Váltakozó áram. A váltakozó áram előállítása

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Váltakozó áram. A váltakozó áram előállítása"

Átírás

1 Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség maximális nagysága, ahol - a mágneses indukció, - a vezető hossza, - a körmozgás sebessége. Mivel a sebesség és mágneses erővonalak közötti szög változik az indukált feszültség pillanatnyi értéke: szorzat úgy is értelmezhető, mint az erőtérre merőleges sebességkomponens. Az mellékelt ábra a sebesség felbontását ábrázolja, ha a vezetőkeretet oldalról figyeljük. Mivel az - szög (0,360) fokos intervallumban változik, a sin értéke (1,-1) közötti értékeket vehet fel. A szinusz szögfüggvénnyel összhangban a feszültség előjele félperiódusonként váltakozik. Az ilyen típusú feszültséget váltakozó feszültségnek nevezzük. Ha a keret forgatása állandó - szögsebességgel történik és a maximális feszültséget -el jelöljük, akkor a pillanatnyi feszültség - értéke: ahol - a sebesség és mágneses indukció közötti szög. A fenti összefüggésben ahol - a -idő alatt besepert - szög. Ha a pillanatnyi feszültség időbeni változását ábrázoljuk, akkor a mellékelt grafikont kapjuk. A mindennapi életben a legtöbb elektromos berendezés ilyen váltakozó áramot használ. A következőkben megvizsgáljuk, hogyan viselkedik a váltakozó áramú áramkörben egy ellenállás, kondenzátor és tekercs. Végül pedig a három alkatrészt összekapcsoljuk sorosan és párhuzamosan. A váltakozó áram teljesítményét meghatározhatjuk egy olyan egyenáramú áramkör teljesítményének kiszámításával, amely ugyanannyi idő alatt ugyanakkora teljesítményre képes egy ellenálláson. A váltakozó áram teljesítménye: 1

2 ahol - a pillanatnyi áramerősség, - annak az egyenáramnak az erőssége, amely ugyanazt a teljesítményt biztosítja (neve effektív áramerősség). Az - áramerősség hasonlóan változik a pillanatnyi feszültséggel: Tehát: Ahhoz, hogy kiszámítsuk értékét, ki kell számítanunk a váltakozó áram pillanatnyi teljesítményének középértékét. Mivel középértéke egy periódusra nézve nulla, következik, hogy: vagy Ellenállás váltakozó áramú áramkörben A következőkben megvizsgáljuk az ellenállás, kondenzátor és tekercs viselkedését váltakozó áramú áramkörben. Minden esetben azonos szinuszosan váltakozó feszültséget használunk, melynek pillanatnyi értékét a következő egyenlet adja: Elsőként tekintsünk egy ohmikus ellenállást, melyre a fenti egyenlettel megadott váltakozó feszültséget kötünk. Számítsuk ki, Ohm törvényét használva, az ellenálláson áthaladó áram erősségét: A pillanatnyi áramerősség ( ) felírható tehát, mint egy maximális áramerősség ( ) és egy sinusos tag szorzata. Megjegyzendő, hogy a kapott áramerősség és a tápfeszültség azonos 2

3 fázisban vannak, tehát az ellenállás nem okoz fáziskülönbséget a váltakozó áramú áramkörben. Kondenzátor váltakozó áramú áramkörben Kössünk kondenzátorra váltakozó áramú áramforrást, melynek feszültségét az alábbi egyenlet írja le: Egyenfeszültségű áramforrás esetén a kondenzátor rövid idő alatt feltöltődik, de azután megakadályozza az áram áthaladását. Váltakozó áram esetén minden félperiódusban váltakozik a feszültség előjele, ezért újból és újból feltöltődik a kondenzátor mindig ellentétes töltésekkel. Így gyakorlatilag az áramkörben nem szakad meg az áram, csak időben változó rezgéseket végez. Keressük meg az áramerősség pillanatnyi értékének kifejezését: az áramerősség differenciált kifejezése. A töltés felírható, mint: Behelyettesítve és deriválva kapjuk: A könnyebb összehasonlítás érdekében írjuk át az eredményt: Összevetve az időtől független tagot (a maximális áramerősséget) Ohm törvényével, arra a következtetésre jutunk, hogy a nevező egy ellenállás érték kell legyen, a kondenzátor ellenállása váltakozó áramú áramkörben, neve kapacitív reaktancia: - kapacitív reaktancia, mértékegysége az ohm (Ω). A maximális áramerősség, tehát: Észrevehető, hogy a kondenzátor az áramerősség sietését okozza a feszültséghez képest. 3

