É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása"

Átírás

1 É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása A testek elektromos állapotát valamilyen közvetlenül nem érzékelhető anyag jelenléte okozza. Ezt az anyagot elektromos töltésnek nevezzük. Kétféle elektromos állapot létezik, pozitív és negatív. Az egynemű töltések taszítják, a különneműek vonzzák egymást. Az elektromos töltés jele: Q mértékegysége: C (coulomb). ( A semleges test mindkét fajta töltést egyenlő mértékben tartalmazza. A környezettől elszigetelt rendszerben az elektromos töltés mennyisége megmarad. Ez a töltésmegmaradás törvénye. ) 2. Coulomb törvénye Két pontszerű test Q1 és Q2 töltés között ható erő egyenesen arányos a két töltés szorzatával, és fordítottan arányos a köztük lévő távolság (r) négyzetével. Az erő a két töltés egyenesében hat. Vonzó, ha a töltések különbözőek, taszító, ha azonos előjelűek. Coulomb törvénye lehetőséget ad a töltés egységének meghatározására, csak a k arányossági tényező értékét kell rögzítenünk melynek értéke k = Nm 2 /C 2. Eszerint 1 C a töltése annak a pontszerű testnek, amely egy másik, ugyanakkora töltésű pontszerű testet 1 m távolságból N erővel taszít. 3. Coulomb törvényének kísérleti igazolása Coulomb először adott módszert a pontszerű töltések közötti erőhatás megállapítására. Az eszköz meghatározó része a torziós szál, amely alsó végén egy kiegyensúlyozott rúdon elhelyezett kis fémgömböt tartalmaz. Az eszköz házában rögzített, ugyanakkora méretű kis fémgömb található, amely kívülről töltéssel látható el. Töltsük fel a külső gömböt, ekkor kialakul egy egyensúlyi távolság a két gömb között. Eltávolítva a külső gömbről a töltést, a megfelezett töltések között egy újabb egyensúlyi távolság jön létre. Az egyensúlyi helyzetek elemzéséből az ismert fordított arányossági négyzetes törvényt kapjuk. Újabb egyensúlyi távolságot hozhatunk létre más és más töltésekkel. Ebből kiindulva ugyanaz a Coulomb törvény adódik. (Az elcsavarodások mértékét a szálhoz rögzített tükörre vetített fénysugár segítségével mérhetjük meg, a Cavendish-kísérlethez hasonlóan.) 4. Az elektromos térerősség Két elektromosan töltött test -A és B- közötti kölcsönhatást úgy kell elképzelni, hogy az A test által keltett elektromos mező hat a benne lévő B testre, a B test által keltett elektromos mező pedig a benne található A testre. Az elektromos mező gondolatát először Michael Faraday vezette be. Bármely elektromos töltés maga körül elektromos mezőt hoz létre. Ha az elektromos mezőbe töltött testet helyezünk, akkor a testre erő hat. Az elektromos mező adott pontbeli térerősségének nevezzük és E-vel jelöljük a mezőbe helyezett pontszerű q töltésre ható F erő és a q töltés hányadosát: E=F/q. Mértékegysége N/C. A térerősség vektormennyiség, mely az elektromos teret erőhatás szempontjából jellemzi. A térerősségvektor mindig az adott pontba helyezett POZITÍV töltésre ható erő irányába mutat. Az elektromos mező homogén, ha a térerősség mindenütt azonos irányú és nagyságú. Tehát a ponttöltés keltette mező inhomogén, nagysága csak a töltéstől és a tőle mért távolságból függ: E= kq/r Az elektromos tér szemléltetése erővonalakkal Az elektromos erővonalak az elektromos mezőt szemléltető olyan képzeletbeli görbék, amelyek érintői a görbék egyes pontjaiban az ottani térerősségvektor irányába mutatnak. Az erővonalak a pozitív töltésekről indulnak és a negatív töltéseken végződnek. Az erővonalak nem metszik egymást, mert a metszéspontban nem lenne egyértelmű a térerősségvektor iránya. Az erővonalak sűrűsége jellemzi adott tartományban a mező erősségét. Ha a felület nem egységnyi akkor pszi = E A képlettel meghatározott mennyiséget elektromos fluxusnak nevezzük. 6. Az elektromos munka és feszültség Az elektromos mező erőt fejt ki a töltésre, ezért ha a töltés elmozdul, a mező munkát végezhet rajta. Mozogjon a töltés először egy E térerősségű homogén elektromos mezőben az erővonalak irányában az A pontból a tőle d távolságra lévő B pontba. Mivel W= F s és F=q E a mező ezen a töltésen WAB= q E d munkát végez. Másodszor: ha az erő merőleges az elmozdulásra akkor W=0. Megmutatható, hogy akár az inhomogén, akár a homogén mező munkája független a pályától, csak a kezdő és végpont helyzetétől függ. Mivel elektromos térben a töltésre ható erő nagysága arányos a töltés nagyságával, az elektrosztatikus mező munkája is arányos a q próbatöltés nagyságával, miközben az egy rögzített A pontból egy rögzített B pontba jut. Vagyis WAB/q= állandó. Ez az állandó az úttól függetlenül jellemző a mező AB pontpárjára. Ezt a mozgatott töltéstől független, csak a mező két pontjára jellemző skalármennyiséget a mező A pontjának B pontjához viszonyított feszültségének nevezzük. Jele: UAB. UAB=WAB/q. A feszültség mértékegysége a volt = joule/coulomb, jele: V. 7. Az elektromos potenciál A feszültség a mező AB pontpárjához tartozik. Ha a mező minden pontjának feszültségét egy rögzített O ponthoz viszonyítjuk, akkor az így kapott érték már az egyes pontokra lesz jellemző. A mező bármely A pontjának egy rögzített O ponthoz viszonyított feszültsége a mező A pontbeli potenciálja: UA=UAO. Két pont közötti feszültséget meghatározhatjuk a két pont potenciáljának ismeretében. Mivel a munka független az úttól, vigyük töltésünket A-ból B-be az O pont érintésével. Így megkaphatjuk, hogy két pont közötti feszültség a két pont potenciáljának a különbsége: UAB=UB-UA. Az ekvipotenciális felületek az elektromos mezőben olyan felületek, amelyek mentén a potenciál állandó. Az ekvipotenciális felület pontjai között tehát nincsen feszültség. 8. Pontszerű töltés térerőssége és potenciálja A Q pontszerű töltés által létrehozott elektromos mezőben a térerősség nagysága egyenesen arányos a Q töltés nagyságával és fordítva arányos a tőle mért r távolság négyzetével. A térerősség iránya pozitív Q esetén a töltéstől elirányul, negatív Q esetén pedig a töltés felé mutat. E=k(Q/r 2 ). Pontszerű töltés mezőjében a potenciál nagysága egyenesen arányos a mezőt keltő töltés nagyságával, és fordítottan arányos a töltéstől mért távolsággal. A potenciál előjele ellentétes a mezőt létrehozó Q töltés előjelével. U=-k(Q/r). Ez az összefüggés abban az esetben igaz, ha a potenciál 0 szintjét a végtelen távoli pontba helyezzük.

