mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés"

Átírás

1 MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt kezdődött. Az ókorban felfedezték már, hogy bizonyos vasércek más vasdarabokat, vastárgyakat magukhoz vonzanak. Ilyen ércek (pl. magnetit; Fe 2+ Fe 3+ 2 O 4 ) nagy mennyiségben előfordultak a kisázsiai görög település, Magnesia környékén (ma Törökország), innen ered a mágnes, mágnesesség elnevezés. Kínában azt is felismerték, hogy az egyes mágnesek erőssége közt különbség van (pl. hány tűt tud felemelni), illetve hogy ha tengelyük körül szabadon foroghatnak, akkor mindig azonos irányba állnak be. Ez vezetett a középkorban (VII-X. század körül) ahhoz a gondolathoz, hogy a mágnesek a navigáció hasznos segédeszközei lehetnek, ami végül az iránytű feltalálását eredményezte. Ennek elméleti megalapozása William Gilbert ( ) angol orvos nevéhez fűződik, aki feltételezte, hogy a Föld maga is egy nagy mágnes. Később ez az elképzelés beigazolódott, azonban a Föld mágneses és csillagászati pólusai nem esnek egybe. A mágneses és elektromos alapjelenségek között számos hasonlóságot figyelhetünk meg: 1. Az elektromos töltések kettősségéhez hasonlóan kétféle mágneses állapotot különböztetünk meg, amelyek egy másik mágnesre hatást fejtenek ki. Ezeket, aszerint, hogy a Földhöz képest merre állnak be szabad elfordulás esetén, északi, illetve déli pólusnak nevezzük. 2. Az azonos pólusok taszítják, az ellentétesek vonzzák egymást. 3. A természetes mágnes érintkezéssel átadja a mágneses tulajdonságot arra alkalmas más tárgyaknak (mesterséges mágnes). Ez a jelenség a mágneses megosztás vagy influencia. Az átadás korlátozódhat az érintkezés időtartamára (időleges mágnes, pl. lágyvas esetén), vagy fennmaradhat a szétválasztásuk után is (permanens mágnes, pl. acél). Vannak azonban fontos különbségek is az alapjelenségek kapcsán: 1. A mágneses pólusok mindig csak együtt, párban fordulnak elő, önállóan egyik sem izolálható a másiktól. Bár elméletileg megjósolták elemi, különválasztható mágneses töltések létezését, kísérletesen nem sikerült igazolni a létezésüket.

2 2. A mágneses testek éppen ezért mindig dipólusként viselkednek: rúdszerű mágnesnél pl. jellemzően a végekhez tapadnak a legerősebben a vastárgyak, a közepéhez alig. Így a mágneses pólusok pontszerű erőcentrumként hatnak, és együttesen mindig kijelölnek egy mágneses tengelyt (valójában ez a tengely egy testben általában tetszőleges irányban elhelyezkedhet). Két, az ellentétes pólusaikkal szorosan egymás mellé tett mágnes kölcsönösen kioltja egymást. 3. Ha egy mágnest a mágneses tengelyre merőlegesen tetszőleges módon szétválasztunk, akkor két újabb dipólust kapunk, amelyek hatóképessége (erőssége) az eredetivel megegyezik. Ez a folyamat elvileg egészen az atomi méretekig továbbvihető. Ezek a jelenségek úgy modellezhetők, ha tudjuk, hogy minden spinnel rendelkező elektromosan töltött részecske elemi mágneses dipólusként viselkedik. Így tehát az anyagban minden proton és elektron (és a belőlük felépülő, párosítatlan részecskéket tartalmazó atomok is) miniatűr mágnesként képzelhetők el. Ha ezek az elemi mágnesek térben egy irányba rendeződnek (pl. külső mágneses hatásra), akkor egy elektromos dipóluslánchoz hasonlóan a középen lévő ellentétes pólusok kioltják egymást, míg a végeken lévő szabad pólusok hatást fejtenek ki. A mágneses tengely menti szétválasztás során új szabad végek jönnek létre, míg a maga a mechanizmus változatlan marad. Random módon rendezetlen elemi mágnesek kölcsönösen minden irányban kioltják egymást, így egy ilyen test önmagában nem viselkedik mágnesként. Régebben az elektromos töltés analógiájára bevezették az ún. mágneses póluserősséget (p), mint a mágnes által kifejtett hatással arányos mennyiséget. Ez egy nagyon hosszú mágnesrúd egyik végével modellezhető, ahol az ellentétes pólus már elegendően nagy távolságban van. Ennek segítségével a Coulomb-erőhöz hasonlóan definiálható az azonos alakú mágneses erő, ahol a töltések helyén a póluserősség, a k arányossági tényező helyett pedig C = 10 7 /(4π) 2 Am/Vs konstans áll. Bár ezek a fikciók a mai fizikában már nem használatosak, C felírható 1/4πµ 0 alakban (ld. k = 1/4πε 0 ), és a µ 0 = 1, Vs/Am természeti állandót, az ún. mágneses indukciókonstanst, a későbbiekben is alkalmazni fogjuk. A mágneses hatásokat, az elektromossághoz hasonlóan, úgy magyarázzuk, hogy a mozgó elektromos részecskék maguk körül speciálisan megváltoztatják a tér tulajdonságait, tehát mágneses mezőt keltenek. A mágneses mező a benne lévő egyéb mágnesekre forgatónyomatékot fejt ki, így azok mindig egy jellemző irányba állnak be adott helyen. Több mágnes mezeje, az elektromos töltésekhez hasonlóan, összeadódik.

