesebbenTárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. A tétel megnevezése
A tétel megnevezése Tárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. 1. Pénzeszközök 19 798 163 488 2. Állampapírok 411 306 73 476 a) forgatási célú 411 325 73 408 b) befektetési célú
RészletesebbenMATEMATIKA ÉRETTSÉGI 2012. május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 01. május 8. KÖZÉPSZINT 1) Egy mértani sorozat első tagja 3, hányadosa első hat tagjának összegét! n n 1 Sn na1 d, ebből: S I.. Adja meg a sorozat ( pont) 6 63.( pont) ) Írja fel annak
RészletesebbenMBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális
RészletesebbenLineáris algebra jegyzet
Lineáris algebra jegyzet Készítette: Jezsoviczki Ádám Forrás: Az előadások és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04 A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!
RészletesebbenFeladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria V.
Térgeometria V. 1. Egy 4, 6 dm átmérőjű, 5 dm magasságú, 7, dm sűrűségű hengerből a lehető legnagyobb szabályos nyolcoldalú oszlopot kell készíteni. Mekkora lesz a tömege? Az oszlop magassága a henger
RészletesebbenVárosok Viadala JUNIOR, 1990-91. sz, második forduló ... 99
JUNIOR, 990-9. sz, els forduló. Adott két pozitív valós szám. Bizonyítsuk be, hogy ha az összegük kisebb, mint a szorzatuk, akkor az összegük nagyobb 4-nél. (N. Vasziljev, 4 pont) 2. Egy szabályos háromszög
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria II.
Térgeometria II. 1. Hány részre osztja a teret a kocka lapjainak 6 síkja? Tekintsük a következő ábrát: Oldalnézetből a következő látjuk: Ezek alapján a teret 3 9 = 27 részre osztja fel a kocka lapsíkjai.
Részletesebben3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy
1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba
RészletesebbenEVALUAREA COMPETENȚELOR FUNDAMENTALE LA FINALUL CLASEI a II-a 2014. Model de test. MATEMATICĂ Şcoli cu predare în limbile minorităților naționale
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUAREA COMPETENȚELOR FUNDAMENTALE LA FINALUL CLASEI a II-a 2014 Model de test MATEMATICĂ Şcoli cu predare în limbile minorităților naționale Județul / sectorul...
RészletesebbenMATEMATIKA KOMPETENCIATERÜLET A
MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
Részletesebben3. Matematikai logika (megoldások)
(megoldások) 1. Hamis, ugyanis P, Q és R logikai értékét behelyettesítve kapjuk: (P Q) R = (1 0) 0 = 0 0 = 0. (Ebben és a további feladatok megoldásában alkalmazzuk a D 3.1 denícióit. A megoldást célszer
RészletesebbenMinta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
RészletesebbenGAZDASÁGI MATEMATIKA 1. 1. Gyakorlat
GAZDASÁGI MATEMATIKA 1. 1. Gyakorlat Bemutatkozás Chmelik Gábor óraadó BGF-KKK Módszertani Intézeti Tanszéki Osztály chmelik.gabor@kkk.bgf.hu http://www.cs.elte.hu/ chmelik Fogadóóra: e-mailben egyeztetett
RészletesebbenDiszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 1. Gyakorlat Bogya Norbert Bolyai Intézet 2012. szeptember 4-5. Bogya Norbert (Bolyai Intézet) Diszkrét matematika I. gyakorlat 2012. szeptember 4-5. 1 / 21 Információk
RészletesebbenMATEMATIKA A és B variáció
MATEMATIKA A és B variáció A Híd 2. programban olyan fiatalok vesznek részt, akik legalább elégséges érdemjegyet kaptak matematikából a hatodik évfolyam végén. Ezzel együtt az adatok azt mutatják, hogy
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
EMIR azonosító: TÁMOP-3..8-09/-00-0004 MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 4 ÍRÁSBELI VIZSGA Ideje: 04. április 4. JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatási Hivatal Cím: H 055 Budapest, Szalay u.
RészletesebbenKözépiskolai matematika szakköri Feladatok a Fibonacci számok témaköréből Melczer Kinga
Középiskolai matematika szakköri Feladatok a Fibonacci számok témaköréből Melczer Kinga 1 feladat Mekkora lesz a nyúlállományunk az év végére, ha van egy nyúlpárunk, amely a második hónaptól kezdve szaporodik,
RészletesebbenÁramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
Részletesebben5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?
