MATEMATIKA HETI 3 ÓRA
|
|
- Lajos Magyar
- 8 évvel ezelőtt
- Látták:
Átírás
1 EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor MEGJEGYZÉS: Nincs Lap 1/5 HU
2 RÖVID KÉRDÉSEK A 1) Az f és a g függvényeket a következőképpen értelmezzük: f ( x) x 8x 5 és gx ( ) 3x 7. Lap 1/ Számítsa ki azon pontok koordinátáit, ahol a két függvény grafikonja metszi egymást. ) Oldja meg az e x 4e x egyenletet. 3) Az f függvényt az f (x) (4 x )e x hozzárendeléssel értelmezzük. Határozza meg azon pontok koordinátáit, ahol f grafikonja metszi a koordináta-tengelyeket. 4) Az ábrán egy harmadfokú f függvény grafikonja látható. Határozza meg f ( x) gyökeit, továbbá azt az intevallumot, ahol f ( x) negatív. 5) Tekintsük az f ( x) sin( x) függvényt. Írja fel f grafikonja érintőjének valamelyik egyenletét abban a pontban, ahol x ) Az f függvényt az f ( x) x 3x 9x 10 hozárendeléssel értelmezzük. Határozza meg azon pontok koordinátáit a függvény grafikonján, ahol f-nek szélsőértéke van és tisztázza e szélsőértékek jellegét. Lap /5
3 RÖVID KÉRDÉSEK A Lap / 7) Számítsa ki e 1 3 x 1 dx értékét. 8) Tekintsük azt a h függvényt, amelyre hx ( ) x, 0 x. Számítsa ki annak a tartománynak a területét, amelyet h grafikonja, valamint a koordináta-tengelyek határolnak. 9) Tekintsük azt az f függvényt, amelyre x f ( x) 3e 3x x. Határozza meg az f ( x) -nek azt az F( x ) primitív függvényét, amelyre F(0) 4. 10) Egy európai iskolának 750 tanulója van, közülük 400 lány. Az intézménynek elemi és középiskolai tagozata van. A középiskolába 00 lány és 150 fiú jár. A 750 tanuló közül véletlenszerűen kiválasztunk egyet. Számítsa ki annak a valószínűségét, hogy ez a tanuló elemi iskolás fiú. 11) Egy kocka hat lapját az ábra szerint megszámozták. A kockát 4-szer feldobjuk. Számítsa ki annak a valószínűségét, hogy pontosan egyszer dobunk hármast. 1) Egy osztályban 3 gyerek tanul. Egy vetélkedőn az osztály 5 belépőt nyert egy nemzetközi futballmeccsre. Az osztályfőnök 3 borítékot készít: közülük 5-be tesz egy-egy belépőt, 7 borítékot pedig üresen hagy. Ezután azt mondja a gyerekeknek, hogy mindegyikük vegyen el a borítékotk közül véletlenszerűen egyet és azt tartsa meg. Jancsi, aki másodiknak kerül sorra, reklamál, hogy az elsőnek húzó Anna nagyobb eséllyel nyer belépőt, mint ő. A megfelelő számítások alapján döntse el, igaza van-e Jancsinak vagy nem. Lap 3/5
4 ÖSSZETETT KÉRDÉSEK B1 ANALÍZIS Lap 1/1 Az f és a g függvényeket a következő módon értelmezzük: 3x f (x) = és g (x) = x + 6. x 1 a) Határozza meg f értelmezési tartományát. 1 pont b) Határozza meg azon pontok koordinátáit, ahol f grafikonja metszi a koordináta-tengelyeket. c) Határozza meg azokat az intervallumokat, amelyekben f növő, illetve fogyó. Válaszát indokolja! d) Határozza meg azoknak a pontoknak a koordinátáit, amelyekben f és g grafikonjai metszik egymást. e) Írja fel az f grafikonja érintőjének valamelyik egyenletét abban a pontban, amelyre x 4. pont 3 pont 5 f) Igazolja, hogy f (x) felírható f (x) = 3 alakban. 3 pont x 1 g) Vázolja föl f és g grafikonját közös koordináta-rendszerben. 3 pont h) Az így kapott ábrán satírozza be azt a tartományt, amelyet f és g grafikonja, valamint az y-tengely határolnak. Számítsa ki ennek a tartománynak a területét. Lap 4/5
5 ÖSSZETETT KÉRDÉSEK B VALÓSZÍNŰSÉGSZÁMÍTÁS Lap 1/1 a) Egy férfi 6 körtét választ ki véletlenszerűen egy nagyobb szállítmányból, amelyben a körték 10%-a sérült; ezek megnyomódtak. i. Számítsa ki annak a valószínűségét, hogy a kiválasztott körték között pontosan egy sérült van. ii. Számítsa ki annak a valószínűségét, hogy a kiválasztott körték között legalább két sérült van. b) Emberünk néhány nappal később piknikezni megy a családjával. Egy tálon 3 piros, zöld és egy sárga alma van odakészítve, ő pedig véletlenszerűen kivesz közülük hármat. 3 pont i. Számítsa ki annak a valószínűségét, hogy az összes piros almát kiveszi. ii. Számítsa ki annak a valószínűségét, mindegyik színű almából vesz egyet. Lap 5/5
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenA döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
Részletesebben1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
RészletesebbenAzonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
RészletesebbenAnalízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
RészletesebbenJelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli
RészletesebbenMinta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
RészletesebbenAnalízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
Részletesebben1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
RészletesebbenI. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók
Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
RészletesebbenOsztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
Részletesebben13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert!