2 ( Minden elektromos töltés a másiktól függetlenül létrehozza a maga elektromos mezőjét. Egy adott pontban a térerősséget az egyes töltésektől származó térerősségek vektori összege, a potenciált az egyes töltésektől származó potenciálok algebrai összege adja: E =E 1+E U=U1+U2+...) 9. Töltött fémgömb térerőssége és potenciálja Ha egy R sugarú fémgömböt Q töltéssel látunk el, akkor abból a felületre merőlegesen indulnak ki az erővonalak. Ezek meghosszabbításai a gömb középpontjában metszik egymást. Ezért a fémgömbön kívül ( és a gömbfelületen) olyan az elektromos mező, mintha egy pontszerű, a gömb középpontjában egyesített Q töltés hozta volna létre azt. A gömb felszínén tehát a potenciál és a térerősség: U=k(Q/r) illetve E=k(Q/r 2 ). A fémgömbre vitt töltések teljes egészében a fém külső felületén helyezkedik el. A térerősség a fém belsejében zérus, a potenciál a fém belsejében állandó. Külső mező gyakorlatilag egyáltán nem hatol az üreg belsejébe. Ezt a hatást nevezzük árnyékolásnak. (Pl. a fémharisnya védi a mikrofonok, rádiók veuetékeit az elektromos zavaroktól.) 10. Töltött végtelen sík fémlemez térerőssége és potenciálja Pozitív töltésű sík fémlemez közelében az erővonalak párhuzamosak, egyenlő sűrűségűek, és a lemezből kifelé irányulnak. A lemez egyik oldalán a térerősség nagyságra és irányra is megegyezik. Az ilyen térrészben homogén mezőről beszélünk. Hasonló erővonalkép jellemzi a negatív töltésű sík fémlemez környezetét, csak a lemez felé irányuló erővonalakkal. Vezetőn, sík fémlemezen belül nincsen térerősség. (Egy felületen áthaladó összes erővonal száma a felület elektromos fluxusának számértékét adja. A fluxus betűjele: Ψ (pszi). Ha a felület merőleges az erővonalakra, akkor a fluxus és a térerősség kapcsolata: Ψ=E A Az elektromos fluxus mértékegysége: N/C m 2.) Az ekvipotenciális felületek a síkkal párhuzamos síkok, a potenciál a távolsággal egyenes arányban változik. 11. Töltéspár (dipólus) és síkkondenzátor elektromos terének vizsgálata Dipólus (töltéspár): azonos nagyságú, de ellentétes előjelű töltések párban egymástól l távolságban. Az elektromos erővonalak a pozitív töltésből indulnak ki, mindenütt merőlegesen indulnak a pont körül felvett kicsiny gömb felületére, és a negatív töltés felé haladnak vagy hajlanak el, a negatív töltésben végződnek. A feltöltött kondenzátor fegyverzetei között homogén elektromos mező van, a lemezeken kívül pedig zérus a térerősség. 12. A megosztás jelensége A semleges elektroszkóp mutatója akkor is kitér, ha a töltött műanyag rúddal csak közelítünk hozzá, mivel a rúd elektromos mezője hatást fejt ki az elektroszkóp szabad elektronjaira. Vagyis a vele egyező töltéseket a test távolabbi részébe taszítja, az ellentétes előjelű töltéseket a közelebbi oldalra vonzza. A tányér pozitív, a fémtartó és a mutató negatív elektromos állapotú lesz. Az elektromos mező megszünteti az eredetileg semleges fémtestben az elektronok egyenletes eloszlását. Ezt a jelenséget elektromos megosztásnak nevezzük. A megosztás következménye, hogy egy töltött test vonzza a közelébe helyezett apró vezető darabkákat (például alufóliát). 13. A polarizáció jelensége Szigetelőanyagoknál az elektromos test (vagy a külső elektromos tér) a molekulákon belül a szimmetrikus elhelyezkedésű töltések súlypontját eltolja, idegen szóval dipólusokat hoz létre. Esetleg a már eleve meglévő, de rendezetlen dipólusokat rendezett helyzetbe forgatja. A szigetelő elektromosan polarizálódik, azaz az egész test egy nagy dipólussá válik. A polarizáció jelensége ad magyarázatot arra, hogy miért vonzza a töltött test (pl. megdörzsölt műanyag vonalzó) a közelébe helyezett apró papírdarabkákat. 14. A csúcshatás jelensége A csúcsokban nagyobb a töltéssűrűség, mint az enyhe görbületű helyeken, így itt a legnagyobb az elektromos térerősség a vezető környezetében. A levegő molekulái - a polarizáció révén - dipólusokká válnak, ezeket a töltött csúcs magához vonzza, majd töltésátadás után eltaszítja. Az eltaszított részecskék árama elhajlítja a csúccsal megcélzott lángját (elektromos szél), vagy forgásba hozza a kereket (elektromos Segner-kerék). Csúccsal ellátott testek a fenti okok miatt könnyen elveszítik töltésüket. Ezt a jelenséget használja ki pl. a villámhárító. 15. A kapacitás fogalma; fémgömb, ill. síkkondenzátor kapacitása A vezetőre vitt töltés és a kialakult potenciál hányadosával meghatározott fizikai mennyiség a vezető kapacitása. C=Q/U. A kapacitás egysége a farad=(coulomb/volt) jele: F. 1 F annak a vezetőnek a kapacitása, amelyet 1 V feszültségre 1 C töltés tölt fel. A síkkondenzátor kapacitása egyenesen arányos a szemben álló lemezek területével (A), és fordítottan arányos a köztük lévő távolsággal(d): C=1/(4 pi k) A/d. ahol az az arányossági tényező 1/(4 pi k), ezt rövidebben ε0-val jelöljük. Ez az összefüggés akkor teljesül, ha a síkkondenzátor lemezei közti teret levegő (pontosabban: vákuum) tölti ki. 16. A kapacitás anyagfüggése: a relatív dielektromos állandó Azt a számot amely megmutatja, hogy hányszorosára nő egy kondenzátor kapacitása, ha a lemezek közti teret vákuum helyett szigetelő tölti ki, az illető anyag dielektromos állandójának nevezzük. Jele: εr. A síkkondenzátor kapacitása tehát a dielektromos állandókkal kifejezve: C=εr ε0 A/d ε0-vákuum dielektromos állandója. 17. Kondenzátorok soros és párhuzamos kapcsolása; az eredő kapacitás vizsgálata Ha minden kondenzátor pozitív és negatív fegyverzeteit külön összekötjük egy-egy közös pontba, párhuzamos kapcsolásról beszélünk. Az összekapcsolt fegyverzetek ekvipotenciális felületet alkotnak, így a szemben álló felületek között mindenütt U a feszültség: U=U1=U2=U3.Az egyes kondenzátorok töltése pedig Q1=C1U Q2=C2U Q3=C3U. Az eredő kapacitás egyenlő a rendszeren lévő összes töltés és a feszültség hányadosával. C=C1+C2+C3. Soros kapcsolás esetén az összekapcsolt fegyverzetek csak megosztás útján juthattak töltéshez, így azok csak előjelben különböznek, azaz Q=Q1=Q2=Q3, U=U1+U2+U3 innen az eredő kapacitás 1/C=1/C1+1/C2+1/C3. Tehát sorosan kapcsolt kondenzátorok eredő kapacitásának reciproka egyenlő az egyes kondenzátorkapacitások reciprokainak összegével. A képleteket három kondenzátorra írtuk fel, de természetesen akármennyit vehetünk belőlük, hasonló összefüggések igazak. 18. A kondenzátor (illetve az elektromos mező) energiája és energiasűrűsége Két, egymás mellett álló, +Q és -Q töltésű fémlapot távolítsunk el egymástól d távolságra! Egy C kapacitású, U feszültségre feltöltött kondenzátort kapunk. A két fémlemez különnemű töltései miatt vonzza egymást, ezért eltávolításuk közben erőt kell kifejtenünk és munkát végzünk. A két párhuzamos fémlemez elektromos tere gyakorlatilag a két lemez közötti térrészre korlátozódó homogén mező. Ennek térerőssége csak a lemezek töltésétől függ, így a mozgatás során nem változik. A térerősséget ezért a kondenzátor adataival kifejezhetjük. Felhasználva, hogy homogén mezőben az erővonal irányába mért feszültség U=E(térerősség) d térerőssége E=U/d feszültségre U=Q/C összefüggést kapjuk. A +Q töltés által keltett E térerősségű tér F = E ' Q erővel vonzza a -Q töltésű lemezt. Az egyenletes mozgatás közben nekünk is ekkora erőt kell kifejtenünk. Így a végzett munka: W=F s. A munka eredménye, a két lemez közötti elektromos mező, amely a