3 A mágneses mezőt a mágneses erővonalakkal tudjuk szemléltetni. Ezek a mágnesen kívül mindig az északi pólustól a déli felé haladnak, a mágnesen belül pedig fordítva. A mágneses erővonalak tehát, az elektromos erővonalakkal ellentétesen, mindig önmagukba visszazáródó görbék (esetleg kezdet és vég nélküli végtelen vonalak), vagyis a mágnesesség forrásmentes (szemben az elektromossággal). Mivel az erővonalak sehol nem keresztezik egymást, érintőjük minden pontban megadja a mágneses térerősség irányát, sűrűségük pedig annak nagyságát. Az erővonalakat a vizsgált mágneshez képest elhanyagolható erősségű próbamágnesekkel (pl. kis iránytűk, a próbatöltéshez hasonlóan) térképezhetjük fel. Egy másik gyakorlati megoldást az nyújt, hogy a vasreszelék a mágnes közelében az erővonalak szerinti irányokba rendeződik. A fent említett mágneses térerősség (mágneses indukcióvektor, indukciófluxus-sűrűség) az elektromos térerősséghez hasonlóan jellemzi a mágneses mező kölcsönhatásra való képességét egy adott helyen. Jele B, mértékegysége Vs/m 2, illetve Tesla (jele T), Nicola Tesla ( ) szerb fizikus emlékére. Egy másik mértékegységként használatos az 1 Gauss = 10-4 Tesla is (jele G; Carl Friedrich Gauss német matematikus és fizikus, ). Az adott felületen áthaladó erővonalak száma a mágneses fluxus: Φ = B A (erővonalsűrűség felület), melynek mértékegysége a Weber (jele Wb), Wilhelm Weber ( ) német fizikus tiszteletére. A mágneses fluxus megmutatja az adott felületelemen jelentkező teljes mágneses hatás nagyságát. Mivel az erővonalaknak nincs kezdete és vége, egy zárt felületbe (pl. gömb) belépő és onnan távozó erővonalak száma mindig megegyezik, így a teljes mágneses fluxus ( B da) nulla. Más szavakkal a fentieket úgy fogalmazzuk meg, hogy a mágneses mező forrásmentes vagy ún. örvénytér (szemben az elektromos mezővel). Az anyagokat csoportosíthatjuk a külső mágneses mezőben való viselkedésük szerint. Ferromágnesesnek nevezzük azokat, amelyekben a mágneses tér felerősödik, így maguk is jól mágnesezhetők (ilyenek pl. Fe, Co, Ni). A paramágneses anyagokban ez a változás csak csekély mértékű, így ezeket egy mágnes kevéssé vonzza (pl. Al, Cr, Pt, O, levegő). A diamágneses anyagokban a külső térrel ellentétes mágneses mező jön létre, így ezeket egy mágnes pólusa kissé taszítani fogja (pl. Hg, Cu, N, H, víz). A para- és ferromágnesesség magyarázata kissé leegyszerűsítve - az anyagban lévő elemi mágnesek különböző mértékű rendeződése a külső mező hatására, miáltal maguk is makroszkópos mágneses jelenségeket mutatnak.

4 A ferromágneses anyagokban felerősödik a külső mágneses mező, vagyis a mágneses erővonalak összesűrűsödnek. Ez azt is jelenti, hogy a környezetükben viszont csökken a számuk, mivel a semmiben nem indulhatnak újak, tehát a mágneses mező az ilyen testek mellett és az üregükben (ha van) legyengül. Ezeken a részeken az iránytű sokkal lassabban leng, a vasreszelék pedig nem rendeződik el. Ezért használhatók pl. lágyvasból készült burkok a külső mágneses mező leárnyékolására. Ha egy iránytű közelébe elektromos vezetőt helyezünk, és azon áramot bocsátunk át, akkor a mágnestű elfordul. Az elfordulás iránya függ az áram helyétől és irányától, mértéke arányos az áramerősséggel. Ez a megfigyelés Hans Christian Ørsted ( ) dán fizikus nevéhez fűződik, és azt mutatja, hogy az elektromos áram - de általában minden mozgó töltés is - mágneses teret létesít (Ampère-törvény). Áramjárta egyenes vezető körül a keletkező mágneses mező hengerszimmetrikus lesz, a térerősség pedig módon adható meg, ahol I az áramerősség, r a vezetőtől való távolság, µ 0 pedig a már említett mágneses indukciókonstans. Ha a vezető kör alakú hurkot alkot, akkor a mágneses mező is eszerint görbül, és a térerősség értéke lesz. Csigavonalban szorosan egymás mögé csévélt hurkokból álló tekercs, ún. szolenoid belsejében szinte homogén egyirányú mágneses mező jön létre, ahol a térerősség egységesen, melynél N a tekercs meneteinek száma, L pedig a tekercs hossza. (Ha egy ilyen tekercset a hossztengelye mentén újból körré görbítünk, akkor az ún. toroidhoz jutunk, ahol a térerősség a tekercs belsejében.) A térerősség irányát mindig az ún. jobbkézszabály szerint tudjuk meghatározni. Ha az egyenes vezetőt körülhurkoljuk a jobb kéz ujjaival, a hüvelykujj pedig az áram irányában áll, akkor a térerősség érintő irányú lesz a begörbített ujjainkra, azok tövétől e hegye felé mutatva. Huroknál vagy tekercsnél a jobb kéz begörbített ujjai mutatják az áram irányát a görbült vezetőben, a kinyújtott hüvelykujj pedig a térerősség irányában áll.

