[MECHANIKA- HAJLÍTÁS]

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "[MECHANIKA- HAJLÍTÁS]"

Átírás

1 2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1

2 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás problémájára. A hajlítás tárgyalása előtt elevenítsük fel a statika témaköréből a veszélyes keresztmetszet meghatározását. A veszélyes keresztmetszet meghatározásához első körben meg kell állapítani, hogy mekkora erők hatnak a tartóra, amely statikailag nyugalomban van. Ezután pedig az igénybevételi ábrákat rajzoljuk fel, ahonnan meg tudjuk határozni, hogy melyik keresztmetszetet veszi igénybe legjobban a a terhelés, és hogy mekkora a terhelés nagysága az adott keresztmetszeten. Nézzük a következő példát: A következő adatok ismertek: F (terhelőerő), l és l 1 (a rúd jellemző hosszúságai). A feladat a tartó legjobban igénybevett keresztmetszetének meghatározása. Mivel a rúd statikailag nyugalomban van, meg lehet határozni az F a és F b erőt. A rúdra ható erők eredője nulla (statika első főtétele), így az eredő erő komponensei is nullára adódnak. Mivel x irányú erő nem hat rá, ezért az y irányú eredő erő nagyságát írjuk fel: Mivel ebben az egyenletben kettő ismeretlen van, ezért nem tudjuki megoldani. Keressünk egy olyan egyenletet, amelyben egy ismeretlen szerepel. Ha a rúd valamelyik végpontjára felírjuk a nyomatéki egyenletet, akkor az adott végpontban ható erő ki fog esni, hiszen az erő hatásvonala áthalad a ponton, amire a nyomatékot számítjuk. Az A pontra felírt nyomatéki egyenlet: Ebből az F b -t kifejezve: Ha ismerjük az F b -t, akkor F a kifejezhető az elsőként felírt egyenletből: HA ismerjük a szerkezetre ható összes erőt, akkor fel tudjuk rajzolni az igénybevételi ábrákat. 2

3 A T y (l) ábrán a függőleges irányú erőket ábrázoljuk előjelhelyesen. Ami azt jelenti, hogy ami pozitív irányba mutat, azt pozitív irányba ábrázoljuk, ami negatív irányba, azt negatív irányba ábrázoljuk. Az ábra kezdőpontjából (origó) elindulva F a egységet pozitív irányba mozdulunk el. Nem hat másik függőleges irányú erő a szerkezetre egészen addig a pontig, ahol az F erő hat. Itt F erőnyi egységet elmozdulunk lefele. Ha jó a számításunk, akkor az l tengelytől pontosan F b távolságra leszünk. a rúd végpontjáig negatív tartományban maradunk, a rúd végpontjában pedig F b erő hat, így a nulla értékre térünk vissza. A szerkezet nyíróerő (függőleges irányú erő) ábrája: A nyíróerő ábrából meghatározható a hajlító nyomatéki ábra ( M hz ). A nyomaték az erő nagyságának és az erőkarnak a szorzata. Ha megnézzük a hajlító nyomatéki ábrát, akkor láthatjuk, hogy az erőkart a vízszintes az erő nagyságát a függőleges tengelyről tudjuk leolvasni, azaz a nyomatékot az ábrán látható téglalapok területének nagyságával meg tudjuk határozni. A nyomatéki ábra első fele úgy határozható meg, hogy az első téglalap területét ábrázoljuk. A kezdőpontban nulla a terület, és ahol az F erő hat ott a nyomaték a terület képlet alapján: Ami a nyíróerő ábrán pozitív tartományban van, azt a nyomatéki ábrán negatívnak tekintjük, ami a nyíróerő ábrán negatív tartományban van, azt pozitívnak tekintjük. A nyomatéki ábra: A feladat során az ábrákat egymás alá rendezzük. Az N x ábra a vízszintes irányú erőket tartalmazza, ami a mi esetünkben nulla minden pontban, hiszen nem hat a szerkezetre vízszintes irányú erő. 3