3 munkának megfelelő energiával rendelkezik. A feltöltött kondenzátor elektromos terének energiája, a kapacitásra vonatkozó összefüggés figyelembe vételével: E(energia)=(Q U)/2. Mivel C = Q/U, az energia képlete tovább írható: E(energia) = CU 2 /2, vagy E(energia) = Q 2 /(2C). Az energiasűrűség egyenlő az egységnyi térfogatra jutó energiával, így az E/V hányadossal. Kísérleti feladat: Hozza működésbe a kapott eszközök segítségével az elektrosztatikus csengőt! Magyarázza meg a működését! Töltse fel az elektroszkópot a mellékelt eszközök segítségével! Süsse ki, majd töltse fel még egyszer, de ezúttal az elektroszkóphoz fémesen csatlakoztasson egy tűt is. Mit tapasztal? Adjon magyarázatot a tapasztaltakra. Elektroszkóp Csúcshatás Elektrosztatikus csengő Elektromos megosztás Csúcshatás: A feltöltött vagy megosztott vezető csúcsaiban felhalmozódó töltések a csúcsok közelében erős inhomogén elektromos mezőt hoznak létre. Ez a mező polarizálja, és a csúcs felé mozgatja a levegő molekuláit és apró szennyeződéseit, amelyek a csúccsal érintkezve feltöltődnek, majd a csúcstól nagy sebességgel ellökődnek. Az elektromos csúcsok közelében tehát a csúcsok töltését elszállító elektromos szél keletkezik. Ez a csúcshatás. A kísérletünk során az elektroszkópra erősített vezető, melynek vége csúcsban végződik, lenullázza az elektroszkópunkat. Elektroszkóp: Az elektromos állapot kimutatására alkalmas eszköz az elektroszkóp. Ha pozitív elektromos állapotú testtel érintjük meg a semleges elektroszkópot, akkor az elektroszkópról vándorolnak át elektronok a testre. Ilyenkor az elektroszkóp a protontöbblet miatt pozitív elektromos állapotú lesz. Negatív töltés esetén a testről vándorolnak át elektronok az elektroszkópra, az elektroszkóp az elektrontöbblet miatt negatív elektromos állapotú lesz. Mivel az álló és a mozgó része azonos töltésű, mindkét esetben azonos irányba tér ki a műszer mutatója. Az elektromos megosztás: Az elektroszkóp mutatója akkor is elektromos állapotot jelez, ha a megdörzsölt műanyag rudat csak közelítjük a tányérjához. Ilyenkor a rúd elektromos mezője taszító hatást fejt ki az elektroszkóp szabad elektronjaira, azok egy részét távolabbra taszítja. A tányér tehát pozitív, a fémtartó és a mutató negatív elektromos állapotú lesz. Eltávolítva a műanyag rudat az elektroszkóp közeléből, a mutató kitérése megszűnik. Ez jelzi, hogy az elektroszkópban a szabad elektronok eloszlása ismét egyenletes lett. Elektrosztatikus csengő: Az egyik csengőre töltéseket viszünk fel, a töltött fém vagy műanyag rudunkkal, majd azt tapasztaljuk, hogy a két csengő közé lógatott fém test ide-oda pattog, megszólaltatva ezzel a csengőket. Magyarázat: a feltöltött csengőn, többlettöltés lesz, így a megosztásnál tanultak miatt magához vonzza a fém golyót. A fém golyó a csengő fémjével érintkezve töltést cserél, rajta is többlettöltés lesz, így taszítani fogják egymást. A semleges oldalra átviszi a töltéseket. Ez addig ismétlődik, amíg a töltés kiegyenlítődés be nem következik. Miért nem működik az elektrosztatikus csengő 12V-os egyenáram esetén? Azért nem működik, mert még a 12V-os feszültég is kevés ahhoz, hogy működésbe lépjen az elektrosztatikus csengőnk. Ugyanis a megdörzsölt műanyag vagy üveg rúd, több ezer voltos feszültséget produkál, ami kellően nagy az elektromos megosztáshoz. 1. Milyen állandó feszültségforrásokat ismer? 12.Egyenáram - Soma Galvánelemek, akkumulátorok, napelem, üzemanyagcellák. A napelem a fény energiáját hasznosítja, a többi elem kémiai kötések energiáját hasznosítja. 2. Mit nevezünk egyenáramnak ill. az egyenáram áramerősségének? - Elektromos áram: a töltéshordozók rendezett, egyirányú elmozdulása. Ha az átáramlott töltés minden pillanatban ugyanabba az irányba áramlik és mennyisége az eltelt idővel egyenesen arányos (bármely időtartamokra nézve), akkor egyenáramról beszélünk. Az áramerősség (skalárként és irányított mennyiségként is értelmezhető) egyenáram esetén az adott keresztmetszeten átáramlott töltésnek és a közben eltelt időnek a hányadosa. Jele: I (intenzitás), képlete: I = Q / t. Ha az áramerősség időben változik, akkor adott pillanatbeli (pillanatnyi) áramerősségről beszélhetünk: ezt ugyanígy kell kiszámítani, de t az adott pillanat környéki elegendően rövid időtartam. Az áramerősség mértékegysége az amper (A), 1 amper = 1 coulomb/1 másodperc. A = C / s. 3. Hogyan függ az egyenáram erőssége a feszültségtől? Fogalmazza meg Ohm törvényét! A törvény arról szól, hogy az elektromosan vezető anyagok a bennük áramló töltések mozgásával szemben a közegellenálláshoz hasonlítható elektromos ellenállással rendelkeznek. Ohm kísérletileg megállapította, hogy az áramerősség a vezeték két rögzített pontja között mérhető feszültséggel egyenesen arányos. Ez Ohm törvénye. Az egyenes arányosság feltétele, hogy a vezető hőmérséklete a mérés folyamán végig állandó legyen. Képletszerűen: U ~ I, ha T = állandó. 4. Mit nevezünk a fogyasztó ellenállásának? Milyen tényezőktől függ egy fogyasztó ellenállása? - A fogyasztóknak azt a tulajdonságát, hogy akadályozzák a szabad elektronoknak a mozgását, elektromos ellenállásnak nevezzük. Az ellenállás általában függ a vezető hosszától (és azzal egyenesen arányos), a vezető keresztmetszetétől (és azzal fordítottan arányos), valamint a vezető anyagi minőségétől. Az anyagi minőségre jellemző az ún. fajlagos ellenállás, mely megmutatja, hogy mekkora az ellenállása a vezető egy egységnyi hosszú és egységnyi keresztmetszetű darabjának, jele ró. Így tehát R = ró * l / A.