4 Ábrázolva kapjuk: Az ábrán is látható, hogy a kondenzátor miatt az áramerősség 90 fokkal siet a feszültséghez képest. Tekercs a váltakozó áramú áramkörben Helyezzünk tekercset a váltakozó áramú áramkörünkbe. A váltakozó áramú áramforrás által szolgáltatott feszültség maradjon: Számítsuk ki a tekercsen átfolyó áram pillanatnyi erősségének kifejezését: ami a tekercsben indukált feszültség kifejezése differenciált alakban. Kifejezve, majd integrálva az áramerősségre kapjuk: Az utolsó egyenlőséget átírjuk a azonosságot felhasználva, kapjuk: Az eredményből következik, hogy a tekercs az áramerősség késését idézi elő az áramerősséghez képest. Egybevetve Ohm törvényével kapjuk: tehát, egy ellenállás dimenziójú tag kell legyen, neve induktív reaktancia és -ban mérik. Ábrázolva: 4

5 az ábráról leolvasható, hogy a feszültség 90 fokkal előzi meg az áramerősséget. Soros RLC áramkör A váltakozó áramú soros RLC áramkör áramforrásához sorosan kötünk ellenállást, tekercset és kondenzátort. A soros kapcsolásra jellemzően az áramerősség azonos a három áramköri elemen, a pillanatnyi feszültségek összege pedig egyenlő kell legyen az áramforrás pillanatnyi feszültségével: A pillanatnyi feszültségeket kiszámíthatjuk mint forgóvektorok vetületeit az x tengelyen. Az ábrázolásnál figyelembe kell venni az előzőekben levezetett fáziskéséseket az áramerősség és a különböző feszültségek között. A teljes feszültséget (az áramforrás maximális feszültségét) megkapjuk, ha vektoriálisan összeadjuk a három áramköri elem feszültségét ábrázoló forgóvektort. A Pitagorasz szabály szerint: mivel:, és, az előző egyenletből kapjuk: vagy, figyelembe véve, hogy a teljes feszültség egyenlő az áramerősség és az áramkör teljes ellenállásának szorzatával ( : 5

6 ahol az áramkör teljes ellenállása vagy más néven impedanciája. A fentiek szerint meg lehet rajzolni az ellenállások fázisdiagramját soros RLC áramkörre (mellékelt ábra). A feszültségdiagramból kiderül, hogy a feszültség általában nincs fázisban az áramerősséggel. A fáziskülönbséget a szög tangensével szokás megadni: Párhuzamos RLC áramkör A váltakozó feszültségű áramforráshoz párhuzamosan kapcsolunk ellenállást, tekercset és kondenzátort. A párhuzamos kapcsolás tulajdonságai szerint a feszültségek az áramkör elemein azonosak lesznek a pillanatnyi áramerősségek összege pedig megegyezik a főáram pillanatnyi értékével: Forgóvektorok segítségével ábrázolva: Az áramerősségek amplitúdói közötti összefüggés: Felhasználva az,, és egyenlőségeket, kapjuk: vagy: ahol a párhuzamos áramkör eredő ellenállása (impedanciája). 6