4 A szerkezet veszélyes keresztmetszete pedig az a keresztmetszet lesz, ahol a legnagyobb nyomaték hat ( Mhz,max). Ezt a pontot visszavetítjük a rúdra. és jelöljük. Ez lesz az a pont, amit majd a hajlításra való méretezés során méretezni fogunk. Gyakorlás: Határozza meg a tartó veszélyes keresztmetszeteit, ha ismertek az alábbi adatok: F [N] l 1 [m] l [m] , ,2 3,4 4

5 Méretezés: A méretezés elvégzéséhez szükséges a hajlítás során megismert alapfogalmak ismerete, illetve a következő összefüggések. Keresztmetszeti tényező: A keresztmetszeti tényező a keresztmetszet egyik geometriai tulajdonsága. Az összefüggések levezetése komoly matematikai tudást igényel, ezért ezek levezetését hanyagoljuk és csak a kiszámítás módját írjuk fel. Keresztmetszet A [mm 2 ] K z [mm 3 ] Téglalap Kör A hajlítófeszültség meghatározása:,ahol : a rúdban ébredő hajlító feszültség [MPa] M hz : a hajlító nyomaték [Nm] K z : a keresztmetszeti tényező [mm 3 ] A hajlítás során is méretezhetünk, illetve ellenőrizhetünk egy adott szerkezetet. A méretezés során a keresztmetszet minimális nagyságát határozzuk meg. Azt a minimális nagyságot, ami elbírja az adott terhelést. A méretezés lépései: 1. A hiányzó támasztóerők meghatározása (F a ;F b ). Nyomatéki és egyensúlyi egyenletből. 2. Nyíróerő ábra felrajzolása. 3. Hajlító nyomatéki ábra felrajzolása 4. Maximális hajlító nyomaték meghatározása, veszélyes keresztmetszet meghatározása. 5. A rúd választott anyagából a megengedhető feszültség meghatározása., ahol: : megengedhető feszültség [MPa] : a rúd anyagára megadott maximális feszültség [MPa] : biztonsági tényező [-] 5

6 6. A megengedhető feszültségből és a hajlító nyomatékból a minimális keresztmetszeti tényező meghatározása., ahol: K z,min : minimális keresztmetszeti tényező [mm 3 ] M hz : hajlító nyomaték az adott keresztmetszeten [Nm] : megengedhető feszültség [MPa] 7. A minimális keresztmetszeti tényezőből a minimális méretek meghatározás (keresztmetszet meghatározása). Kör esetén:, ahol: d min : minimális átmérő [mm] K z,min : minimális keresztmetszeti tényező [mm 3 ] 8. Felkerekítjük a kapott értéket ötös pontossággal. d>d min Példa a méretezésre: Határozzuk meg a tartó keresztmetszetét! Adott: F=50000 [N] l=2 [m] l 1 =1 [m] A méretezés során ismerjük a terhelést, és a tartó geometriai méreteit, azonban nem ismerjük a tartó keresztmetszetét. A számítások során a keresztmetszetet kell meghatározni, hogy az N-os terhelés hatására nem hajoljon el a rúd, illetve ne törjön el a tartó. 6

7 Határozzuk meg a hiányzó erőket, és maximális terhelést valamint a veszélyes keresztmetszetet! A veszélyes keresztmetszet a C pontban lesz, ahol az F erő hat a tartóra. A választott keresztmetszet: kör A választott anyag: A választott biztonsági tényező: n=1,5 A megengedhető feszültség: A minimális keresztmetszeti tényező meghatározása: A minimális átmérő meghatározása: 7

8 A választott átmérő: d=15 [mm] Gyakorló példák: l 1 [m] l [m] F [N] d[mm] ? 1, ? ? ? 1, ? Ellenőrzés Ha egy kész szerkezeten meg szeretnénk változtatni a terhelést, akkor ellenőrzőleg el kell végeznünk egy számítást, aminek a végeredményeképpen megkapjuk, hogy a tartó megfelel-e a terhelésre vagy sem. 8