4 5. Hogyan kell a feszültség- ill. az árammérő műszereket az áramkörbe kötni? Mekkorának tekinthető az egyik ill. a másik fajta műszer ellenállása? A: sorosan kapcsoljuk a fogyasztóval - körülbelül nulla az ellenállása, mint egy darab vezetéké. V: párhuzamosan kötjük a fogyasztóval - körülbelül végtelen az ellenállása, mint egy darab szigetelőé. 6. Mivel magyarázható a fémek és a grafit jó vezető volta? A fémekben és a grafitban egyaránt találhatók úgynevezett szabad (atomtörzshöz nem kötött) elektronok (amikre azt monduk, hogy delokalizáltak, azaz helyhez nem kötöttek). Ezek az elektronok felelősek a vezetésért, hiszen külső feszültség hatására igen könnyen el tudnak mozdulni. 7. A fajlagos ellenállás fogalma A fajlagos ellenállás általában a fémek anyagára jellemző állandó. Megmutatja, hogy az 1 m hosszúságú, 1 négyzetmiliméter keresztmetszetű, adott anyagból készült vezető drótnak hány ohm az ellenállása. Jele: kis görög ró, kiszámítása: ró = R * A / l. SIegysége az ohm*méter, egyéb szokásos mértékegysége az ohm*négyzetmm / méter. Utóbbi mértékegység tartozik a fenti definícióhoz. Megjegyzés: egyéb anyagok fajlagos ellenállása is értelmezhető hasonlóképpen. 8. Feszültség- és áramviszonyok a fogyasztók soros és párhuzamos kapcsolása esetén Több fogyasztó tiszta soros kapcsolása esetén az áramerősség minden áramköri elemen egyenlő, az egyes fogyasztókon mért feszültségek összege az eredő feszültség. Több fogyasztó tiszta párhuzamos kapcsolása esetén a feszültség minden fogyasztón ugyanakkora, az egyes fogyasztókon mért áramerősségek összege pedig az eredő áramerősség (ez folyik a főágban). 9. Hogyan számítjuk ki az eredő ellenállást a fogyasztók soros és párhuzamos kapcsolása esetén? Ha egy áramkörben több fogyasztó is található, ezek eredő ellenállásának nevezzük annak az egyetlen fogyasztónak az ellenállását, amellyel az egész vizsgált rész egyedül helyettesíthető oly módon, hogy az áramkör többi részén a feszültség- és áramviszonyok változatlanok maradnak. - Soros kapcsolásnál: Re = R1+R2, tehát az eredő ellenállás egyenlő az egyes ellenállások összegével. - Párhuzamos kapcsolásnál: 1/Re = 1/R1 + 1/R2, tehát az eredő ellenállás reciproka egyenlő az egyes ellenállások reciprokainak összegével. (Tulajdonképpen itt nem az ellenállások, hanem a vezetőképességek adódnak össze.) 10. A villamos áram teljesítménye és fogyasztása Az egyenáram fogyasztása: W = U * Q, ahol egyenáram esetén Q = I*t, ezért W = U*I*t. A fogyasztás tehát egyenlő a feszültség, az áramerősség és az eltelt idő szorzatával. Az egyenáram teljesítménye pedig a fogyasztás és a közben eltelt idő hányadosa, P = W/t, azaz P = U*I. A teljesítmény tehát egyenlő a feszültség és az áramerősség szorzatával. Soros illetve párhuzamos kapcsolás esetén egyaránt érvényes, hogy az eredő teljesítmény egyenlő az egyes fogyasztókon eső teljesítmények összegével. 11. A villamos fogyasztás SI egysége és a háztartásban használatos egysége A fogyasztás SI-egysége a joule, ami a W = P*t összefüggésből úgy is megadható, hogy watt*szekundum, rövidebben wattszekundum. Így tehát 1 Ws = 1 J. A wattszekundum 3600-szorosa a wattóra (ennyi a fogyasztás egy 1 wattos fogyasztón óránként), így tehát 1 Wh = 3600 J. A háztartásban szokásos fogyasztásegység a wattórának az ezerszerese, ez a kilowattóra (kwh). A fentiek szerint 1 kwh = 1000 Wh = 1000 * 3600 J = J = kj = 3,6 MJ. 12. Telep belső ellenállása, elektromotoros ereje és kapocsfeszültsége Telep belső ellenállása: Az áramkörben a töltések körbeáramlását nemcsak az áramforráson kívüli vezető, hanem az áramforráson belül, az áramforrás anyaga is akadályozza. Ezért mondjuk, hogy az áramforrásnak van belső ellenállása. Telep elektromotoros ereje: az a legnagyobb feszültség, amelyet egy áramkörben az adott telep biztosítani tud. A valódi telepet úgy modellezzük, mint egy ideális telep (ennek feszültsége az elektromotoros erő) és egy belső ellenállás sorba kapcsolva. Kapocsfeszültség: Zárt áramkörben a feszültség forrás két sarka között mérhető feszültség a kapocsfeszültség, jele: U(k). Ugyanekkora a külső eredő ellenálláson mért feszültség is (ha csak ez az egy áramforrás van az áramkörben). A kapocsfeszültség mindig egyenlő az elektromotoros erőnek és a belső ellenálláson eső feszültségnek a különbségével. A belső ellenálláson eső feszültség pedig egyenlő a belső ellenállásnak és az áramerősségnek a szorzatával. Az áramerősség pedig annál nagyobb, minél kisebb a kör eredő ellenállása, azaz a külső ellenállás. Így tehát megállapítható, hogy a kapocsfeszültség akkor a legnagyobb, amikor végtelen a külső ellenállás. Ilyenkor a kapocsfeszültség egyenlő az elektromotoros erővel, amit - éppen ezért - üresjárási feszültségnek is neveznek. 13. Áramvezetés folyadékokban A folyadék akkor képes áramvezetésre, ha benne szabad töltéshordozók vannak. Ezek lehetnek elektronok (fém olvadékokban vagy péládul higanyban), illetve szabad ionok (elektrolitok). Azokat az oldatokat vagy olvadékokat, amelyekben szabadon mozgó ionok vannak, elektrolitoknak nevezzük. Az áram bevezetésére szolgáló két vezető közül a pozitív sarokkal összeköttetésben lévő elektródát anódnak, a negatív sarokkal összeköttetésben lévő elektródát katódnak nevezzük. A katód felé igyekeznek a kationok (+), az anód felé pedig az anionok (-). Ezek az ionok elérve az elektródákat általában elektront vesznek fel / adnak le a semleges állapot elérése céljából - ez a jelenség a rekombináció. A katódon általában fém válik ki vagy hidrogéngáz fejlődik, az anódon vagy gáz fejlődik, vagy az anód anyaga szép lassan beleoldódik az elektrolitba. - Az elektrolitok esetében az áram áthaladása mindig kémiai változásokat hoz létre, az egyes elektródokon jól meghatározott anyagok válnak ki. Rézklorid vizes oldatát szénelektródok között elektrolizálva, a katód rézzel vonódik be, az anódon pedig klórgáz fejlődik. Gyengén kénsavas víz esetén pedig az áram hatására a víz hidrogénre és oxigénre bomlik. A folyadék mellett ilyenkor az áramkörbe bárhol sorosan bekapcsolt ampermérő áramot jelez, tehát az egész körben áram folyik. 14. Az elektrolízis folyamata