5 Ha két mágnes ellentétes pólusai közötti mágneses mezőbe egy áramjárta vezetőt lógatunk, akkor az áram irányától függően a mező a vezetéket a két pólus közé behúzza, vagy onnan kilöki. Hasonlóképpen, ha a két mágneses pólus közti tengelyre merőlegesen álló fémkeretbe áramot vezetünk, akkor az áram irányától függően valamely oldalra elfordul úgy, hogy a keret lapja ezzel a tengellyel párhuzamosan álljon be. Mindez azt mutatja, hogy az áramjárta elektromos vezetőre a mágneses mező erőt fejt ki, amelynek iránya az áram irányától függ. Az erő nagysága, ahol I az áramerősség, L a vezető hossza, B a mágneses térerősség, φ pedig az áram iránya és B által bezárt szög. Az erő irányát egy újabb jobbkézszabály alapján határozhatjuk meg. Ha a kinyitott jobb kéz ujjai a mágneses térerősség irányába állnak, a felfelé álló hüvelykujj pedig a konvencionális áramirányt jelöli, akkor az erő a tenyérre merőlegesen kifelé mutat. A fenti egyenletből is látható, hogy ha I és B nem merőlegesek, akkor a vektoriális szorzatukat kell venni. Az ábrán látható fémkeret b éleire ható ellentétes erők (F b és F b ) kiegyenlítik egymást, az a élekre ható erőpár (F a és F a ) viszont nem esik egy egyenesbe, így forgatónyomatékot képeznek, amelynek nagysága (M = erő erőkar: itt a = L, a vezető hossza, ld. a fenti egyenlet; b = a két erőkar összege; a b = a keret felülete). Tekintsük át az előbb megismert két összefüggést egy olyan példán, amikor két párhuzamos egyenes vezetőben áram folyik. Láttuk, hogy az áram járta vezető körül mágneses mező létesül, amelyben egyenes vezető esetén a térerősség B = (µ 0 I 1 )/(2π r). Az r távolságra lévő másik vezetőben folyó áramra ez a mező F = I 2 L B erőt fejt ki (a párhuzamosság miatt sinφ = 1). Behelyettesítve B-t azt kapjuk, hogy F = (µ 0 I 1 I 2 L)/(2π r). Az erő azonos irányú áramok esetén (természetesen kölcsönösen) vonzó, ellentétes áramirányok esetén taszító. A modern definíció szerint ezzel az összefüggéssel értelmezzük az áramerősséget is (két párhuzamos 1A erősségű 1 m hosszú elektromos áramszakasz 1m távolságból 10-7 N erővel hat egymásra). Az elektromos és a mágneses mezők kölcsönhatását általánosíthatjuk olyan értelemben, hogy mágneses térben bármely mozgó töltésre erő hat. Ezt Hendrik Lorentz ( ) holland fizikus után Lorentz-erőnek nevezzük, és alakban adhatjuk meg. A