A 13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! x y 600 x 10 y 5 600 12 pont írásbeli vizsga, II. összetev 4 / 20 2008. október 21. 14. a) Fogalmazza meg, hogy az f : R R, f x
RészletesebbenVektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
RészletesebbenGAZDASÁGI MATEMATIKA 1. 1. Gyakorlat
GAZDASÁGI MATEMATIKA 1. 1. Gyakorlat Bemutatkozás Chmelik Gábor óraadó BGF-KKK Módszertani Intézeti Tanszéki Osztály chmelik.gabor@kkk.bgf.hu http://www.cs.elte.hu/ chmelik Fogadóóra: e-mailben egyeztetett
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
RészletesebbenEgységes jelátalakítók
6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
RészletesebbenIntézményi jelentés. Összefoglalás. Medgyessy Ferenc Gimnázium és Művészeti Szakközépiskola 4031 Debrecen, Holló László sétány 6 OM azonosító: 031202
FIT-jelentés :: 2010 Medgyessy Ferenc Gimnázium és Művészeti Szakközépiskola 4031 Debrecen, Holló László sétány 6 Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika
RészletesebbenOsztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek
Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 111 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenTRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA
TRNZSZTOROS KPSOLÁSOK KÉZ SZÁMÍTÁS 1. gyenáramú számítás kézi számításokhoz az ábrán látható egyszerű közelítést használjuk: = Normál aktív tartományban a tranzisztort bázis-emitter diódáját az feszültségforrással
RészletesebbenMATEMATIKA VERSENY --------------------
Vonyarcvashegyi Eötvös Károly Általános Iskola 2014. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
RészletesebbenKoordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
RészletesebbenMATEMATIKA HETI 3 ÓRA. IDŐPONT : 2009 június 8.
EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 3 ÓRA IDŐPONT : 2009 június 8. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
RészletesebbenA mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.
E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés
RészletesebbenFIT-jelentés :: 2014 Intézményi jelentés Összefoglalás Ady Endre-Bay Zoltán Középiskola és Kollégium
FIT-jelentés :: 2014 Ady Endre-Bay Zoltán Középiskola és Kollégium 5720 Sarkad, Vasút utca 2. Az intézmény létszámadatai Tanulók száma Képzési forma Összesen A jelentésben szereplők 10. 4 évfolyamos gimnázium
Részletesebben(Gyakorló feladatok)
Differenciálszámítás (Gyakorló feladatok) Programtervező matematikus szakos hallgatóknak az Analízis 3. című tárgyhoz Összeállította: Szili László L-Sch -sel hivatkozunk a Leindler Schipp jegyzetre 2004.