5 - Az elektrolízis az elektromos áram hatására végbemenő elektrokémiai folyamat, melynek során az úgynevezett elektrolit (ionokat tartalmazó folyadék) ionjai vándorolnak és az elektródákon töltést cserélnek (rekombinálódnak), semleges atomokká alakulnak és ezért általában kiválnak az oldatból. - Az elektrolizáló cella egy elektrolit oldatból vagy olvadékból és két elektródból (anód és katód) áll, melyekre a megfelelő galvánelem elektromotoros erejénél nagyobb feszültségű egyenáramot kapcsolnak. - a pozitív ionok vagy kationok az elektronfelesleggel rendelkező, negatív töltésű katód felé vándorolnak, és ott redukálódnak (egy vagy több elektront vesznek fel). - a negatív ionok vagy anionok az elektronhiánnyal rendelkező, pozitív töltésű anód felé vándorolnak, és ott oxidálódnak (egy vagy több elektront adnak le). A katódon általában fém válik ki, vagy hidrogéngáz fejlődik. Az anódon sok esetben nem is válik ki a megfelelő anyag, hanem az anód anyaga oldódik bele az elektrolitba Konkrét példák: sós víz áramvezetése: a katódon hidrogéngáz, az anódon klórgáz fejlődik. A sós vízben a nátrium-és a hidrogénionok pozitívak, így ezek igyekeznek a katód felé. A nátriumnál a hidrogén erősebb, ezért ez tudja elérni a katódot és rekombinálódni. A negatív elektróda felé a kloridionok és az OH - ionok igyekeznek, itt a klór lesz a szerencsésebb. Másik példa: fémbevonat készítése fémen 15. Áramvezetés normál nyomású gázokban, a szikra- és az ívkisülés A normál nyomású gázok általában rossz vezetők, mert kevés a töltéssel rendelkező gázrészecske. Ezek a gázok azonban vezetővé tehetők, ha valamilyen módon ionizálódik a gázrészecskék egy része. Az ionizáció többféle módon megvalósítható: - elegendően magas hőmérsékleten - elegendően nagy feszültség hatására (szikrakisülés: 1 cm átütéséhez levegőben ezer voltos feszültség kell). - például az ívkisülésnél. Ívkisülés: Ívkisülést valósíthatunk meg, ha kb. 50 V egyenfeszültségre úgy kapcsolunk egy grafit rudat és egy fémlemezt, hogy a grafitot a katódra, a fémlemezt az anódra kötjük. Ha a grafitot a fémlaphoz érintjük, akkor az átmeneti ellenállás felizzítja a grafitot. Ha az izzó grafitot távolítjuk a lemez felületétől, akkor a lemez és a grafit között fényes ív húzódik. A jelenség azzal magyarázható, hogy az izzó grafitból elektronok lépnek ki, amelyek a levegőben lévő molekulákat ionizálják. Így kialakul a vezetési csatorna, mely - éppen az áramvezetés miatt - tartósan fenn tud maradni. Ezen az elven működik a villamos ívhegesztés is. 16. Áramvezetés ritkított gázokban Légüres térben (vákuumban*) csak akkor folyhat elektromos áram, ha oda kívülről töltéshordozókat juttatunk. Ez gyakorlatilag úgy valósítható meg, hogy a zárt csőbe nyúló negatív fémelektródot (katódot) elektron kibocsátásra kényszerítjük. A fémek kristályrácsában szabadon mozgó elektronok kötődnek a fémekhez, ezért a fémkatód is csak valamilyen energia befektetés hatására bocsát ki elektronokat. Ritkított gázokban - például fénycsövekben - az ionizációhoz nagy feszültség szükséges. Ha a fénycső begyulladt (azaz létrejöttek töltött részecskék a gázban), akkor maga a vezetési folyamat fenntartja az ütközések révén a gázban a töltött részecskék mennyiségét, így a gáz a továbbiakban a normál (230 voltos) feszültség hatására is vezető marad. Ezért villognak a fénycsövek begyújtáskor (ekkor több ezer voltos feszültség-impulzusokat kapnak), begyújtás után viszont egyenletesen világítanak.

Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék

Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék Budapesti Műszaki- és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Gépjárművek Tanszék Gépjármű elektronika laborgyakorlat Elektromos autó Tartalomjegyzék Elektromos autó Elmélet EJJT kisautó bemutatása

Részletesebben

Elektromos áram, áramkör, ellenállás

Elektromos áram, áramkör, ellenállás Elektromos áram, áramkör, ellenállás Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban

Részletesebben

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ Tartalom ELEKTROSZTATIKA 1. Elektrosztatikai alapismeretek... 10 1.1. Emlékeztetõ... 10 2. Coulomb törvénye. A töltésmegmaradás törvénye... 14 3. Az elektromos mezõ jellemzése... 18 3.1. Az elektromos

Részletesebben

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása Póda László Urbán ános: Fizika. Emelt szintű képzéshez c. tankönyv (NT-75) feladatainak megoldása R. sz.: RE75 Nemzedékek Tudása Tankönyvkiadó, Budapest Tartalom. lecke Az elektromos állapot.... lecke

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

MUNKAANYAG. Danás Miklós. Elektrotechnikai alapismeretek - villamos alapfogalmak. A követelménymodul megnevezése:

MUNKAANYAG. Danás Miklós. Elektrotechnikai alapismeretek - villamos alapfogalmak. A követelménymodul megnevezése: Danás Miklós Elektrotechnikai alapismeretek - villamos alapfogalmak A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 4 FIZ4 modul Elektromosságtan SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI

Részletesebben

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T) - 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására

Részletesebben

Elektrosztatikai jelenségek

Elektrosztatikai jelenségek Elektrosztatikai jelenségek Ebonit vagy üveg rudat megdörzsölve az az apró tárgyakat magához vonzza. Két selyemmel megdörzsölt üvegrúd között taszítás, üvegrúd és gyapjúval megdörzsölt borostyánkő között

Részletesebben

A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk.

A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk. A válaszok között több is lehet helyes. Minden hibás válaszért egy pontot levonunk. 1) Villamos töltések rekombinációja a) mindig energia felszabadulással jár; b) energia felvétellel jár; c) nincs kapcsolata

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre

Részletesebben

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban Fizika tanári segédletek, 8. évfolyam Műveltség terület Ember és természet fizika Összeállította Kardos Andrea

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH.: Dielektrikumok (kibővített óravázlat) 1 z elektrosztatika törvényei anyag jelenlétében, dielektrikumok z elektrosztatika alatörvényeinek vizsgálata a kezdeti időkben levegőben történt, és a különféle

Részletesebben

Elektrosztatika tesztek

Elektrosztatika tesztek Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverı kis papírdarabkákat messzirıl magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges

Részletesebben

Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb

Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb Az áram hatásai, az áram munkája, teljesítménye Hőhatás Az áramló elektronok beleütköznek a vezető anyag részecskéibe, ezért azok gyorsabb rezgőmozgást végeznek, az anyag felmelegszik. A világító volfram-izzólámpa

Részletesebben

VILLAMOS ÉS MÁGNESES TÉR

VILLAMOS ÉS MÁGNESES TÉR ELEKTRONIKI TECHNIKUS KÉPZÉS 3 VILLMOS ÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTT NGY LÁSZLÓ MÉRNÖKTNÁR - - Tartalomjegyzék villamos tér...3 kondenzátor...6 Kondenzátorok fontosabb típusai és felépítésük...7 Kondenzátorok

Részletesebben

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma?