6 Lorentz-erő tehát a töltés, illetve a sebesség és a mágneses térerősség vektoriális szorzata. Az erő így merőleges a két másik vektormennyiségre, és irányát az előbbi jobbkézszabály segítségével határozhatjuk meg, csak itt pozitív töltésre az áram iránya helyett a sebességvektort alkalmazzuk. Mivel az erő mindig merőleges a sebességre, a töltés kellően nagy kiterjedésű mezőben körpályára (illetve, ha v és B nem merőlegesek, akkor helikális pályára) kényszerül. Az elektromosság és a mágnesesség kapcsolatát számtalan technikai alkalmazásban hasznosítják, mint pl. galvanométer, ampermérő, elektromos csengő, hangszóró, jelfogó (relé), megszakító, katódsugárcső, televízió, elektronmikroszkóp, tömegspektrométer, részecskegyorsító. Az elektromágnesbe általában vasmagot helyeznek, amely az áram hatására a tekercsben létrejövő mágneses mezőt még jobban felerősíti, koncentrálja (ld. ferromágnesesség). Ha egy vezető hurok belsejéhez mágnest közelítünk, vagy onnan eltávolítunk, akkor a hurokban elektromos áramot mérhetünk. Ha ezt a hurkot egy mágnes erőterében a tengelye körül megforgatjuk, hasonlót tapasztalunk. Ha egy tágasabb és egy keskenyebb fémtekercset egymásba helyezünk, majd az egyikbe áramot vezetünk, akkor a másikban is áram indul meg (anélkül, hogy fémesen érintkeznének). Mindezek a jelenségek a mágneses indukció következményei, és azt mutatják, hogy ha egy hurokszerű vezetődarab körül változik a mágneses mező, akkor ez a vezetőben áramot hoz létre (indukál). Pontosan megfogalmazva: ha a vezető által körülvett felületen átmenő mágneses erővonalak száma, vagyis a mágneses fluxus változik, akkor a vezetőben feszültség (elektromotoros erő) jön létre, amely áramot indít el: vagy Amikor a hurok vagy tekercs közepe felé rúdmágnest közelítettünk, abban elektromos áram indukálódott. Ez az áram azonban maga is mágneses mezőt hoz létre maga körül, melynek térerőssége az indukció sebességével arányos. Ez a másodlagos mágneses mező mindig olyan irányú, hogy az őt létrehozó hatást (jelen esetben a rúdmágnes mozgatását) gátolja. Ha tehát a rúdmágnest a tekercs felé közelítjük, akkor azt a másodlagos mágneses mező taszítani, ha attól távolítjuk, akkor vonzani fogja. Az így megfogalmazott összefüggés Lenz-törvénye (Heinrich Lenz német-orosz fizikus, ). Mágneses mezőben forgó vezető keret esetén nem a térerősség vagy a felület változik, hanem a kettő egymáshoz való relatív helyzete. Ilyenkor a felületnek B irányába eső vetülete a

7 körmozgás szerint A effektív = A sin(ω t) módon alakul. A maximális feszültség akkor jön létre, amikor a keret éppen merőleges az erővonalakra. Ilyenkor U max = B l v, ahol l a keretnek a forgástengellyel párhuzamos élhossza, v pedig a forgás kerületi sebessége. Egyébként értelemszerűen U t = U max sin(ω t), tehát szinuszosan változó feszültséget és áramot kapunk. Amennyiben a keret két vége minden félfordulatnál váltakozva kapcsolódik az elvezetésekhez, akkor szinuszos egyenáramot termelő (kommutátoros) generátorról beszélünk. Az elektromos generátorokban a keretet turbinák révén az áramló gőz vagy víz forgatja, és a modern típusokban már a mágnes a forgó rész (rotor), a feszültség pedig az álló részen (stator) keletkezik. Épp fordított elven működik a villanymotor, amelynél a mágneses mezőben elhelyezkedő vezető keretre áramot kapcsolunk, azért az forgásba jön. Láttuk, hogy a változó mágneses mező változó elektromos mezőt, amely viszont újra változó mágneses mezőt kelt, és így tovább. Éppen ez figyelhető meg az elektromágneses hullámokban, ahol az elektromosság és mágnesesség egyszerre, egymást folytonosan fenntartva és feltételezve jelenik meg. Az ilyen hullámokban az elektromos és mágneses térerősség mindig szinuszosan változik térben és időben, és vektoraik egymásra valamint a terjedési irányra is merőlegesek (transzverzális hullám). Ilyenképpen a két jelenségkör belső összefonódása az egyik legszebb módon éppen az elektromágneses hullámok természetéből ismerhető meg.

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

Mágneses alapjelenségek

Mágneses alapjelenségek Mágneses alapjelenségek Bizonyos vasércek képesek apró vasdarabokat magukhoz vonzani: permanens mágnes Az acélrúd felmágnesezhető ilyen ércek segítségével. Rúd két vége: pólusok (a vasreszelék csak ide

Részletesebben

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ Tartalom ELEKTROSZTATIKA 1. Elektrosztatikai alapismeretek... 10 1.1. Emlékeztetõ... 10 2. Coulomb törvénye. A töltésmegmaradás törvénye... 14 3. Az elektromos mezõ jellemzése... 18 3.1. Az elektromos

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 4 ELeKTROMOSSÁG, MÁGNeSeSSÉG IV. MÁGNeSeSSÉG AZ ANYAGbAN 1. AZ alapvető mágneses mennyiségek A mágneses polarizáció, a mágnesezettség vektora A nukleonok (proton,

Részletesebben

Mágneses alapjelenségek

Mágneses alapjelenségek Mágneses alapjelenségek Bizonyos vasércek képesek apró vasdarabokat magukhoz vonzani: permanens mágnes Az acélrúd felmágnesezhető ilyen ércek segítségével. Rúd két vége: pólusok (a vasreszelék csak ide

Részletesebben

Erőhatások mágneses mezőben

Erőhatások mágneses mezőben Erőhatások mágneses mezőben A tématerv több óra anyagát öleli fel. Érdemes a laboratórium adta lehetőségeket kihasználva a tananyag-egységet a szokásos ütemezéstől eltérően a kísérletekkel végigvenni.