7 Az áramerősség és feszültség közötti fáziseltolódás tangense: Rezonancia az RLC áramkörökben a) soros RLC áramkör Rezonanciáról beszélünk akkor, ha az áramkörben maximálisra nő az áramerősség. Ezzel a megfogalmazással egyenértékű kifejezések: 1) Az impedancia minimális; 2) 3) ; 4) ; 5) Nincs fáziseltolódás a feszültség és áramerősség között; Adott RLC áramkör esetén meghatározható az a periódus (frekvencia), amely esetén bekövetkezik a rezonancia: vagy vagy ahonnan és ahol a rezonancia körfrekvencia, illetve a rezonancia periódus. Ha ábrázoljuk az áramerősséget a körfrekvencia függvényében az alábbi grafikont kapjuk: 7

8 Rezonancia esetén a kondenzátorra/tekercsre eső feszültség illetve teljes feszültség arányát jósági tényezőnek nevezzük: b) párhuzamos RLC áramkör Ebben az esetben: Az áramkör fő ágában az áramerősségnek minimális, az áramkör impedanciájának maximális értéke van. A rezonancia frekvencia/periódus összefüggés megegyezik a soros RLC áramkörnél megadottal. Teljesítmény a váltakozó áramú áramkörökben Mivel az áramerősség és feszültség is időben változik, ezért a teljesítmény is az idő függvénye. A pillanatnyi teljesítményt a feszültség és áramerősség pillanatnyi értékeinek szorzata adja: Ha egy soros RLC áramkör feszültség diagramját beszorozzuk az áramerősséggel, akkor teljesítmény diagramot kapunk: ahol: P t tekercs teljesítménye; P k kondenzátor teljesítménye; a kettő különbsége adja a reaktív (meddő) teljesítményt: Az aktív teljesítmény az ohmikus ellenállás teljesítménye: A meddő teljesítmény nem használódik fel csak átalakul a tekercs mágneses terének és a kondenzátor elektromos terének energiájává, majd visszaáramlik az áramforrásba. 8

9 ahol - a feszültség és áramerősség közötti fáziskülönbség, - pedig az áramkör teljesítménytényezője. Ez a teljesítmény az elhasznált teljesítmény, hővé illetve, ha az áramkör mozgó alkatrészeket is tartalmaz, akkor ezek teljesítményét is fedezi. A teljes vagy látszólagos teljesítmény: Az ábra szerint a teljesítményekre igaz, hogy: Az aktív teljesítmény mértékegysége a watt, a látszólagos teljesítményé a VA (volt-amper) és a reaktív (meddő) teljesítményé a VAR (volt-amper-reaktív). 9

Huroktörvény általánosítása változó áramra

Huroktörvény általánosítása változó áramra Huroktörvény általánosítása változó áramra A tekercsben indukálódott elektromotoros erő: A tekercs L önindukciós együtthatója egyben a kör önindukciós együtthatója. A kondenzátoron eső feszültség (g 2

Részletesebben

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma?

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? 1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms c. 1mC 1 A = d. 1 ms A 1mC 1 m = 1 ns 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? ( q = 1,6 *10-16 C) - e

Részletesebben

Összetett hálózat számítása_1

Összetett hálózat számítása_1 Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint a körben folyó áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás felhasználásával

Részletesebben

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját!

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! 1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! A villamos áram a villamos töltések rendezett mozgása. A villamos áramerősség egységét az áramot vivő vezetők közti

Részletesebben

2. ábra Soros RL- és soros RC-kör fázorábrája

2. ábra Soros RL- és soros RC-kör fázorábrája SOOS C-KÖ Ellenállás, kondenzátor és tekercs soros kapcsolása Az átmeneti jelenségek vizsgálatakor soros - és soros C-körben egyértelművé vált, hogy a tekercsen késik az áram a feszültséghez képest, a

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 4 FIZ4 modul Elektromosságtan SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI

Részletesebben

3. számú mérés Szélessávú transzformátor vizsgálata

3. számú mérés Szélessávú transzformátor vizsgálata 3. számú mérés Szélessávú transzformátor vizsgálata A mérésben a hallgatók megismerkedhetnek a szélessávú transzformátorok főbb jellemzőivel. A mérési utasítás első része a méréshez szükséges elméleti

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

Ellenáll. llások a. ltség. A szinuszosan váltakozv U = 4V U = 4V I = 0,21A

Ellenáll. llások a. ltség. A szinuszosan váltakozv U = 4V U = 4V I = 0,21A A szinuszosan váltakozv ltakozó feszülts ltség Ellenáll ok a váltakozó áramú körben = Összeállította: CSSZÁ ME SZTE, Ságvári E. Gyakorló Gimnázium SZEGED, 006. május ( = sin( 314, 16 nduktív v ellenáll

Részletesebben

= szinkronozó nyomatékkal egyenlő.

= szinkronozó nyomatékkal egyenlő. A 4.45. ábra jelöléseit használva, tételezzük fel, hogy gépünk túllendült és éppen a B pontban üzemel. Mivel a motor által szolgáltatott M 2 nyomaték nagyobb mint az M 1 terhelőnyomaték, a gép forgórészére

Részletesebben

Példafeladatok. PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN. Váltakozóáramú hálózatok VÁLTAKOZÓÁRAMÚ HÁLÓZATOK DR.

Példafeladatok. PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN. Váltakozóáramú hálózatok VÁLTAKOZÓÁRAMÚ HÁLÓZATOK DR. PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Példafeladatok Váltakozóáramú hálózatok 1 2015.12.02.. Feladat 1 Azonos frekvenciájú váltakozó feszültségek összegzése U 2 = U 2 e jφ 2 = U 2 cos φ 2

Részletesebben

Dr. Kuczmann Miklós SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR. Győr, 2009

Dr. Kuczmann Miklós SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR. Győr, 2009 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Mérési jegyzőkönyv segédlet Dr. Kuczmann Miklós Válogatott mérések Villamosságtanból Győr, 2009 A mérési segédlet L A TEX szerkesztővel

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk.

A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk. A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk. 1) Villamos töltések rekombinációja a) mindig energia felszabadulással jár; b) energia felvétellel jár; c) nincs kapcsolata

Részletesebben

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B

Részletesebben

III/1. Kisfeszültségű vezetékméretezés általános szempontjai (feszültségesés, teljesítményveszteség fogalma, méretezésben szokásos értékei.

III/1. Kisfeszültségű vezetékméretezés általános szempontjai (feszültségesés, teljesítményveszteség fogalma, méretezésben szokásos értékei. III/1. Kisfeszültségű vezetékméretezés általános szempontjai (feszültségesés, teljesítményveszteség fogalma, méretezésben szokásos értékei. A vezetékméretezés során, mint minden műszaki berendezés tervezésénél

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

Elektrotechnika Feladattár

Elektrotechnika Feladattár Impresszum Szerző: Rauscher István Szakmai lektor: Érdi Péter Módszertani szerkesztő: Gáspár Katalin Technikai szerkesztő: Bánszki András Készült a TÁMOP-2.2.3-07/1-2F-2008-0004 azonosítószámú projekt

Részletesebben

Atommagok mágneses momentumának mérése

Atommagok mágneses momentumának mérése Korszerű mérési módszerek laboratórium Atommagok mágneses momentumának mérése Mérési jegyzőkönyv Rudolf Ádám Fizika BSc., Fizikus szakirány Mérőtársak: Kozics György, Laschober Dóra, Májer Imre Mérésvezető:

Részletesebben

Elektromos áram, áramkör, ellenállás

Elektromos áram, áramkör, ellenállás Elektromos áram, áramkör, ellenállás Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban

Részletesebben

Mikrohullámú aluláteresztő szűrők tápvonalas megvalósítása

Mikrohullámú aluláteresztő szűrők tápvonalas megvalósítása Mikrohullámú aluláteresztő szűrők tápvonalas megvalósítása Nagy Lajos BME-HVT Szélessávú Hírközlés és Villamosságtan Tanszék (kutatási jelentés) 5 Pro Progressio Alapítvány Mikrohullámú aluláteresztő szűrők

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre

Részletesebben

Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb

Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb rezgőmozgást végeznek, az anyag felmelegszik. A világító volfram-izzólámpa

Részletesebben

I. rész. x 100. Melyik a legkisebb egész szám,

I. rész. x 100. Melyik a legkisebb egész szám, Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A VETÜLETEK ALAP- ÉS KÉPFELÜLETE Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A geodézia, a térinformatika és a térképészet a görbült földfelületen elhelyezkedő geometriai alakzatokat

Részletesebben

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt

Részletesebben

Az elektroncsövek, alap, erősítő kapcsolása. - A földelt katódú erősítő. Bozó Balázs

Az elektroncsövek, alap, erősítő kapcsolása. - A földelt katódú erősítő. Bozó Balázs Az elektroncsövek, alap, erősítő kapcsolása. - A földelt katódú erősítő. Bozó Balázs Az elektroncsöveket alapvetően erősítő feladatok ellátására használhatjuk, azért mert már a működésénél láthattuk, hogy

Részletesebben

HITELESÍTÉSI ELŐÍRÁS MÉRŐTRANSZFORMÁTOROK HE 39-2000

HITELESÍTÉSI ELŐÍRÁS MÉRŐTRANSZFORMÁTOROK HE 39-2000 HITELESÍTÉSI ELŐÍRÁS HE 39-2000 Az adatbázisban lévő elektronikus változat az érvényes! A nyomtatott forma kizárólag tájékoztató anyag! TARTALOMJEGYZÉK 1. AZ ELŐÍRÁS HATÁLYA...4 2. MÉRTÉKEGYSÉGEK, JELÖLÉSEK...4

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 131 ÉRTTSÉGI VIZSGA 013. május 16. FIZIKA KÖZÉPSZINTŰ ÍRÁSBLI ÉRTTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKLÉSI ÚTMUTATÓ MBRI RŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Írta: LEITOLD ADRIEN LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Egyetemi tananyag COPYRIGHT: Dr. Leitold Adrien Pannon Egyetem Műszaki Informatika Kar Matematika Tanszék LEKTORÁLTA: Dr. Buzáné

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Geometriai példatár 2.

Geometriai példatár 2. Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 2 GEM2 modul Metrikus feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi

Részletesebben

SZOLGÁLATI TITOK! KORLÁTOZOTT TERJESZTÉSŰ!

SZOLGÁLATI TITOK! KORLÁTOZOTT TERJESZTÉSŰ! SZOLGÁLATI TITOK! KORLÁTOZOTT TERJESZTÉSŰ! 1. sz. példány T 0900-06/2/20 1. feladat 16 pont Az alábbi táblázat különböző mennyiségek nevét és jelét, valamint mértékegységének nevét és jelét tartalmazza.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók

Részletesebben

2.3.2.2.1.2.1 Visszatérítő nyomaték és visszatérítő kar

2.3.2.2.1.2.1 Visszatérítő nyomaték és visszatérítő kar 2.3.2.2.1.2 Keresztirányú stabilitás nagy dőlésszögeknél A keresztirányú stabilitás számszerűsítésénél, amint korábban láttuk, korlátozott a metacentrikus magasságra való támaszkodás lehetősége. Csak olyankor

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra Mingesz Róbert Szegedi Tudományegyetem 2012. március 10. MA - 5. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/47 Tartalom I 1 Elektromos mennyiségek mérése 2 A/D konverterek

Részletesebben

MELLÉKLETEK. ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint

MELLÉKLETEK. ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint MELLÉKLETEK ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint /Javasolt pontszámok: 5 pont/kérdés. Elérhető maximális pontszám: 100 pont./ 1. Végezze el az átszámításokat a prefixumok