1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms. 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? 1. Válaszd ki a helyes egyenlőségeket! a. 1C=1A*1ms b. 1 μc= 1mA*1ms c. 1mC 1 A = d. 1 ms A 1mC 1 m = 1 ns 2. Hány elektron halad át egy fogyasztón 1 perc alatt, ha az I= 20 ma? ( q = 1,6 *10-16 C) - e

Részletesebben

Kondenzátorok. Fizikai alapok

Kondenzátorok. Fizikai alapok Kondenzátorok Fizikai alapok A kapacitás A kondenzátorok a kapacitás áramköri elemet megvalósító alkatrészek. Ha a kondenzátorra feszültséget kapcsolunk, feltöltődik. Egyenfeszültség esetén a lemezeken

Részletesebben

FIZIKA Tananyag a tehetséges gyerekek oktatásához

FIZIKA Tananyag a tehetséges gyerekek oktatásához HURO/1001/138/.3.1 THNB FIZIKA Tananyag a tehetséges gyerekek oktatásához Készült A tehetség nem ismer határokat HURO/1001/138/.3.1 című projekt keretén belül, melynek finanszírozása a Magyarország-Románia

Részletesebben

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete A Siófoki Perczel Mór Gimnázium tanulói segédlete FIZIKA munkafüzet Tanulói kísérletgyűjtemény-munkafüzet az általános iskola 8. osztálya számára 8. o s z t ály CSODÁLATOS TERMÉSZET TARTALOM 1. Elektrosztatika

Részletesebben

Elektrodinamika. Nagy, Károly

Elektrodinamika. Nagy, Károly Elektrodinamika Nagy, Károly Elektrodinamika Nagy, Károly Publication date 2002 Szerzői jog 2002 Nagy Károly, Nemzeti Tankönyvkiadó Rt. Szerző: Nagy Károly Bírálók: DR. GÁSPÁR REZSŐ - egyetemi tanár, a

Részletesebben

Tanulói munkafüzet. FIZIKA 10. évfolyam 2015.

Tanulói munkafüzet. FIZIKA 10. évfolyam 2015. Tanulói munkafüzet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János Szakképző Iskola és ban 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2.

Részletesebben

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban Fizika tanulói segédletek, 8. évfolyam Műveltség terület Ember és természet fizika Összeállította Kardos Andrea

Részletesebben

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt

Részletesebben

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos.

1. Ha két közeg határfelületén nem folyik vezetési áram, a mágneses térerősség vektorának a(z). komponense folytonos. Az alábbi kiskérdéseket a korábbi Pacher-féle vizsgasorokból és zh-kból gyűjtöttük ki. A többségnek a lefényképezett hivatalos megoldás volt a forrása (néha még ezt is óvatosan kellett kezelni, mert egy

Részletesebben

Dokumentum száma. Oktatási segédlet. ESD Alapismeretek. Kiadás dátuma: 2009.10.20. ESD alapismeretek. Készítette: Kovács Zoltán

Dokumentum száma. Oktatási segédlet. ESD Alapismeretek. Kiadás dátuma: 2009.10.20. ESD alapismeretek. Készítette: Kovács Zoltán Oktatási segédlet ESD Alapismeretek Dokumentum száma Kiadás dátuma: 2009.10.20. ESD alapismeretek Készítette: Kovács Zoltán 1 Kivel nem fordult még elő, hogy az ajtókilincs megérintésekor összerándult?

Részletesebben

Tanulói munkafüzet. Fizika. 8. évfolyam 2015.

Tanulói munkafüzet. Fizika. 8. évfolyam 2015. Tanulói munkafüzet Fizika 8. évfolyam 2015. Összeállította: Dr. Kankulya László Lektorálta: Dr. Kornis János 1 Tartalom Munkavédelmi, balesetvédelmi és tűzvédelmi szabályok... 2 I. Elektrosztatikai kísérletek...

Részletesebben

Szaktanári segédlet. FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia

Szaktanári segédlet. FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia Szaktanári segédlet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2. Elektrosztatika... 4 3. Egyszerű áramkörök... 9 4. Ohm

Részletesebben

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és

Részletesebben

Elektromosságtan kiskérdések

Elektromosságtan kiskérdések Elektromosságtan kiskérdések (2002-2003. ősz) 1. 1. Ismertesse az elektromos töltés legfontosabb jellemzőit! A szörmével dörzsölt ebonitrúd elektromos állapotba jut, amelyről feltételezzük, hogy az elektromos

Részletesebben

Mérési útmutató Nagyfeszültségű kisülések és átütési szilárdság vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 1. sz.

Mérési útmutató Nagyfeszültségű kisülések és átütési szilárdság vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 1. sz. BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útmutató Nagyfeszültségű kisülések és átütési szilárdság vizsgálata Az Elektrotechnika

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 4 ELeKTROMOSSÁG, MÁGNeSeSSÉG IV. MÁGNeSeSSÉG AZ ANYAGbAN 1. AZ alapvető mágneses mennyiségek A mágneses polarizáció, a mágnesezettség vektora A nukleonok (proton,

Részletesebben

TestLine - balla tesztje-04 Minta feladatsor

TestLine - balla tesztje-04 Minta feladatsor 2016.06.24. 10:05:14 Mitől függ a fémes vezető ellenállása? (Több válasz is lehetséges.) 1. 1:56 Normál F z átfolyó áram áthaladási idejétől. vezető hosszától (e.a). vezető hosszától (f.a). vezető anyagától.

Részletesebben

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens Tanulói munkafüzet FIZIKA 11. évfolyam emelt szintű tananyag 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Egyenes vonalú mozgások..... 3 2. Periodikus

Részletesebben

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI

OSZTÁLYOZÓ VIZSGA TÉMAKÖREI OSZTÁLYOZÓ VIZSGA TÉMAKÖREI Az anyag néhány tulajdonsága, kölcsönhatások Fizika - 7. évfolyam 1. Az anyag belső szerkezete légnemű, folyékony és szilárd halmazállapotban 2. A testek mérhető tulajdonságai

Részletesebben

Mágneses alapjelenségek

Mágneses alapjelenségek Mágneses alapjelenségek Bizonyos vasércek képesek apró vasdarabokat magukhoz vonzani: permanens mágnes Az acélrúd felmágnesezhető ilyen ércek segítségével. Rúd két vége: pólusok (a vasreszelék csak ide

Részletesebben

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R

E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R VILLANYSZERELŐ KÉPZÉS 0 5 E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Villamos gépek fogalma, felosztása...3 Egyfázisú transzformátor felépítése...4

Részletesebben

Mágneses alapjelenségek

Mágneses alapjelenségek Mágneses alapjelenségek Bizonyos vasércek képesek apró vasdarabokat magukhoz vonzani: permanens mágnes Az acélrúd felmágnesezhető ilyen ércek segítségével. Rúd két vége: pólusok (a vasreszelék csak ide