RészletesebbenFIT-jelentés :: 2012. Intézményi jelentés. Összefoglalás
FIT-jelentés :: 2012 Összefoglalás Német Nemzetiségi Gimnázium és Kollégium, Deutsches Nationalitätengymnasium und Schülerwohnheim 1203 Budapest, Serény u. 1. Összefoglalás Az intézmény létszámadatai Tanulók
RészletesebbenA skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Koordináta-gomtria szürkíttt háttrű fladatrzk nm tartoznak az érinttt témakörhöz azonban szolgálhatnak fontos információval az érinttt fladatrzk mgoldásához! 1)
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Halmazok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
RészletesebbenMATEMATIKA ÉRETTSÉGI 2012. május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 01. május 8. KÖZÉPSZINT 1) Egy mértani sorozat első tagja 3, hányadosa első hat tagjának összegét! n n 1 Sn na1 d, ebből: S I.. Adja meg a sorozat ( pont) 6 63.( pont) ) Írja fel annak
Részletesebben[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
Részletesebben001 Újbudai József Attila Gimnázium 1117 Budapest Váli Feladatellátási hely: utca 1. Tanulmányi terület kódja:002
OM azonosító:034982 Székhely neve: Újbudai József Attila Gimnázium Székhely címe: 1117 Budapest, Váli Tanulmányi terület kódja:001 Tanulmányi terület neve: gimnázium: 4 évfolyamos + 1 évf. nyelvi el készít
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
RészletesebbenFIT-jelentés :: 2009. Széchenyivárosi Óvoda és Általános Iskola 6000 Kecskemét, Lunkányi János u. 10. OM azonosító: 200922. Intézményi jelentés
FIT-jelentés :: 2009 Széchenyivárosi Óvoda és Általános Iskola 6000 Kecskemét, Lunkányi János u. 10. Létszámadatok A telephelyek kódtáblázata A 001 - Széchenyivárosi Óvoda és Általános Iskola Arany János
RészletesebbenÁramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
RészletesebbenM A G Y A R K O N G R E S S Z U S I I R O D A
Magyar Turizmus Zártkörűen Működő Részvénytársaság Magyar Kongresszusi Iroda 1115 Budapest, Bartók Béla út 105-113. Tel.: (06-1) 488-8640 Fax: (06-1) 488-8641 E-mail: hcb@hungarytourism.hu www.hcb.hu A
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 006. május 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 006. május 18. 1:00 Az írásbeli vizsga időtartama: 0 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM
RészletesebbenFIT-jelentés :: 2014. Bánki Donát Közlekedésgépészeti Szakközépiskola és Szakiskola 1138 Budapest, Váci út 179-183. OM azonosító: 035391
FIT-jelentés :: 2014 Bánki Donát Közlekedésgépészeti Szakközépiskola és Szakiskola 1138 Budapest, Váci út 179-183. Az intézmény létszámadatai Tanulók száma Képzési forma Összesen A jelentésben szereplők
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
RészletesebbenJavítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
RészletesebbenFeladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből
RészletesebbenFIT-jelentés :: 2014. Intézményi jelentés. 8. évfolyam
FIT-jelentés :: 2014 Hőgyészi Hegyhát Általános Iskola, Gimnázium, Alapfokú Művészeti Iskola és Kollégium 7191 Hőgyész, Fő utca 1-3. Létszámadatok A telephelyek kódtáblázata A 002 - Hőgyészi Hegyhát Általános
RészletesebbenPuskás Tivadar Távközlési Technikum
27 Puskás Tivadar Távközlési Technikum Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam szakközépiskola matematika Előállítás ideje: 28.3.6. 6:48:31 197 Budapest,
Részletesebben31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
RészletesebbenA Karinthy Frigyes Gimnázium óratervei
A Karinthy Frigyes Gimnázium óratervei Óraterv a 9/Kny-2. évfolyamra, a gimnázium angol két tanítási nyelvű A osztálya számára (emelt óraszámú matematika csoportok) A csoportbontás és az emelt szintű Alap
RészletesebbenFIT-jelentés :: 2013. Zoltánfy István Általános Iskola 6772 Deszk, Móra F. u. 2. OM azonosító: 200909 Telephely kódja: 005. Telephelyi jelentés
FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Zoltánfy István Általános Iskola 6772 Deszk, Móra F. u. 2. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon
RészletesebbenTámogatási lehetőségek a borágazatban Magyarország Nemzeti Borítékja. Bor és Piac Szőlészet Borászat Konferencia 2011
Támogatási lehetőségek a borágazatban Magyarország Nemzeti Borítékja Bor és Piac Szőlészet Borászat Konferencia 2011 Miben lehet a minisztérium a borászati vállalkozások segítségére A minisztérium elsősorban
RészletesebbenG Szabályfelismerés 2.2. 2. feladatcsomag
ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján
RészletesebbenMATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
RészletesebbenÚtmutató a vízumkérő lap kitöltéséhez
Útmutató a vízumkérő lap kitöltéséhez A vízumkérő lap ( Visa application form of the People s Republic of China, Form V. 2013 ) az egyik legfontosabb dokumentum, amit a kínai vízumra való jelentkezésnél
RészletesebbenInformációelmélet Szemináriumi gyakorlatok
Információelmélet Szemináriumi gyakorlatok. feladat. Adott az alábbi diszkrét valószínűségi változó: ( ) a b c d X = Számítsuk ki az entróiáját: H(X ) =?. feladat. Adott az alábbi diszkrét valószínűségi
RészletesebbenHázi Feladat. Rövid kérdések: I. Száz megvizsgált, azonos típusú mobiltelefon életkora (év) és forgalmi értéke (e Ft) között
Rövid kédések: Házi Feladat I. Száz megvizsgált, azonos típusú mobiltelefon életkoa (év) és fogalmi étéke (e Ft) között az alábbi összefüggést találtuk: ŷ 10 50 és s e 5, 3. i) Nevezze meg az alábbi mutatókat
RészletesebbenKÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS - ÜZEMVITEL, KÖZLEKEDÉS-TECHNIKA) KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II.