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I. 1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T) - 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására

Részletesebben

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK Az Elektronikai alapismeretek szakmai előkészítő tantárgy érettségi vizsga részletes vizsgakövetelményeinek kidolgozása a műszaki

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V. Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R VILLANYSZERELŐ KÉPZÉS 0 5 E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Villamos gépek fogalma, felosztása...3 Egyfázisú transzformátor felépítése...4

Részletesebben

Mössbauer Spektroszkópia

Mössbauer Spektroszkópia Mössbauer Spektroszkópia Homa Gábor, Markó Gergely Mérés dátuma: 2008. 10. 15., 2008. 10. 22., 2008. 11. 05. Leadás dátuma: 2008. 11. 23. Figure 1: Rezonancia-abszorpció és szórás 1 Elméleti összefoglaló

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

Ha vasalják a szinusz-görbét

Ha vasalják a szinusz-görbét A dolgozat szerzőjének neve: Szabó Szilárd, Lorenzovici Zsombor Intézmény megnevezése: Bolyai Farkas Elméleti Líceum Témavezető tanár neve: Szász Ágota Beosztása: Fizika Ha vasalják a szinusz-görbét Tartalomjegyzék

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Bolyai János Matematikai Társulat

Bolyai János Matematikai Társulat Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév első (iskolai) forduló haladók II.

Részletesebben

Geometriai alapfogalmak

Geometriai alapfogalmak Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.

Részletesebben

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható:

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható: 1. Értelmezze az áramokkal kifejezett erőtörvényt. Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I 2 áramot vivő vezetőre ható F 2 erő fellépését

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC)

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC) Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TNC) Laboratóriumi gyakorlatok Mérési útmutató 3. Hall-szondák alkalmazásai a. Félvezető

Részletesebben

Mechatronikai rendszerek speciális érzékelői és aktuátorai

Mechatronikai rendszerek speciális érzékelői és aktuátorai Mechatronikai rendszerek speciális érzékelői és aktuátorai Dr. Szalai, István Szerzői jog 2014 Pannon Egyetem A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0042 azonosító számú Mechatronikai mérnök MSc tananyagfejlesztés

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

FIZIKA MECHANIKA MŰSZAKI MECHANIKA STATIKA DINAMIKA BEVEZETÉS A STATIKA HELYE A TUDOMÁNYBAN

FIZIKA MECHANIKA MŰSZAKI MECHANIKA STATIKA DINAMIKA BEVEZETÉS A STATIKA HELYE A TUDOMÁNYBAN BEVEZETÉS A STATIKA HELYE A TUDOMÁNYBAN A statika a fizikának, mint a legszélesebb körű természettudománynak a része. A klasszikus értelemben vett fizika azokkal a természeti törvényekkel, illetve az anyagoknak

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

BBBZ kódex --------------------------------------------------------------------------------------------------------- 4.3 Hajók propulziója

BBBZ kódex --------------------------------------------------------------------------------------------------------- 4.3 Hajók propulziója 4.3 Hajók propulziója A propulzió kifejezés latin eredetű, nemzetközileg elfogadott fogalom, amely egy jármű (leginkább vízi- vagy légi-jármű) meghajtására vonatkozik. Jelentése energiaátalakítás a meghajtó

Részletesebben

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I.