Részletesebben

Elektrokémiai preparátum

Elektrokémiai preparátum Elektrokémiai preparátum A laboratóriumi gyakorlat során elvégzendő feladat: Nátrium-hipoklorit oldat előállítása elektrokémiai úton; az oldat hipoklorit tartalmának meghatározása jodometriával. Daniell-elem

Részletesebben

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1 Fizikai kémia gyakorlat 1 Felületi feszültség mérés és viszkozimetria 2 I. Felületi feszültség mérése 1. Bevezetés Felületi feszültség és viszkozitás mérése A felületi feszültség fázisok határfelületén

Részletesebben

Furcsa effektusok Írta: Joubert Attila

Furcsa effektusok Írta: Joubert Attila Furcsa effektusok Írta: Joubert Attila Az Orgona Energia elnevezés a XX. század elejéről származik (organikus energia), Wilchelm Reichtől (akiről bővebben az Interneten olvashatunk). Az Orgona Energia

Részletesebben

KONDUKTOMETRIÁS MÉRÉSEK

KONDUKTOMETRIÁS MÉRÉSEK A környezetvédelem analitikája KON KONDUKTOMETRIÁS MÉRÉSEK A GYAKORLAT CÉLJA: A konduktometria alapjainak megismerése. Elektrolitoldatok vezetőképességének vizsgálata. Oxálsav titrálása N-metil-glükamin

Részletesebben

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját!

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! 1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! A villamos áram a villamos töltések rendezett mozgása. A villamos áramerősség egységét az áramot vivő vezetők közti

Részletesebben

ELEKTROLITOK VEZETÉSÉVEL KAPCSOLATOS FOGALMAK

ELEKTROLITOK VEZETÉSÉVEL KAPCSOLATOS FOGALMAK ELEKTROLITOK VEZETÉSÉVEL KAPCSOLATOS FOGALMAK Egy tetszőleges vezetőn átfolyó áramerősség (I) és a vezetőn eső feszültség (U) között az ellenállás teremt kapcsolatot (ld. középiskolai fizika): U I R R

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA É RETTSÉGI VIZSGA 2015. október 22. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható:

Állandó permeabilitás esetén a gerjesztési törvény más alakban is felírható: 1. Értelmezze az áramokkal kifejezett erőtörvényt. Az erő iránya a vezetők között azonos áramirány mellett vonzó, ellenkező irányú áramok esetén taszító. Az I 2 áramot vivő vezetőre ható F 2 erő fellépését

Részletesebben

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc.

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc. Vllamosságtan Dr. adács László főskola docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mal: Honlap: elkrad@un-mskolc.hu www.un-mskolc.hu/~elkrad Ajánlott rodalom Demeter Károlyné - Dén Gábor Szekér Károly

Részletesebben

Elektrotechnika Feladattár

Elektrotechnika Feladattár Impresszum Szerző: Rauscher István Szakmai lektor: Érdi Péter Módszertani szerkesztő: Gáspár Katalin Technikai szerkesztő: Bánszki András Készült a TÁMOP-2.2.3-07/1-2F-2008-0004 azonosítószámú projekt

Részletesebben

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást! 2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának

Részletesebben

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

1. A gyorsulás Kísérlet: Eszközök Számítsa ki 1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

A rádió* I. Elektromos rezgések és hullámok.

A rádió* I. Elektromos rezgések és hullámok. A rádió* I. Elektromos rezgések és hullámok. A legtöbb test dörzsölés, nyomás következtében elektromos töltést nyer. E töltéstől függ a test elektromos feszültsége, akárcsak a hőtartalomtól a hőmérséklete;

Részletesebben

III/1. Kisfeszültségű vezetékméretezés általános szempontjai (feszültségesés, teljesítményveszteség fogalma, méretezésben szokásos értékei.

III/1. Kisfeszültségű vezetékméretezés általános szempontjai (feszültségesés, teljesítményveszteség fogalma, méretezésben szokásos értékei. III/1. Kisfeszültségű vezetékméretezés általános szempontjai (feszültségesés, teljesítményveszteség fogalma, méretezésben szokásos értékei. A vezetékméretezés során, mint minden műszaki berendezés tervezésénél

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

Alkalmazott fizika Babák, György

Alkalmazott fizika Babák, György Alkalmazott fizika Babák, György Alkalmazott fizika Babák, György Publication date 2011 Szerzői jog 2011 Szent István Egyetem Copyright 2011, Szent István Egyetem. Minden jog fenntartva, Tartalom Bevezetés...

Részletesebben

Szakács Jenő Megyei Fizikaverseny

Szakács Jenő Megyei Fizikaverseny Szakács Jenő Megyei Fizikaverseny 04/05. tanév I. forduló 04. december. . A világ leghosszabb nyílegyenes vasútvonala (Trans- Australian Railway) az ausztráliai Nullarbor sivatagon át halad Kalgoorlie

Részletesebben

Didaktikai feladat: frontális osztálymunka, egyéni munka, csoportmunka, ismétlés, tanár-diák párbeszéd, ellenőrzés, értékelés

Didaktikai feladat: frontális osztálymunka, egyéni munka, csoportmunka, ismétlés, tanár-diák párbeszéd, ellenőrzés, értékelés ÓRATERV Műveltségi terület: Fizika Tanítás ideje: 2014. november 3. Tanítás helye: Fehérgyarmati Deák Ferenc Gimnázium, Fehérgyarmat Osztály: 10. osztály Pedagógus neve és szakja: Káplár Ferenc matematika-fizika

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

E6 laboratóriumi mérés Fizikai Tanszék

E6 laboratóriumi mérés Fizikai Tanszék E6 laboratóriumi mérés Fizikai Tanszék Parázsfény-lámpa feszültség-áram karakterisztikájának felvétele 1. A mérés célja, elve A parázsfény-lámpa speciális fényforrás, amelyben nem a szokásos izzószál sugárzása

Részletesebben

Újabb vizsgálatok a kristályok szerkezetéről

Újabb vizsgálatok a kristályok szerkezetéről DR. VERMES MIKLÓS Újabb vizsgálatok a kristályok szerkezetéről LAUE vizsgálatai óta ismeretes, hogy a kristályok a röntgensugarak számára optikai rácsok, tehát interferenciajelenségeket hoznak létre. LAUE

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

O 1.1 A fény egyenes irányú terjedése

O 1.1 A fény egyenes irányú terjedése O 1.1 A fény egyenes irányú terjedése 1 blende 1 és 2 rés 2 összekötő vezeték Előkészület: A kísérleti lámpát teljes egészében egy ív papírlapra helyezzük. A négyzetes fénynyílást széttartó fényként használjuk

Részletesebben

FIZIKA MUNKAFÜZET 7-8. ÉVFOLYAM IV. KÖTET

FIZIKA MUNKAFÜZET 7-8. ÉVFOLYAM IV. KÖTET FIZIKA MUNKAFÜZET 7-8. ÉVFOLYAM IV. KÖTET Készült a TÁMOP-3.1.3-11/2-2012-0008 azonosító számú "A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Vajda Péter Evangélikus Gimnáziumban"

Részletesebben

Grafit fajlagos ellenállásának mérése

Grafit fajlagos ellenállásának mérése A mérés célkitűzései: Ohm törvényének felhasználásával különböző keménységű grafitok fajlagos ellenállásának meghatározása. Eszközszükséglet: különböző keménységű grafit ceruzák digitális multiméter 2