5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,
Részletesebben1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
RészletesebbenHázi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)
Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...
RészletesebbenMezei Ildikó-Ilona. Analitikus mértan
Mezei Ildikó-Ilona Analitikus mértan feladatgyűjtemény Kolozsvár 05 Tartalomjegyzék. Vektoralgebra 3.. Műveletek vektorokkal.................................. 3.. Egyenes vektoriális egyenlete..............................
RészletesebbenMATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. október 20. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 20. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
RészletesebbenKombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
Részletesebben31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
RészletesebbenÁbrahám Gábor A háromszög és a terület Feladatok. Feladatok
I. Klasszikus, bevezető feladatok Feladatok 1. Az alábbi feladatokban hányad része a satírozott rész területe az eredeti négyszög területének? a) Egy paralelogramma valamely belső pontját összekötjük a
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria II.
Geometria II. Síkidomok, testek: A sík feldarabolásával síkidomokat, a tér feldarabolásával testeket kapunk. Törött vonal: A csatlakozó szakaszok törött vonalat alkotnak. DEFNÍCIÓ: (Sokszögvonal) A záródó
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. május 3. 8:00. Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM Pótlapok száma Tisztázati Piszkozati Matematika
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 1513 É RETTSÉGI VIZSGA 015. október 13. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenA SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
RészletesebbenÚtmutató a vízumkérő lap kitöltéséhez
Útmutató a vízumkérő lap kitöltéséhez A vízumkérő lap ( Visa application form of the People s Republic of China, Form V. 2013 ) az egyik legfontosabb dokumentum, amit a kínai vízumra való jelentkezésnél
RészletesebbenKözépszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenVektoralgebra feladatlap 2018 január 20.
1. Adott az ABCD tetraéder, határozzuk meg: a) AB + BD + DC b) AD + CB + DC c) AB + BC + DA + CD Vektoralgebra feladatlap 018 január 0.. Adott az ABCD tetraéder. Igazoljuk, hogy AD + BC = BD + AC, majd
RészletesebbenTRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA
TRNZSZTOROS KPSOLÁSOK KÉZ SZÁMÍTÁS 1. gyenáramú számítás kézi számításokhoz az ábrán látható egyszerű közelítést használjuk: = Normál aktív tartományban a tranzisztort bázis-emitter diódáját az feszültségforrással
Részletesebben[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
Részletesebbenhttp://www.olcsoweboldal.hu ingyenes tanulmány GOOGLE INSIGHTS FOR SEARCH
2008. augusztus 5-én elindult a Google Insights for Search, ami betekintést nyújt a keresőt használók tömegeinek lelkivilágába, és időben-térben szemlélteti is, amit tud róluk. Az alapja a Google Trends,
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. Az írásbeli vizsga időtartama: 240 perc Név Tanárok neve Email Pontszám STUDIUM GENERALE MATEMATIKA
RészletesebbenHatározatlan integrál
. fejezet Határozatlan integrál Határozatlan integrál D. Azt mondjuk, hogy az egyváltozós valós f függvénynek a H halmazon primitív függvénye az F függvény, ha a H halmazon f és F értelmezve van, továá
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 111 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenA fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás?
A fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás? XXXII. OTDK Konferencia 2015. április 9-11. Készítette: Pintye Alexandra Konzulens: Dr. Kiss Marietta A kultúrától a pénzügyi kultúráig vezető
RészletesebbenA Közbeszerzések Tanácsa (Szerkesztőbizottsága) tölti ki A hirdetmény kézhezvételének dátuma KÉ nyilvántartási szám
KÖZBESZERZÉSI ÉRTESÍTŐ A Közbeszerzések Tanácsának Hivatalos Lapja 1024 Budapest, Margit krt. 85. Fax: 06 1 336 7751, 06 1 336 7757 E-mail: hirdetmeny@kozbeszerzesek-tanacsa.hu On-line értesítés: http://www.kozbeszerzes.hu
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 05 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:.
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
RészletesebbenEgy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger
Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger. feladat Állítsunk merőlegeseket egy húrnégyszög csúcsaiból a csúcsokon át nem menő átlókra. Bizonyítsuk be, hogy a merőlegesek talppontjai
Részletesebben