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

Elektrodinamika. Nagy, Károly

Elektrodinamika. Nagy, Károly Elektrodinamika Nagy, Károly Elektrodinamika Nagy, Károly Publication date 2002 Szerzői jog 2002 Nagy Károly, Nemzeti Tankönyvkiadó Rt. Szerző: Nagy Károly Bírálók: DR. GÁSPÁR REZSŐ - egyetemi tanár, a

Részletesebben

É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása

É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása A testek elektromos állapotát valamilyen közvetlenül nem érzékelhető

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható:

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható: 1. Értelmezze az áramokkal kifejezett erőtörvényt. Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I 2 áramot vivő vezetőre ható F 2 erő fellépését

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása

Részletesebben

3. számú mérés Szélessávú transzformátor vizsgálata

3. számú mérés Szélessávú transzformátor vizsgálata 3. számú mérés Szélessávú transzformátor vizsgálata A mérésben a hallgatók megismerkedhetnek a szélessávú transzformátorok főbb jellemzőivel. A mérési utasítás első része a méréshez szükséges elméleti

Részletesebben

Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék

Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék Gépjármű elektronika laborgyakorlat Elektromos autó Tartalomjegyzék Elektromos autó Elmélet EJJT kisautó bemutatása

Részletesebben

Tanulói munkafüzet. FIZIKA 10. évfolyam 2015.

Tanulói munkafüzet. FIZIKA 10. évfolyam 2015. Tanulói munkafüzet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János Szakképző Iskola és ban 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2.

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre

Részletesebben

Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb

Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb rezgőmozgást végeznek, az anyag felmelegszik. A világító volfram-izzólámpa

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert

Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert Geodézia 4.: Vízszintes helymeghatározás Gyenes, Róbert Lektor: Homolya, András Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása Póda László Urbán ános: Fizika. Emelt szintű képzéshez c. tankönyv (NT-75) feladatainak megoldása R. sz.: RE75 Nemzedékek Tudása Tankönyvkiadó, Budapest Tartalom. lecke Az elektromos állapot.... lecke

Részletesebben

VILLAMOS ÉS MÁGNESES TÉR

VILLAMOS ÉS MÁGNESES TÉR ELEKTRONIKI TECHNIKUS KÉPZÉS 3 VILLMOS ÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTT NGY LÁSZLÓ MÉRNÖKTNÁR - - Tartalomjegyzék villamos tér...3 kondenzátor...6 Kondenzátorok fontosabb típusai és felépítésük...7 Kondenzátorok

Részletesebben

Szaktanári segédlet. FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia

Szaktanári segédlet. FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia Szaktanári segédlet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2. Elektrosztatika... 4 3. Egyszerű áramkörök... 9 4. Ohm

Részletesebben

Elektrosztatikai jelenségek

Elektrosztatikai jelenségek Elektrosztatikai jelenségek Ebonit vagy üveg rudat megdörzsölve az az apró tárgyakat magához vonzza. Két selyemmel megdörzsölt üvegrúd között taszítás, üvegrúd és gyapjúval megdörzsölt borostyánkő között

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Gyenes Róbert. Geodézia 4. GED4 modul. Vízszintes helymeghatározás

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Gyenes Róbert. Geodézia 4. GED4 modul. Vízszintes helymeghatározás Nyugat-magyarországi Egyetem Geoinformatikai Kara Gyenes Róbert Geodézia 4. GED4 modul Vízszintes helymeghatározás SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI. törvény

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 4 FIZ4 modul Elektromosságtan SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI

Részletesebben

Mi a biomechanika? Mechanika: a testek mozgásával, a testekre ható erőkkel foglalkozó tudományág

Mi a biomechanika? Mechanika: a testek mozgásával, a testekre ható erőkkel foglalkozó tudományág Biomechanika Mi a biomechanika? Mechanika: a testek mozgásával, a testekre ható erőkkel foglalkozó tudományág Biomechanika: a mechanika törvényszerűségeinek alkalmazása élő szervezetekre, elsősorban az

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Elektromosságtan kiskérdések

Elektromosságtan kiskérdések Elektromosságtan kiskérdések (2002-2003. ősz) 1. 1. Ismertesse az elektromos töltés legfontosabb jellemzőit! A szörmével dörzsölt ebonitrúd elektromos állapotba jut, amelyről feltételezzük, hogy az elektromos

Részletesebben

Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens Tanulói munkafüzet FIZIKA 9. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata... 3 2. Az egyenes vonalú

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

GENERÁTOR. Összeállította: Szalai Zoltán

GENERÁTOR. Összeállította: Szalai Zoltán GENERÁTOR Összeállította: Szalai Zoltán 2008 GÉPJÁRMŰ GENERÁTOROK CSOPORTOSÍTÁSA Működés elve szerint: - mozgási indukció: - mágnes áll, tekercs forog (dinamó) - tekercs áll, mágnes forog (generátor) Pólus

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc.