Részletesebben

Fizika 7. 8. évfolyam

Fizika 7. 8. évfolyam Éves órakeret: 55,5 Heti óraszám: 1,5 7. évfolyam Fizika 7. 8. évfolyam Óraszám A testek néhány tulajdonsága 8 A testek mozgása 8 A dinamika alapjai 10 A nyomás 8 Hőtan 12 Összefoglalás, ellenőrzés 10

Részletesebben

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK A ALAPFOGALMAK ÉS ALAPTÖVÉNYEK Elektromos töltés, elektromos tér A kémiai módszerekkel tová nem ontható anyag atomokól épül fel. Az atom atommagól és az atommagot körülvevő elektronhéjakól áll. Az atommagot

Részletesebben

FIZIKA NYEK reál (gimnázium, 2 + 2 + 2+2 óra)

FIZIKA NYEK reál (gimnázium, 2 + 2 + 2+2 óra) FIZIKA NYEK reál (gimnázium, 2 + 2 + 2+2 óra) Tantárgyi struktúra és óraszámok Óraterv a kerettantervekhez gimnázium Tantárgyak 9. évf. 10. évf. 11. évf. 12. évf. Fizika 2 2 2 2 1 9. osztály B változat

Részletesebben

Klasszikus analitikai módszerek:

Klasszikus analitikai módszerek: Klasszikus analitikai módszerek: Azok a módszerek, melyek kémiai reakciókon alapszanak, de az elemzéshez csupán a tömeg és térfogat pontos mérésére van szükség. A legfontosabb klasszikus analitikai módszerek

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 15. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 15. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2010. október 28. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 28. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC)

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet. Mikro- és nanotechnika (KMENT14TNC) Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TNC) Laboratóriumi gyakorlatok Mérési útmutató 3. Hall-szondák alkalmazásai a. Félvezető

Részletesebben

A SZUPRAVEZETÉS. Fizika. A mágneses tér hatása a szupravezető állapotra

A SZUPRAVEZETÉS. Fizika. A mágneses tér hatása a szupravezető állapotra Fizika A SZUPRAVEZETÉS A szupravezetés jelenségét 80 évvel ezelőtt fedezték fel, de az azóta eltelt idő alatt semmivel sem lankadt a fizikusok érdeklődése e témakör iránt. A szupravezetők tanulmányozása

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA m ÉRETTSÉGI VIZSGA 2005. május 17. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Fizika emelt szint írásbeli vizsga

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

A középszintű fizika érettségi témakörei:

A középszintű fizika érettségi témakörei: A középszintű fizika érettségi témakörei: 1. Mozgások. Vonatkoztatási rendszerek. Sebesség. Az egyenletes és az egyenletesen változó mozgás. Az s(t), v(t), a(t) függvények grafikus ábrázolása, elemzése.

Részletesebben

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

Tartalom. Bevezetés... 9

Tartalom. Bevezetés... 9 Tartalom Bevezetés... 9 1. Alapfogalmak...11 1.1. Az anyag szerkezete...11 1.2. A villamos töltés fogalma... 13 1.3. Vezető, szigetelő és félvezető anyagok... 15 1.4. Villamos feszültség és potenciál...

Részletesebben

2.4 Fizika - Elektromosságtan 2.4.4 Elektrosztatika, elektromos tér

2.4 Fizika - Elektromosságtan 2.4.4 Elektrosztatika, elektromos tér Első kísérletek az elektrosztatikában! Franciaországban a fizikus Dalibard már 250 évvel ezelőtt megpróbálta bebizonyítani, hogy a villámok és a szikrák ugyanolyan természetűek. Ehhez Dalibard egy Párizs

Részletesebben

Elektromágneses hullámok, a fény

Elektromágneses hullámok, a fény Elektromágneses hullámok, a fény Az elektromos töltéssel rendelkező testeknek a töltésük miatt fellépő kölcsönhatását az elektromos és mágneses tér segítségével írhatjuk le. A kölcsönhatás úgy működik,

Részletesebben

VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN

VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN Bevezetés: Folyadékok - elsősorban savak, sók, bázsok vzes oldata - áramvezetésének gen fontos gyakorlat alkalmazása vannak. Leggyakrabban az elektronkus

Részletesebben

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

- 1 - Tubics József K. P. K. P.

- 1 - Tubics József K. P. K. P. - - Tubics József.A. CSOPORTOSÍTSA A KÉTPÓLUSOKAT ÉS ÉRTELMEZZE AZ EGYES CSOPORTOK JELLEMZŐ TULAJDONSÁGAIT! MAGYARÁZZA EL A NORTON ÉS A THEVENIN TÉTELT, MUTASSON PÉLDÁT ALKALMAZÁSUKRA! ISMERTESSE A GYAKORIBB

Részletesebben

Szigetelők Félvezetők Vezetők

Szigetelők Félvezetők Vezetők Dr. Báder Imre: AZ ELEKTROMOS VEZETŐK Az anyagokat elektromos erőtérben tapasztalt viselkedésük alapján két alapvető csoportba soroljuk: szigetelők (vagy dielektrikumok) és vezetők (vagy konduktorok).

Részletesebben

Elektromágneses terek 2011/12/1 félév. Készítette: Mucsi Dénes (HTUCA0)

Elektromágneses terek 2011/12/1 félév. Készítette: Mucsi Dénes (HTUCA0) Elektromágneses terek 2011/12/1 félév Készítette: Mucsi Dénes (HTUCA0) 1 1 Bevezetés... 11 2 Vázlat... 11 3 Matematikai eszköztár... 11 3.1 Vektoranalízis... 11 3.2 Jelenségek színtere... 11 3.3 Mezők...

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

Fizika 8. osztály. 1. Elektrosztatika I... 2. 2. Elektrosztatika II... 4. 3. Ohm törvénye, vezetékek ellenállása... 6

Fizika 8. osztály. 1. Elektrosztatika I... 2. 2. Elektrosztatika II... 4. 3. Ohm törvénye, vezetékek ellenállása... 6 Fizika 8. osztály 1 Fizika 8. osztály Tartalom 1. Elektrosztatika I.............................................................. 2 2. Elektrosztatika II.............................................................

Részletesebben

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I.

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I. Oktatási Hivatal A 8/9. tanévi FIZIKA Országos Közéiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

FÉNYT KIBOCSÁTÓ DIÓDÁK ALKALMAZÁSA A KÖZÉPISKOLAI FIZIKAOKTATÁSBAN

FÉNYT KIBOCSÁTÓ DIÓDÁK ALKALMAZÁSA A KÖZÉPISKOLAI FIZIKAOKTATÁSBAN Kísérlet a Lenz-ágyúval. A verseny elôkészületei során többször jártam a Csodák Palotájában és azt tapasztaltam, hogy sokan egy óriási játszótérnek tekintik a kiállítást. Nyílván ez célja is a szervezôknek,

Részletesebben

12. FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

12. FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete A Siófoki Perczel Mór Gimnázium tanulói segédlete FIZIKA munkafüzet Tanulói kísérletgyűjtemény-munkafüzet az általános iskola 12. osztálya számára 12. o s z t ály CSODÁLATOS TERMÉSZET TARTALOM 1. Egyenes

Részletesebben

1. MINTAFELADATSOR KÖZÉPSZINT

1. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz FIZIKA 1. MINTAFELADATSOR KÖZÉPSZINT 2015 Az írásbeli vizsga időtartama: 120

Részletesebben