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I. Oktatási Hivatal A 8/9. tanévi FIZIKA Országos Közéiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK A ALAPFOGALMAK ÉS ALAPTÖVÉNYEK Elektromos töltés, elektromos tér A kémiai módszerekkel tová nem ontható anyag atomokól épül fel. Az atom atommagól és az atommagot körülvevő elektronhéjakól áll. Az atommagot

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

ELEKTROMOS GÉP- ÉS KÉSZÜLÉKSZERELŐ SZAKKÉPESÍTÉS KÖZPONTI PROGRAMJA

ELEKTROMOS GÉP- ÉS KÉSZÜLÉKSZERELŐ SZAKKÉPESÍTÉS KÖZPONTI PROGRAMJA ELEKTROMOS GÉP- ÉS KÉSZÜLÉKSZERELŐ SZAKKÉPESÍTÉS KÖZPONTI PROGRAMJA I. A szakképesítés adatai, a képzés szervezésének feltételei és a szakképesítés óraterve 1. A szakképesítés adatai A szakképesítés azonosító

Részletesebben

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása Póda László Urbán ános: Fizika. Emelt szintű képzéshez c. tankönyv (NT-75) feladatainak megoldása R. sz.: RE75 Nemzedékek Tudása Tankönyvkiadó, Budapest Tartalom. lecke Az elektromos állapot.... lecke

Részletesebben

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. 3.8. Szinuszos jelek előállítása 3.8.1. Oszcillátorok Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. Az oszcillátor elvi elépítését (tömbvázlatát)

Részletesebben

A BEREGSZÁSZI PÁL SZAKKÖZÉPISKOLA ÉS SZAKISKOLA 031248 PEDAGÓGIAI PROGRAMJA IV. KÖTET HELYI TANTERVEK RÉGI OKJ SZERINT 2010. SZEPTEMBER 21.

A BEREGSZÁSZI PÁL SZAKKÖZÉPISKOLA ÉS SZAKISKOLA 031248 PEDAGÓGIAI PROGRAMJA IV. KÖTET HELYI TANTERVEK RÉGI OKJ SZERINT 2010. SZEPTEMBER 21. A BEREGSZÁSZI PÁL SZAKKÖZÉPISKOLA ÉS SZAKISKOLA 031248 PEDAGÓGIAI PROGRAMJA IV. KÖTET HELYI TANTERVEK RÉGI OKJ SZERINT 2010. SZEPTEMBER 21. 2 SZAKKÉPZÉSI PROGRAM ÉS AZ ALKALMAZOTT SZAKMAI TANTERVEK A RÉGI

Részletesebben

A műszaki rezgéstan alapjai

A műszaki rezgéstan alapjai A műszaki rezgéstan alapjai Dr. Csernák Gábor - Dr. Stépán Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanikai Tanszék 2012 Előszó Ez a jegyzet elsősorban gépészmérnök hallgatóknak

Részletesebben

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra).

A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra). 3.10. Tápegységek Az elektronikus berendezések (így a rádiók) működtetéséhez egy vagy több stabil tápfeszültség szükséges. A stabil tápfeszültség időben nem változó egyenfeszültség, melynek értéke független

Részletesebben

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens Tanulói munkafüzet FIZIKA 11. évfolyam emelt szintű tananyag 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Egyenes vonalú mozgások..... 3 2. Periodikus

Részletesebben

Kondenzátorok. Fizikai alapok

Kondenzátorok. Fizikai alapok Kondenzátorok Fizikai alapok A kapacitás A kondenzátorok a kapacitás áramköri elemet megvalósító alkatrészek. Ha a kondenzátorra feszültséget kapcsolunk, feltöltődik. Egyenfeszültség esetén a lemezeken

Részletesebben

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória

Részletesebben

2. Interpolációs görbetervezés

2. Interpolációs görbetervezés 2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,

Részletesebben

1. MINTAFELADATSOR KÖZÉPSZINT

1. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz FIZIKA 1. MINTAFELADATSOR KÖZÉPSZINT 2015 Az írásbeli vizsga időtartama: 120

Részletesebben

R 2 R 1 I R 3 R U 1 L U 2

R 2 R 1 I R 3 R U 1 L U 2 1. Mi a villamos térerısség definíciója? 2. Mi a mágneses indukció definíciója? 3. Töltse ki az alábbi táblázat hiányzó részeit: Mennyiség Jele Mértékegysége (SI alapegységekkel) töltés Q E feszültség