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc. Vllamosságtan Dr. adács László főskola docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mal: Honlap: elkrad@un-mskolc.hu www.un-mskolc.hu/~elkrad Ajánlott rodalom Demeter Károlyné - Dén Gábor Szekér Károly

Részletesebben

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A VETÜLETEK ALAP- ÉS KÉPFELÜLETE Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A geodézia, a térinformatika és a térképészet a görbült földfelületen elhelyezkedő geometriai alakzatokat

Részletesebben

Tartalomjegyzék. 1. Hagyományos fakötések rajzai...5 2. Mérnöki fakötések rajzai... 15 3. Fedélidomok szerkesztése,

Tartalomjegyzék. 1. Hagyományos fakötések rajzai...5 2. Mérnöki fakötések rajzai... 15 3. Fedélidomok szerkesztése, Tartalomjegyzék 1. Hagyományos fakötések rajzai...5 2. Mérnöki fakötések rajzai... 15 3. Fedélidomok szerkesztése, fedélsíkok valódi méretének meghatározása... 27 3.1. Fedélidomok szerkesztése... 27 3.1.1.

Részletesebben

1.8. Ellenőrző kérdések megoldásai

1.8. Ellenőrző kérdések megoldásai 1.8. Ellenőrző kérdések megoldásai 1. feladat: Számítsuk ki egy cm átmérőjű, cm hosszú, 1 menetes tekercs fluxusát, ha a tekercsben,1 -es áram folyik! N I 1 3,1 H = = 5. l, m Vs B = µ H = 4π 5 = π. m Φ

Részletesebben

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK A ALAPFOGALMAK ÉS ALAPTÖVÉNYEK Elektromos töltés, elektromos tér A kémiai módszerekkel tová nem ontható anyag atomokól épül fel. Az atom atommagól és az atommagot körülvevő elektronhéjakól áll. Az atommagot

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens Tanulói munkafüzet FIZIKA 11. évfolyam emelt szintű tananyag 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Egyenes vonalú mozgások..... 3 2. Periodikus

Részletesebben

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R VILLANYSZERELŐ KÉPZÉS 0 5 E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Villamos gépek fogalma, felosztása...3 Egyfázisú transzformátor felépítése...4

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH.: Dielektrikumok (kibővített óravázlat) 1 z elektrosztatika törvényei anyag jelenlétében, dielektrikumok z elektrosztatika alatörvényeinek vizsgálata a kezdeti időkben levegőben történt, és a különféle

Részletesebben

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja FELADATLAPOK FIZIKA 11. évfolyam Gálik András ajánlott korosztály: 11. évfolyam 1. REZGÉSIDŐ MÉRÉSE fizika-11-01 1/3! BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A mérés során használt eszközökkel

Részletesebben

Aszinkrongépek működése, felépítése Készítette: Runyai Gábor 2006

Aszinkrongépek működése, felépítése Készítette: Runyai Gábor 2006 Aszinkrongépek működése, felépítése Készítette: Runyai GáborG 2006 Aszinkrongépek felépítése Állórész (stator) Anyaga öntöttvas, de lehet alumínium is. Lemezelt hornyaiban 1 vagy 3 fázisú tekercselés helyezkedik

Részletesebben

= szinkronozó nyomatékkal egyenlő.

= szinkronozó nyomatékkal egyenlő. A 4.45. ábra jelöléseit használva, tételezzük fel, hogy gépünk túllendült és éppen a B pontban üzemel. Mivel a motor által szolgáltatott M 2 nyomaték nagyobb mint az M 1 terhelőnyomaték, a gép forgórészére

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

LINDAB Floor könnyűszerkezetes födém-rendszer Tervezési útmutató teherbírási táblázatok

LINDAB Floor könnyűszerkezetes födém-rendszer Tervezési útmutató teherbírási táblázatok LINDAB Floor könnyűszerkezetes födém-rendszer Tervezési útmutató teherbírási táblázatok Budapest, 2004. 1 Tartalom 1. BEVEZETÉS... 4 1.1. A tervezési útmutató tárgya... 4 1.2. Az alkalmazott szabványok...

Részletesebben

Egyszerű villanymotorok készítése

Egyszerű villanymotorok készítése A kísérlet célkitűzései: Egyszerű, otthon is megtalálható eszközök segítségével, villanymotort lehet barkácsolni. Az elektromos áram mágneses hatásának gyakorlati alkalmazása, modellalkotás. Eszközszükséglet:

Részletesebben

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma?