9 Az ellenőrzés lépései: 1. A megengedhető feszültség meghatározása:,ahol : megengedhető feszültség [MPa] : maximális feszültség [MPa] :biztonsági tényező [-] 2. A jellemző feszültség meghatározása: 2/a. A hiányzó erők meghatározása:,ahol: M A : nyomaték [Nm] F;F a ;F b : erő [N] l;l 1 : a rúd geometriai méretei [m] 2/b. A veszélyes keresztmetszetet terhelő nyomaték meghatározása:,ahol: M hz,max : maximális hajlító nyomaték [Nm] F a ;F b : a rúd végpontjaiban ébredő erő [N] l;l 1 : a rúd geometriai méretei [m] 2/c. A keresztmetszeti tényező meghatározása: K z : keresztmetszeti tényező [mm 3 ] d: a keresztmetszet átmérője [mm] 2/d. A jellemző feszültség meghatározása:,ahol: : a rúdban ébredő jellemző feszültség [MPa] : a maximális hajlító nyomaték [Nm] : keresztmetszeti tényező [mm 3 ] 9

10 3. A megengedhető és jellemző feszültségek összehasonlítása: Ha NEM MEGFELELŐ Ha MEGFELELŐ Példa ellenőrzésre: Ellenőrizzük le a következő tartót! Az ábrán látható tartón a következő adatok ismertek: l=2 [m] l1=1[m] 450 [MPa] n=1,5 [-] M hz,c :25000 [N] d=10 [mm] Határozzuk meg a megengedhető feszültséget: Határozzuk meg a keresztmetszeti tényező nagyságát: A rúdban ébredő jellemző feszültség meghatározása: A jellemző és a megengedett feszültség összehasonlítása: A tartó MEGFELELŐ 10

11 Gyakorló példák: Határozza meg, hogy a rúd megfelelő-e vagy sem? l [m] l 1 M hz n d [m] [Nm] [-] [MPa] [mm] , , , , , , ,

12 12

13 13

Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek

Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár IGÉNYBEVÉTELEK

DEME FERENC okl. építőmérnök, mérnöktanár IGÉNYBEVÉTELEK weblap : www.hild.gyor.hu DEE FERENC okl. építőmérnök, mérnöktanár email : deme.ferenc1@gmail.com STATIKA 30. IGÉNYBEÉTELEK A terhelő erők és az általuk ébresztett támaszerők a tartókat kívülről támadják,

Részletesebben

A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS

A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS 1., Merev testek általános statikája mértékegységek a mechanikában a számító- és szerkesztő eljárások parallel alkalmazása Statikai

Részletesebben

Lécgerenda. 1. ábra. 2. ábra

Lécgerenda. 1. ábra. 2. ábra Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

VASÚTI PÁLYA DINAMIKÁJA

VASÚTI PÁLYA DINAMIKÁJA VASÚTI PÁLYA DINAMIKÁJA Dynamics of the railway track Liegner Nándor BME Út és Vasútépítési Tanszék A vasúti felépítmény szerkezeti elemeiben ébredő igénybevételek A Zimmermann Eisenmann elmélet alapján

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan)

Tartószerkezetek I. (Vasbeton szilárdságtan) Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.09.27. Hajlított vasbeton keresztmetszetek vizsgálata 2 3 Jelölések, elnevezések b : a keresztmetszet szélessége h : a keresztmetszet magassága

Részletesebben

TRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA

TRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA TRNZSZTOROS KPSOLÁSOK KÉZ SZÁMÍTÁS 1. gyenáramú számítás kézi számításokhoz az ábrán látható egyszerű közelítést használjuk: = Normál aktív tartományban a tranzisztort bázis-emitter diódáját az feszültségforrással

Részletesebben

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:

Részletesebben

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 5. Előadás Stabilitás I. Dr. Szalai József Főiskolai adjunktus Tartalom Egyensúly elágazási határállapot Rugalmas nyomott oszlop kritikus ereje (Euler erő) Valódi nyomott oszlopok

Részletesebben

Földrajzi helymeghatározás

Földrajzi helymeghatározás A mérés megnevezése, célkitűzései: Földrajzi fokhálózat jelentősége és használata a gyakorlatban Eszközszükséglet: Szükséges anyagok: narancs Szükséges eszközök: GPS készülék, földgömb, földrajz atlasz,

Részletesebben

Nyomott - hajlított fagerenda szilárdsági méretezése ~ egy régi - új megoldás

Nyomott - hajlított fagerenda szilárdsági méretezése ~ egy régi - új megoldás Nyomott - ajlított fagerenda szilárdsági méretezése ~ egy régi - új oldás Már régóta foglalkozom erőtani problémákkal, ám nagy lepetésemre a minap egy olyan érdekes feladat - oldást találtam, amilyet még

Részletesebben

Koordináta - geometria I.