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0814 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA Kolozsvár, 2002. március 22-23. SZUPRAVEZETŐS KÍSÉRLETEK IPARI ALKALMAZÁSI LEHETŐSÉGGEL Experiments with superconductors and possible industrial applications Kósa

Részletesebben

Az analízis néhány közgazdaságtani alkalmazása

Az analízis néhány közgazdaságtani alkalmazása Az analízis néhány közgazdaságtani alkalmazása Szakdolgozat Írta: Simon Anita Matematika Bsc szak Matematikai elemző szakirány Témavezető: Sikolya Eszter, adjunktus Alkalmazott Analízis és Számításmatematikai

Részletesebben

4. Mérés Szinkron Generátor

4. Mérés Szinkron Generátor 4. Mérés Szinkron Generátor Elsődleges üzemállaot szerint beszélhetünk szinkron generátorról és szinkron motorról, attól függően, hogy a szinkron gé elsődlegesen generátoros vagy motoros üzemállaotban

Részletesebben

(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez.

(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez. 1. A transzformátor működési elve, felépítése, helyettesítő kapcsolása (működési elv, indukált feszültség, áttétel, felépítés, vasmag, tekercsek, helyettesítő kapcsolás és származtatása) (1. és 2. kérdéshez

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

A szabadesés egy lehetséges kísérleti tanítása a nagyváradi ADY Endre Líceumban

A szabadesés egy lehetséges kísérleti tanítása a nagyváradi ADY Endre Líceumban A szabadesés egy lehetséges kísérleti tanítása a nagyváradi ADY Endre Líceumban Mottó: A kísérletek nélküli fizika nem több, egy érthetetlen képletgyűjteménynél. Több évtizedes fizikatanári pályafutásom

Részletesebben

Mutatós műszerek. Lágyvasas műszer. Lapos tekercsű műszerek. Kerek tekercsű műszerek

Mutatós műszerek. Lágyvasas műszer. Lapos tekercsű műszerek. Kerek tekercsű műszerek Mutatós műszerek Lágyvasas műszer Lapos tekercsű műszerek Kerek tekercsű műszerek Lágyvasas műszer Működési elv:mágneses vonzáson és taszításon alapszik 1. Lapos tekercsű műszerek Mágneses vonzáson alapszik

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA É RETTSÉGI VIZSGA 2015. október 22. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Háromfázisú hálózat.

Háromfázisú hálózat. Háromfázisú hálózat. U végpontok U V W U 1 t R S T T U 3 t 1 X Y Z kezdőpontok A tekercsek, kezdő és végpontjaik jelölése Ha egymással 10 -ot bezáró R-S-T tekercsek között két pólusú állandó mágnest, vagy

Részletesebben

ANTENNAMÉRÉSEK. Leírás R12C - ANTENNAMÉRÉSEK ANTENNÁK HARDVERELEMEK VIZSGÁLATA

ANTENNAMÉRÉSEK. Leírás R12C - ANTENNAMÉRÉSEK ANTENNÁK HARDVERELEMEK VIZSGÁLATA Leírás ANTENNAMÉRÉSEK R12C - ANTENNAMÉRÉSEK ANTENNÁK HARDVERELEMEK VIZSGÁLATA R1 - A TÉRBELI RÁDIÓFREKVENCIÁS AZONOSÍTÁS LEHETŐSÉGEINEK KUTATÁSA BUDAPEST, 2013 Tartalomjegyzék 1. A DOKUMENTUM POZICIONÁLÁSA...

Részletesebben

FIZIKA Tananyag a tehetséges gyerekek oktatásához

FIZIKA Tananyag a tehetséges gyerekek oktatásához HURO/1001/138/.3.1 THNB FIZIKA Tananyag a tehetséges gyerekek oktatásához Készült A tehetség nem ismer határokat HURO/1001/138/.3.1 című projekt keretén belül, melynek finanszírozása a Magyarország-Románia

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben