Tanulói munkafüzet. FIZIKA 9. évfolyam egyetemi docens

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens"

Átírás

1 Tanulói munkafüzet FIZIKA 9. évfolyam Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens

2 Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata Az egyenes vonalú egyenletesen változó mozgás gyorsulása A sűrűség meghatározása A nehézségi gyorsulás meghatározása Atwood-készülékkel Rugalmas ek Rugalmatlan ek Tapadási és csúszási súrlódási együttható meghatározása Rugóerő, rugóállandó Merev testek egyensúlya A mechanikai energia megmaradásának törvénye, munkatétel Felhajtóerő Hidrosztatikai nyomás... 40

3 1 Munka- és balesetvédelmi, tűzvédelmi szabályok A szabályokat a labor első használatakor mindenkinek meg kell ismernie, ezek tudomásulvételét aláírásával kell igazolnia! A szabályok megszegéséből származó balesetekért az illető személyt terheli a felelősség! A laborban csak szaktanári engedéllyel lehet tartózkodni és dolgozni! A laborba táskát, kabátot bevinni tilos! A laborban enni, inni szigorúan tilos! Hosszú hajúak hajukat összefogva dolgozhatnak csak a laborban! A laborban a védőköpeny használata minden esetben kötelező! Ha a feladat indokolja, a további védőfelszerelések (védőszemüveg, gumikesztyű) használata is kötelező! Az eszközöket, berendezéseket csak rendeltetésszerűen, tanári engedéllyel, és csak az adott mérési paraméterekre beállítva lehet használni! A kísérlet megkezdése a tanulónak ellenőriznie kell a kiadott feladatlap alapján, hogy a tálcáján minden eszköz, anyag, vegyszer megtalálható. A kiadott eszköz sérülése vagy hiánya esetén jelezni kell a szaktanárnak vagy a laboránsnak! A kísérlet megkezdése figyelmesen el kell olvasni a kísérlet leírását! A kiadott vegyszereket és eszközöket a leírt módon szabad felhasználni! Vegyszerekhez kézzel hozzányúlni szigorúan tilos! Az előkészített eszközökhöz és a munkaasztalon lévő csapokhoz csak a tanár engedélyével szabad hozzányúlni! A kémcsőbe tett anyagokat óvatosan, a kémcső állandó mozgatása közben kell melegíteni! A kémcső nyílását nem szabad magatok és társaitok felé fordítani! Vegyszer szagának vizsgálatakor kezetekkel legyezzétek magatok felé a gázt!

4 2 Ha bőrünkre sav vagy maró hatású folyadék ömlik, előbb száraz ruhával azonnal töröljük le, majd bő vízzel mossuk le! Elektromos vezetékhez, kapcsolóhoz vizes kézzel nyúlni tilos! Az áramkörök feszültségmentes állapotban kerüljenek összeállításra! Csak a tanár ellenőrzése és engedélye szabad rákötni a feszültségforrásra! Elektromos berendezéseket csak hibátlan, sérülésmentes állapotban szabad használni! Elektromos tüzet csak annak oltására alkalmas tűzoltó berendezéssel szabad oltani! Nyílt láng, elektromos áram, lézer alkalmazása esetén fokozott figyelmet kell fordítani a haj, a kéz és a szem védelmére. Égő gyufát, gyújtópálcát a szemetesbe dobni tilos! A gázégőket begyújtani csak a szaktanár engedélyével lehet! A gázégőt előírásnak megfelelően használjuk! Aki nem tervezett tüzet észlel, köteles szólni a tanárnak! Ha bármilyen baleset történik, azonnal jelentsétek tanárotoknak! A tanóra végén rendet kell rakni a munkaasztalon a szaktanár, illetve a laboráns irányításával!

5 3 1. Az egyenletes mozgás vizsgálata A mérés elve: Egyenes vonalú egyenletes mozgást végez egy pontszerű test, ha pályája egyenes vonal, és a megtett út egyenesen arányos a közben eltelt idővel. Hányadosuk adja a test sebességének a nagyságát: v = s / t Eszközök: Mikola-cső szögmérővel, állvány, stopper, 1. mérés Állítsd a Mikola-csövet 30 -os hajlásszögű helyzetbe, és mérd meg a buborék által megtett különböző utakhoz szükséges időt! Az időmérést minden esetben háromszor végezd el, majd rögzítsd az adatokat a táblázatban! Végezz számításokat, és töltsd ki a táblázat többi részét is! Add meg a buborék sebességét! s 30 cm 40 cm 50 cm t t átl v v átl t átl = t1+t2+t3 3 v átl = v1+v2+v3 3 Készítsd el az út-idő grafikont a buborék mozgásáról a kapott sebesség alapján!

6 4 s (cm) t (s) Milyen típusú az út-idő grafikon az egyenletes mozgás esetén? Illeszkedik-e erre a grafikonra a mérés során kapott három (t átl,s) pont? Miért? 2. mérés Végezd el a mérést 10 -os és 20 -os helyzetben is a 40 cm-es útra vonatkozóan! Rögzítsd az eredményeket a táblázatban! t t átl v

7 5 Hasonlítsd össze a három különböző helyzetre kapott eredményt a 40 cm-es útra vonatkozóan! Mit tapasztalsz? Feladatok 1. Végezd el az átváltásokat! 72 km/h= m/s 10 m/s= km/h 5 km/h= m/h 1200m/min= m/s 2. Mennyi utat tesz meg a hang 5 másodperc alatt, ha sebessége 340 m/s? 3. Igaz vagy hamis? a) Ha a sebességvektor állandó, a test mozgása egyenletes b) Ha a test mozgása egyenletes, a sebességvektora állandó

8 6 2. Az egyenes vonalú egyenletesen változó mozgás gyorsulása A mérés elve Ha egy lejtőn kezdősebesség nélkül induló, egyenletesen gyorsuló test mozgásának idejét és a megtett utat mérjük, abból a négyzetes úttörvény alapján meghatározható a gyorsulása. Fejezzük ki a négyzetes úttörvényből a gyorsulást! s = a 2 t2 a = 2s t 2 Ezt a képletet fogjuk a gyorsulás meghatározásakor használni. Eszközök lejtő, kiskocsi vagy golyó, stopper, mérőszalag 1. mérés Állítsd a lejtőt 5 hajlásszögűre, és három különböző út esetén mérd meg az időt! Az időmérést háromszor ismételd! Töltsd ki a táblázatot! út (m) idő (s) idő átlaga gyorsulás (m/s 2 ) gyorsulások átlaga

9 7 Végezd el a mérést 10 -os lejtővel is! út (m) idő (s) idő átlaga gyorsulás (m/s 2 ) gyorsulások átlaga Hasonlítsd össze a két mérés eredményét! Mit tapasztalsz? Adott hajlásszög mellett mi okozhatna kisebb gyorsulást?

10 8 Feladatok 1. Mit jelent az, ha a gyorsulás negatív? 2. Számítsd ki, hogy a második mérésben szereplő lejtőn mekkora sebességre gyorsulna fel a test, ha a lejtő hossza 2 m lenne! 3. Mekkora a gyorsulása annak az autónak, amelyik 72 km/h sebességről 10 s alatt megáll? 4. Mekkora sebességre gyorsul fel 5 s alatt 12 m/s-ról az a test, amelynek gyorsulása 4 m s 2? Mennyi utat tesz meg a gyorsítás alatt?

11 9 3. A sűrűség meghatározása A mérés elve A testek, anyagok tömegének és térfogatának hányadosát sűrűségnek nevezzük. Ha egy test nem homogén, akkor átlagsűrűséget kapunk. ρ= m V és m = G g ahol G a test súlya, g a gravitációs gyorsulás. A test sűrűsége tehát meghatározható, ha megmérjük a súlyát és a térfogatát. Eszközök különböző testek,só, rizs, olaj, víz, rugós erőmérő, mérőhenger 1. mérés Mérj ki 1N súlyú mennyiséget a sóból, rizsből, olajból és vízből, majd mérőhengerrel mérd meg a térfogatukat! Töltsd ki a táblázatot! súly tömeg tömeg térfogat (cm 3 ) sűrűség ( g cm 3) sűrűség ( kg m 3) só rizs olaj víz 1N kg g 2. mérés Az előző mérésben használt anyagokból mérj ki 1dl mennyiséget, majd mérd meg a súlyukat! Töltsd ki a táblázatot!