Koordináta - geometria I. Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály 5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

MŰSZAKI ISMERETEK, VEGYIPARI GÉPEK I.

MŰSZAKI ISMERETEK, VEGYIPARI GÉPEK I. MŰSZAKI ISMERETEK, VEGYIPARI GÉPEK I. Vegyipari szakmacsoportos alapozásban résztvevő tanulók részére Ez a tankönyvpótló jegyzet a Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai

Részletesebben

1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi

1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi 1 Mélyhúzott edény teríték méretének meghatározása 1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi A mélyhúzott edény kiindulási teríték átmérőjének meghatározása a térfogat-állandóság alapján

Részletesebben

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek! 1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,

Részletesebben

Kör kvadratúrája. Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra

Kör kvadratúrája. Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra 1 Kör kvadratúrája Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra Ez az ábra hibás, hiába javított kiadásról van szó. Nézzük, miért! Az ábrázolt kék kör és rózsaszín négyzet területe egyenlő.

Részletesebben

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével.

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. Eszközszükséglet: kaloriméter fűtőszállal digitális mérleg tanulói tápegység vezetékek

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A

Részletesebben

Használható segédeszköz: rajzeszközök, nem programozható számológép

Használható segédeszköz: rajzeszközök, nem programozható számológép A 27/2012 (VIII. 27.) NGM rendelet (12 /2013 ( III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 521 03 Gépgyártástechnológiai

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV. Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk

Részletesebben

BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE

BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE BACZY"SKI Gábor Budape?ti 1Iűszaki Egyetem, Közlekedésmérnöki Kar Epítő- és Anyagmozgató Gépek Tanszék Körkeresztmetszet{Í

Részletesebben

Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)

Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet) Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű

Részletesebben

Jelek tanulmányozása

Jelek tanulmányozása Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás

Részletesebben

Párhuzamos programozás

Párhuzamos programozás Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

Egyszerű áramkörök vizsgálata

Egyszerű áramkörök vizsgálata A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)

Részletesebben

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy Név Neptun-kód Hallgató aláírása 0-15 pont: elégtelen (1) 16-21 pont: elégséges (2) 22-27 pont: közepes (3) 28-33 pont: jó (4) 34-40 pont: jeles (5) Érzékelők jellemzése Hőmérsékletérzékelés Erő- és nyomásmérés

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat

Részletesebben

MATEMATIKA HETI 3 ÓRA

MATEMATIKA HETI 3 ÓRA EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

8. Feladat Egy bútorgyár asztalosműhelyében évek óta gyártják a Badacsony elnevezésű konyhaasztalt. Az asztal gyártási anyagjegyzéke a következő:

8. Feladat Egy bútorgyár asztalosműhelyében évek óta gyártják a Badacsony elnevezésű konyhaasztalt. Az asztal gyártási anyagjegyzéke a következő: MRP számítások 1 8. Feladat Egy bútorgyár asztalosműhelyében évek óta gyártják a Badacsony elnevezésű konyhaasztalt. Az asztal gyártási anyagjegyzéke a következő: asztal lábszerkezet asztallap Csavar (

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

31 525 03 1000 00 00 Karosszérialakatos Karosszérialakatos

31 525 03 1000 00 00 Karosszérialakatos Karosszérialakatos A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Alagútépítés Ideiglenes megtámasztás tervezése Példafeladat TÓTH Ákos

Alagútépítés Ideiglenes megtámasztás tervezése Példafeladat TÓTH Ákos Alagútépítés Ideiglenes megtámasztás tervezése Példafeladat TÓTH Ákos 2015.05.14 1 RMR Geomechanikai Osztályozás, RMR Az RMR rendszer 6 paraméterre alapul: 1. A kőzet egyirányú nyomószilárdsága; (r σ )

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek

Részletesebben

Nyomó csavarrugók méretezése

Nyomó csavarrugók méretezése Nyomó csavarrugók méretezése 007 Összeállította: Móka József . Rugó műszaki ábrázolása A körszelvényű hengeres nyomó csavarrugót az MSZ EN ISO 6-000 előírásai szerint ábrázoljuk. Eszerint ötnél kevesebb