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? 1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms c. 1mC 1 A = d. 1 ms A 1mC 1 m = 1 ns 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? ( q = 1,6 *10-16 C) - e

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben

Definíció (hullám, hullámmozgás):

Definíció (hullám, hullámmozgás): Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,

Részletesebben

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló

Részletesebben

5. Mérés Transzformátorok

5. Mérés Transzformátorok 5. Mérés Transzformátorok A transzformátor a váltakozó áramú villamos energia, feszültség, ill. áram értékeinek megváltoztatására (transzformálására) alkalmas villamos gép... Működési elv A villamos energia

Részletesebben

Elektromos áram, áramkör, ellenállás

Elektromos áram, áramkör, ellenállás Elektromos áram, áramkör, ellenállás Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban

Részletesebben

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban Fizika tanári segédletek, 8. évfolyam Műveltség terület Ember és természet fizika Összeállította Kardos Andrea

Részletesebben

METEOROLÓGIAI MÉRÉSEK, MŰSZEREK. 2004. 11.9-11.-12. Meteorológia-gyakorlat

METEOROLÓGIAI MÉRÉSEK, MŰSZEREK. 2004. 11.9-11.-12. Meteorológia-gyakorlat METEOROLÓGIAI MÉRÉSEK, MŰSZEREK 2004. 11.9-11.-12. Meteorológia-gyakorlat Sugárzási fajták Napsugárzás: rövid hullámú (0,286 4,0 µm) A) direkt: közvetlenül a Napból érkezik (Napkorong irányából) B) diffúz

Részletesebben

Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító.

Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. 1. Értelmezze az áramokkal kifejezett erőtörvényt. F=mű0 I1I2 l/(2pi a) Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I2 áramot vivő vezetőre

Részletesebben

MUNKAANYAG. Danás Miklós. Elektrotechnikai alapismeretek - villamos alapfogalmak. A követelménymodul megnevezése:

MUNKAANYAG. Danás Miklós. Elektrotechnikai alapismeretek - villamos alapfogalmak. A követelménymodul megnevezése: Danás Miklós Elektrotechnikai alapismeretek - villamos alapfogalmak A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító

Részletesebben

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA B1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON

Részletesebben

ÁBRÁZOLÓ GEOMETRIA. Csavarvonal, csavarfelületek. Összeállította: Dr. Geiger János. Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM

ÁBRÁZOLÓ GEOMETRIA. Csavarvonal, csavarfelületek. Összeállította: Dr. Geiger János. Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM ÁBRÁZOLÓ GEOMETRIA Csavarvonal, csavarfelületek Összeállította: Dr. Geiger János Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM 2014 TARTALOM 1. A munkafüzet célja, területei, elsajátítható kompetenciák...

Részletesebben

Traszformátorok Házi dolgozat

Traszformátorok Házi dolgozat Traszformátorok Házi dolgozat Horváth Tibor lkvm7261 2008 június 1 Traszformátorok A traszformátor olyan statikus (mozgóalkatrészeket nem tartalmazó) elektromágneses átalakító, amely adott jellemzőkkel

Részletesebben

ESR színképek értékelése és molekulaszerkezeti értelmezése

ESR színképek értékelése és molekulaszerkezeti értelmezése ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon

Részletesebben

Furcsa effektusok Írta: Joubert Attila

Furcsa effektusok Írta: Joubert Attila Furcsa effektusok Írta: Joubert Attila Az Orgona Energia elnevezés a XX. század elejéről származik (organikus energia), Wilchelm Reichtől (akiről bővebben az Interneten olvashatunk). Az Orgona Energia

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk 1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek

Részletesebben

(11) Lajstromszám: E 008 506 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 008 506 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU00000806T2! (19) HU (11) Lajstromszám: E 008 06 (13) T2 MAGYAR KÖZTÁRSASÁG Szellemi Tulajdon Nemzeti Hivatala EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 06 82 (22) A bejelentés napja:

Részletesebben

Szakács Jenő Megyei Fizikaverseny

Szakács Jenő Megyei Fizikaverseny Szakács Jenő Megyei Fizikaverseny 04/05. tanév I. forduló 04. december. . A világ leghosszabb nyílegyenes vasútvonala (Trans- Australian Railway) az ausztráliai Nullarbor sivatagon át halad Kalgoorlie

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

Elektrotechnika. 4. előadás. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet

Elektrotechnika. 4. előadás. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet udapest Műszaki Főiskola ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utechnikai ntézet Elektrotechnika 4. előadás Összeállította: Langer ngrid őisk. adjunktus Háromázisú hálózatok gyakorlatban

Részletesebben

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és

Részletesebben

k u = z p a = 960 3 = 2880, k M = z p 2πa = 960 3 (b) A másodpercenkénti fordulatszám n = 1000/60 1/s,

k u = z p a = 960 3 = 2880, k M = z p 2πa = 960 3 (b) A másodpercenkénti fordulatszám n = 1000/60 1/s, 1. feladat : Egy egyenáramú gép hullámos tekercselésű armatúráján összesen z = 960 vezető van. A gép póluspárjainak száma p = 3 és az armatúrát n = 1000 1/perc fordulatszámmal forgatjuk. (a) Határozza

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

Mágneses hűtés szobahőmérsékleten

Mágneses hűtés szobahőmérsékleten TECHNIKA Mágneses hűtés szobahőmérsékleten Tárgyszavak: mágnes; hűtés; magnetokalorikus hatás; gadolínium. Már 1881-ben kimutatta E. Warburg német fizikus, hogy bizonyos anyagok felmelegednek, ha mágneses

Részletesebben

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. 3.8. Szinuszos jelek előállítása 3.8.1. Oszcillátorok Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. Az oszcillátor elvi elépítését (tömbvázlatát)

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját!

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! 1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! A villamos áram a villamos töltések rendezett mozgása. A villamos áramerősség egységét az áramot vivő vezetők közti

Részletesebben

Elméleti zika 2. Klasszikus elektrodinamika. Bántay Péter. ELTE, Elméleti Fizika tanszék

Elméleti zika 2. Klasszikus elektrodinamika. Bántay Péter. ELTE, Elméleti Fizika tanszék Elméleti zika 2 Klasszikus elektrodinamika Bántay Péter ELTE, Elméleti Fizika tanszék El adás látogatása nem kötelez, de gyakorlaté igen! Prezentációs anyagok & vizsgatételek: http://elmfiz.elte.hu/~bantay/eldin.html

Részletesebben

BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék. Hőkezelés 2. (PhD) féléves házi feladat. Acélok cementálása. Thiele Ádám WTOSJ2

BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék. Hőkezelés 2. (PhD) féléves házi feladat. Acélok cementálása. Thiele Ádám WTOSJ2 BUDAPESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék Hőkezelés. (PhD) féléves házi feladat Acélok cementálása Thiele Ádám WTOSJ Budaest, 11 Tartalomjegyzék 1. A termokémiai kezeléseknél lejátszódó

Részletesebben

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

1. A gyorsulás Kísérlet: Eszközök Számítsa ki 1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse

Részletesebben

(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez.

(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez. 1. A transzformátor működési elve, felépítése, helyettesítő kapcsolása (működési elv, indukált feszültség, áttétel, felépítés, vasmag, tekercsek, helyettesítő kapcsolás és származtatása) (1. és 2. kérdéshez

Részletesebben

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3 Természettudományos 11. ÉVFOLYAM FIZIKA Szerző: Pálffy Tamás Lektorálta: Szabó Sarolta Tartalomjegyzék Bevezető... 3 Laborhasználati szabályok, balesetvédelem, figyelmeztetések... 4 A mágneses

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC)

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC) Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TNC) Laboratóriumi gyakorlatok Mérési útmutató 3. Hall-szondák alkalmazásai a. Félvezető

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T) - 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására

Részletesebben

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje)

Tevékenység: Olvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDEO (A ragasztás ereje) lvassa el a fejezetet! Gyűjtse ki és jegyezze meg a ragasztás előnyeit és a hátrányait! VIDE (A ragasztás ereje) A ragasztás egyre gyakrabban alkalmazott kötéstechnológia az ipari gyakorlatban. Ennek oka,

Részletesebben

Aspektus könyvekben gyakran használt újszerű megfogalmazások szójegyzéke

Aspektus könyvekben gyakran használt újszerű megfogalmazások szójegyzéke Aspektus könyvekben gyakran használt újszerű megfogalmazások szójegyzéke A szószedetnek nem célja, új fizikai, kémiai értelmező szótár felállítása, ezért mindenekelőtt javasolja a Fizikai fogalomgyűjtemények

Részletesebben

Közbeszerzési referens képzés Gazdasági és pénzügyi ismeretek modul 1. alkalom. A közgazdaságtan alapfogalmai Makro- és mikroökonómiai alapfogalmak

Közbeszerzési referens képzés Gazdasági és pénzügyi ismeretek modul 1. alkalom. A közgazdaságtan alapfogalmai Makro- és mikroökonómiai alapfogalmak Közbeszerzési referens képzés Gazdasági és pénzügyi ismeretek modul 1. alkalom A közgazdaságtan alapfogalmai Makro- és mikroökonómiai alapfogalmak ALAPKÉRDÉSEK TISZTÁZÁSA I. A gazdasági törvények lényege:

Részletesebben

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást! 2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának

Részletesebben

Digitális szervo hajtások Dr. Korondi, Péter Dr. Fodor, Dénes Décsei-Paróczi, Annamária

Digitális szervo hajtások Dr. Korondi, Péter Dr. Fodor, Dénes Décsei-Paróczi, Annamária Digitális szervo hajtások Dr. Korondi, Péter Dr. Fodor, Dénes Décsei-Paróczi, Annamária Digitális szervo hajtások írta Dr. Korondi, Péter, Dr. Fodor, Dénes, és Décsei-Paróczi, Annamária Publication date

Részletesebben