A vizsga részei KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS - ÜZEMVITEL, KÖZLEKEDÉS-TECHNIKA) KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA Emelt szint Írásbeli vizsga Szóbeli vizsga Írásbeli
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. május 1. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 1. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek
RészletesebbenA fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás?
A fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás? XXXII. OTDK Konferencia 2015. április 9-11. Készítette: Pintye Alexandra Konzulens: Dr. Kiss Marietta A kultúrától a pénzügyi kultúráig vezető
RészletesebbenConjoint-analízis példa (egyszerűsített)
Conjoint-analízis példa (egyszerűsített) Az eljárás meghatározza, hogy a fogyasztók a vásárlás szempontjából lényeges terméktulajdonságoknak mekkora relatív fontosságot tulajdonítanak és megadja a tulajdonságok
RészletesebbenB1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont]
B feladat : Ebben a kísérleti részben vizsgáljuk, Összpontszám: 20 B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását B1 A tej pufferkapacitása
RészletesebbenBorpiaci információk. V. évfolyam / 11. szám 2007. június 20. 22-23. hét. Borpiaci jelentés. Hazai borpiaci tendenciák
A K I Borpiaci információk V. évfolyam / 11. szám 2007. június 20. 22-23. hét Borpiaci jelentés Hazai borpiaci tendenciák 2. old. 1-2. táblázat, 1-8. ábra: Belföldön termelt fehérborok értékesített mennyisége
RészletesebbenMUNKATERV. 2013/2014-es tanév a 2013/2014. tanév rendje alapján (47/2013. (VII. 4.) EMMI rendelet a 2013/2014. tanév rendjéről)
MUNKATERV 2013/2014-es tanév a 2013/2014. tanév rendje alapján (47/2013. (VII. 4.) EMMI rendelet a 2013/2014. tanév rendjéről) Leonardo Média Akadémia Szakképző Iskola és Gimnázium Készítette: Kató igazgató
RészletesebbenFazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium
26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés Előállítás ideje: 27.3.. 12:28:21
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 12 XII. STATIsZTIKA ellenőrző feladatsorok 1. FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 6.10, 0.01, 6.97, 6.03, 3.85, 1.11,
RészletesebbenA 2014/2015-ÖS TANÉV RENDJE
A 2014/2015-ÖS TANÉV RENDJE A 35/2014. (IV. 30.) EMMI rendelete, a Budapest II. Kerületi II. Rákóczi Ferenc Gimnázium Pedagógiai Programja alapján A tanév 2014. szeptember 1-től 2015. június 15-ig tart
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. május 3. 8:00. Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM Pótlapok száma Tisztázati Piszkozati Matematika
RészletesebbenSzámítógép-használati szokások az általános iskolások körében
Generációk az információs társadalomban Infokommunikációs kultúra, értékrend, biztonságkeresési stratégiák Projekt záró workshop TÁMOP-4.2.1/B-09/1/KONV-2010-0005 Program Számítógép-használati szokások
RészletesebbenAZ EURÓPAI KÖZÖSSÉGEK BIZOTTSÁGA. Javaslat: AZ EURÓPAI PARLAMENT ÉS A TANÁCS IRÁNYELVE
HU HU HU AZ EURÓPAI KÖZÖSSÉGEK BIZOTTSÁGA Brüsszel, 22.12.2006 COM(2006) 916 végleges 2006/0300 (COD) Javaslat: AZ EURÓPAI PARLAMENT ÉS A TANÁCS IRÁNYELVE pénzügyi konglomerátumhoz tartozó hitelintézetek,
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
RészletesebbenBudapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet
Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet Példatár a Bevezető matematika tárgyhoz Amit tudni kell a BSC képzés előtt Összeállította: Kádasné dr. V. Nagy Éva egyetemi docens Szerkesztette:
RészletesebbenÜresként jelölt CRF visszaállítása
Üresként jelölt CRF visszaállítása Ha egy CRF vagy bizonyos mező(k) ki vannak szürkítve (üresként jelölve), akkor a megjelölés üresként eszközre kell kattintania, majd törölni a kiválasztott jelölőnégyzet
RészletesebbenJ A V A S L A T. az óvodai intézményekben 2015/2016-os nevelési évben indítható óvodai csoportok számának meghatározására. Ózd, 2015. június 24.