Részletesebben

KOMPLEX TERVEZÉS TERVEZÉSI SZAKIRÁNY TARTÓSZERKEZETI FELADATRÉSZ 1. félév

KOMPLEX TERVEZÉS TERVEZÉSI SZAKIRÁNY TARTÓSZERKEZETI FELADATRÉSZ 1. félév KOMPLEX TERVEZÉS TERVEZÉSI SZAKIRÁNY 1. félév engedélyezési terv szintű dokumentáció tartószerkezeti munkarészének elkészítése folyamatos konzultáció, az első konzultációnak a vázlatterv beadás előtt meg

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár TARTÓK web-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 19. TARTÓK FOGALMA: TARTÓK A tartók terhek biztonságos hordására és azoknak a támaszokra történő

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 1411 ÉRETTSÉGI VIZSGA 016. május 18. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben

1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév

1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak

Részletesebben

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális

Részletesebben

Mértékegységrendszerek 2006.09.28. 1

Mértékegységrendszerek 2006.09.28. 1 Mértékegységrendszerek 2006.09.28. 1 Mértékegységrendszerek első mértékegységek C. Huygens XVII sz. természeti állandók Párizsi akadémia 1791 hosszúság méter tömeg kilogramm idő másodperc C. F. Gauss 1832

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 582 08 Kőműves és hidegburkoló Tájékoztató A vizsgázó az első lapra írja fel a

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu 1. oldal 7. előadás Becslések és minta elemszámok 7-1 Áttekintés 7-2 A populáció arány becslése 7-3 A populáció átlag

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 080 ÉETTSÉGI VIZSG 009. május. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

Tevékenység: Gyűjtse ki és tanulja meg a kötőcsavarok szilárdsági tulajdonságainak jelölési módját!

Tevékenység: Gyűjtse ki és tanulja meg a kötőcsavarok szilárdsági tulajdonságainak jelölési módját! Csavarkötés egy külső ( orsó ) és egy belső ( anya ) csavarmenet kapcsolódását jelenti. A következő képek a motor forgattyúsházában a főcsapágycsavarokat és a hajtókarcsavarokat mutatják. 1. Kötőcsavarok

Részletesebben

Egységes jelátalakítók

Egységes jelátalakítók 6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük

Részletesebben

2011. március 9. Dr. Vincze Szilvia

2011. március 9. Dr. Vincze Szilvia . márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer

Részletesebben

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE Készítette: Ács György RTO FORRÁS: FLUXUS SZONDA ÉS ALKALMAZÁSA KTT MÉRNÖKI IRODA 11SP mérési eredményei A forgórész menetzárlat okozta

Részletesebben

Programozás I. - 9. gyakorlat

Programozás I. - 9. gyakorlat Programozás I. - 9. gyakorlat Mutatók, dinamikus memóriakezelés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 9, 2009 1 tar@dcs.vein.hu

Részletesebben

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

S T A T I K A. Az összeállításban közremûködtek: Dr. Elter Pálné Dr. Kocsis Lászlo Dr. Ágoston György Molnár Zsolt

S T A T I K A. Az összeállításban közremûködtek: Dr. Elter Pálné Dr. Kocsis Lászlo Dr. Ágoston György Molnár Zsolt S T A T I K A Ez az anyag az "Alapítvány a Magyar Felsôoktatásért és Kutatásért" és a "Gépészmérnök Képzésért Alapítvány" támogatásával készült a Mûszaki Mechanikai Tanszéken kísérleti jelleggel, hogy

Részletesebben

N.III. Vasbeton I. T7. Oszlopok III. Külpontosan nyomott oszlop 2016. 04.18. 1. oldal

N.III. Vasbeton I. T7. Oszlopok III. Külpontosan nyomott oszlop 2016. 04.18. 1. oldal 1. oldal Az alábbi feladatból két dolgot emelünk ki: - a teherkombinációk vizsgálatának szükségességét - és hogy a külpontosságot nem csak a hajlítás síkjában, hanem arra merőlegesen is meg kell növelni,

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar. Járműelemek és Hajtások Tanszék. Siklócsapágyak.

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar. Járműelemek és Hajtások Tanszék. Siklócsapágyak. BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM K ö z l e k e d é s m é r n ö k i K a r Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Járműelemek és Hajtások Tanszék Járműelemek és

Részletesebben

A Hozzárendelési feladat megoldása Magyar-módszerrel

A Hozzárendelési feladat megoldása Magyar-módszerrel A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független

Részletesebben

2. Interpolációs görbetervezés

2. Interpolációs görbetervezés 2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot

Részletesebben

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés

Részletesebben

54 582 02 0010 54 01 Hídépítő és -fenntartó technikus Közlekedésépítő technikus

54 582 02 0010 54 01 Hídépítő és -fenntartó technikus Közlekedésépítő technikus T 061106/1/1 A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.

Részletesebben

Vektoralgebrai feladatok

Vektoralgebrai feladatok Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat

Részletesebben

1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,00 250,00 kpa,

1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,00 250,00 kpa, 1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,0 250,0 kpa, pontossága 3% 2 osztás. Mekkora a relatív hibája a 50,0 kpa, illetve a 210,0 kpa értékek mérésének? rel. hiba_tt

Részletesebben

G Szabályfelismerés 2.2. 2. feladatcsomag

G Szabályfelismerés 2.2. 2. feladatcsomag ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 5 ÉRETTSÉGI VIZSG 05. október. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ EMBERI ERŐFORRÁSOK MINISZTÉRIM Egyszerű, rövid

Részletesebben

Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép és készülékszerelő

Részletesebben

B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont]

B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont] B feladat : Ebben a kísérleti részben vizsgáljuk, Összpontszám: 20 B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását B1 A tej pufferkapacitása

Részletesebben

mennyiségi egység Feladat: Számszerűsítse az anyagköltség, a bérköltség és a bérjárulékok változására ható tényezőket!

mennyiségi egység Feladat: Számszerűsítse az anyagköltség, a bérköltség és a bérjárulékok változására ható tényezőket! . feladat Egy vállalkozás termeléséről az alábbi adatokat ismeri: Megnevezés mennyiségi egység terv tény Termelés db 2 Fajlagos anyagfelhasználás kg/db 8, 9, Anyag egységár Ft/kg 25,, Fajlagos munkaórafelhasználás

Részletesebben

A mérések eredményeit az 1. számú táblázatban tüntettük fel.

A mérések eredményeit az 1. számú táblázatban tüntettük fel. Oktatási Hivatal A Mérések függőleges, vastag falú alumínium csőben eső mágnesekkel 2011/2012. tanévi Fizika Országos Középiskolai Tanulmányi Verseny döntő feladatának M E G O L D Á S A I. kategória. A

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek

Részletesebben

Díszkerítés elemek alkalmazási útmutatója

Díszkerítés elemek alkalmazási útmutatója Díszkerítés elemek alkalmazási útmutatója Készítette: Lábatlani Vasbetonipari ZRt. Lábatlan, 2016-03-21 1 Tartalomjegyzék Tartalomjegyzék... 2 1. Tervezés, beépítés... 3 2. A termékek emelése, tárolása,

Részletesebben

Conjoint-analízis példa (egyszerűsített)

Conjoint-analízis példa (egyszerűsített) Conjoint-analízis példa (egyszerűsített) Az eljárás meghatározza, hogy a fogyasztók a vásárlás szempontjából lényeges terméktulajdonságoknak mekkora relatív fontosságot tulajdonítanak és megadja a tulajdonságok

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

Műszaki ábrázolás II. 3. Házi feladat. Hegesztett szerkezet

Műszaki ábrázolás II. 3. Házi feladat. Hegesztett szerkezet Hegesztett szerkezet Feladat: Hegesztett szerkezet rajzának elkészítése. Szükséges eszközök: A3-as fehér rajzlap az összeállítási és alkatrészrajzokhoz szerkesztési táblázat az anyagminőségek és a szabványos

Részletesebben

Vasúti pálya függőleges elmozdulásának vizsgálata

Vasúti pálya függőleges elmozdulásának vizsgálata BUDAPESTI M Ű S Z A K I É S G A Z D A S Á G T U D O M Á N Y I E G Y E T E M É p í t ő m é r n ö k i K a r Á l t a l á n o s - é s F e l s ő g e o d é z i a Ta n s z é k F o t o g r a m m e t r i a é s

Részletesebben

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens Tanulói munkafüzet FIZIKA 11. évfolyam emelt szintű tananyag 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Egyenes vonalú mozgások..... 3 2. Periodikus

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

ZAJCSILLAPÍTOTT SZÁMÍTÓGÉPHÁZ TERVEZÉSE

ZAJCSILLAPÍTOTT SZÁMÍTÓGÉPHÁZ TERVEZÉSE ZAJCSILLAPÍTOTT SZÁMÍTÓGÉPHÁZ TERVEZÉSE Kovács Gábor 2006. április 01. TARTALOMJEGYZÉK TARTALOMJEGYZÉK... 2 1. FELADAT MEGFOGALMAZÁSA... 3 2. LÉGCSATORNA ZAJCSILLAPÍTÁSA... 3 2.1 Négyzet keresztmetszet...

Részletesebben

A parabola és az egyenes, a parabola és kör kölcsönös helyzete

A parabola és az egyenes, a parabola és kör kölcsönös helyzete 66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3. MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik

Részletesebben

Azonosító jel: Matematika emelt szint

Azonosító jel: Matematika emelt szint I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 521 03 Gépgyártástechnológiai technikus Tájékoztató A vizsgázó az első lapra írja

Részletesebben

2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m]

2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m] 1. Elektrosztatika 1. Egymástól 30 m távolságban rögzítjük az 5 µ C és 25 µ C nagyságú töltéseket. Hová helyezzük a 12 µ C nagyságú töltést, hogy egyensúlyban legyen? [9,27 m] 2. Egymástól 130 cm távolságban

Részletesebben

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! 1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.

Részletesebben

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés.

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés. MŰSZAKI HŐTAN II.. ZÁRTHELYI Adja meg az Ön képzési kódját! N Név: Azonosító: Terem Helyszám: K - Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl

Részletesebben

A műszaki rezgéstan alapjai

A műszaki rezgéstan alapjai A műszaki rezgéstan alapjai Dr. Csernák Gábor - Dr. Stépán Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanikai Tanszék 2012 Előszó Ez a jegyzet elsősorban gépészmérnök hallgatóknak

Részletesebben

2010.05.12. 1300 Infó Rádió. Hírek

2010.05.12. 1300 Infó Rádió. Hírek 2010.05.12. 1300 Infó Rádió Hírek 100512 1303 [1127h GAZ MKIK - pozitív index MTI km 100512] Jelentősen javultak a magyar vállalatok várakozásai a következő félévre a Magyar Kereskedelmi és Iparkamara

Részletesebben

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve) Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...

Részletesebben

A.11. Nyomott rudak. A.11.1. Bevezetés

A.11. Nyomott rudak. A.11.1. Bevezetés A.. Nyomott rudak A... Bevezetés A nyomott szerkezeti elem fogalmat általában olyan szerkezeti elemek jelölésére használjuk, amelyekre csak tengelyirányú nyomóerő hat. Ez lehet speciális terhelésű oszlop,

Részletesebben

Számítógépes vírusok

Számítógépes vírusok A vírus fogalma A számítógépes vírus olyan szoftver, mely képes önmaga megsokszorozására és terjesztésére. A vírus célja általában a számítógép rendeltetésszerű működésének megzavarása, esetleg a gép tönkretétele,

Részletesebben

FIZIKA MECHANIKA MŰSZAKI MECHANIKA STATIKA DINAMIKA BEVEZETÉS A STATIKA HELYE A TUDOMÁNYBAN

FIZIKA MECHANIKA MŰSZAKI MECHANIKA STATIKA DINAMIKA BEVEZETÉS A STATIKA HELYE A TUDOMÁNYBAN BEVEZETÉS A STATIKA HELYE A TUDOMÁNYBAN A statika a fizikának, mint a legszélesebb körű természettudománynak a része. A klasszikus értelemben vett fizika azokkal a természeti törvényekkel, illetve az anyagoknak

Részletesebben