J A V A S L A T az óvodai intézményekben 2015/2016-os nevelési évben indítható óvodai csoportok számának meghatározására Ózd, 2015. június 24. Előterjesztő: Előkészítő: Oktatási, Kulturális és Sport Bizottság
RészletesebbenELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:
RészletesebbenHatározatlan integrál
. fejezet Határozatlan integrál Határozatlan integrál D. Azt mondjuk, hogy az egyváltozós valós f függvénynek a H halmazon primitív függvénye az F függvény, ha a H halmazon f és F értelmezve van, továá
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
RészletesebbenMAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
RészletesebbenMBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális
RészletesebbenJogszabályváltozások. Érettségi 2015/2016 tanév tavasz. Dr. Kun Ágnes osztályvezető
Érettségi 2015/2016 tanév tavasz Jogszabályváltozások Dr. Kun Ágnes osztályvezető Jász-Nagykun-Szolnok Megyei Kormányhivatal Oktatási és Hatósági Osztály 2016. április 19. Az érettségi vizsga vizsgaszabályzatának
RészletesebbenLineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 5 V. BECsLÉsELMÉLET 1. STATIsZTIKAI becslés A becsléselméletben gyakran feltesszük, hogy a megfigyelt mennyiségek független valószínűségi
RészletesebbenKérdések és feladatok
Kérdések és feladatok 1. A mesében több szám is szerepel. Próbáld meg felidézni ezeket, majd töltsd ki a táblázatot! Ügyelj, hogy a páros és a páratlan számok külön oszlopba kerüljenek! Hány napos volt
RészletesebbenA 2015/2016-OS TANÉV RENDJE
A 2015/2016-OS TANÉV RENDJE A 28/2015. (V. 28.) EMMI rendelete, a Budapest II. Kerületi II. Rákóczi Ferenc Gimnázium Pedagógiai Programja alapján A tanév 2015. szeptember 1-től 2016. június 15-ig tart
Részletesebben6. évfolyam MATEMATIKA
28 6. évfolyam MATEMATIKA Országos kompetenciamérés 28 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Budapest, 29 6. ÉVFOLYAM A kompetenciamérésekről 28 májusában immár hatodik alkalommal
RészletesebbenÉpületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
RészletesebbenZIPERNOWSKY KÁROLY MŰSZAKI SZAKKÖZÉPISKOLA MUNKA-, RENDEZVÉNY-, ÉS FELADATELLÁTÁSI TERVE. A 2013 / 2014 es TANÉVRE
ZIPERNOWSKY KÁROLY MŰSZAKI SZAKKÖZÉPISKOLA MUNKA-, RENDEZVÉNY-, ÉS FELADATELLÁTÁSI TERVE A 2013 / 2014 es TANÉVRE A 2013/2014-es tanévben a szorgalmi idő Első tanítási nap: 2013. szeptember 2. (hétfő)
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenTaneszközlista felső tagozatosok részére
Taneszközlista felső tagozatosok részére Tisztelt Szülők! A 2016/2017-es tanévre a Litéri Református Általános Iskola felső tagozatos tanulóinak a következő taneszközökre lesz szüksége az egyes tantárgyak
Részletesebbenő ő ő ő ű Ó ő ő ű ű ő ő Ó ő ő ő ő ő ő ű ő ő ű ű ő ő ű Ó ő ő ő Ó ő ű ő ő ő ű ű ű ő ő ő ő ő ő ő Ó ő ő ő ű ő ő ő ő ő ű ő ő Ó ő ő ű ő ő ő ő ő ő ő ű ű ő ő ő ű ű ő ű ő ő Ó Ó ő Ó Ó ő Ó ű ő ő ő ő ő ű ő ű ű ű ű
Részletesebben