12 10 só rizs olaj víz térfogat 1dl=100cm 3 súly (N) tömeg (kg) tömeg (g) sűrűség ( g cm 3) Minden anyag esetében számold ki a két mérés során kapott sűrűségek átlagát, és ez alapján rendezd sorba az anyagokat növekvő sűrűségek szerint! só: rizs: olaj: víz: 3. mérés Mérd meg az adott test súlyát, majd mérőhengerben lévő vízbe lógatva a térfogatát! Számítsd ki a sűrűségét! Az anyagok sűrűségét tartalmazó táblázatok segítségével állapítsd meg, hogy milyen anyagból készülhetett a test!

13 11 Feladatok 1. Mekkora a tömege 8dm 3 ólomnak? 2. Mekkora a térfogata 45g jégnek?

14 12 4. A nehézségi gyorsulás meghatározása Atwood-készülékkel A mérés elve Az Atwood-készülék lényegében egy állócsigán átvetett fonál végein függő két különböző tömegű test, melyek függőleges egyenes mentén mozognak egyenletesen változó mozgással. Nyújthatatlan fonalat feltételezve a két test gyorsulása abszolút értékben megegyező nagyságú és állandó. Ha az állócsiga tömegétől eltekintünk, akkor a fonálban támadó erők egyenlők, és a nehézségi gyorsulás értéke az egyenletek átrendezésével meghatározható. Eszközök Atwood-készülék, különböző tömegű testek, stopper - Mérés Az Atwood-készüléket helyezd az asztalra és állítsd be oly módon, hogy a kisebb tömegű test legyen az asztalon, a nagyobb tömegű test bizonyos lemért magasságban (pl. 100 cm-re)!

15 13 Engedd el az alsó testet, amelyik addig gyorsul, míg a másik le nem ér az asztalra! Mérd meg mennyi idő alatt ér a nagyobb tömegű test az asztalra! A négyzetes úttörvény alapján határozd meg a testek gyorsulását! s (m) t(s) t átl a = 2s t 2 ( m s 2) A következő ábrába rajzold be a testre ható erőket, írd fel a mozgásegyenleteket, és számítsd ki g értékét az előző mérésből kapott gyorsulás felhasználásával!

16 14 Hasonlítsd össze a kapott eredményt a g = 9,81 m s2 értékével! Mi okozhat eltérő eredményt? Feladatok 1. Egy kötélre függesztett 2 kg tömegű testet 30 N erővel húzunk fölfelé. Mekkora gyorsulással mozog? Készíts ábrát! 2. Egy asztalon 8 kg tömegű test fekszik. Az asztal sarkán lévő csigán átvetett kötéllel hozzáerősítünk egy 2 kg tömegű másik testet, ami lóg az asztal mellett. Az asztalon nincs súrlódás. Mekkora gyorsulással mozognak a testek? Készíts ábrát, amelyen berajzolod a testekre ható erőket!

17 15 5. Rugalmas ek A mérés elve Ha két test ekor elhanyagolhatók a külső hatások, és csak az egymásra kifejtett hatást kell figyelembe vennünk, akkor a két test zárt rendszert alkot. Zárt rendszerben érvényesül a lendületmegmaradás törvénye, vagyis a rendszert alkotó testek lendületének vektori összege állandó. Ha a két test e rugalmas, akkor az összes mozgási energiájuk is állandó. A lendület a tömeg és a sebesség szorzata, jele I,mértékegysége kgm/s. I= mv. A lendület vektormennyiség, iránya megegyezik a sebesség irányával. A mozgási energia: E = 1 2 mv2 Eszközök 1 db légpárnás pálya 2 db kiskocsi rugalmas és tépőzáras ütközőkkel különféle tömegű nehezékek 2 db fotokapu digitális időmérő rugós erőmérő 1. Mérés A sínre helyezett két kiskocsival rugalmas eket vizsgálunk különböző tömegarányok beállításával, melyet a kiskocsikra tett nehezékekkel érünk el. Rugalmas ekhez rugós ütközőt használunk. Az időmérő szerkezettel és a fotokapuk megfelelő elhelyezésével a kiskocsik sebességeit mérhetjük az és. Először rugós erőmérővel megmérjük a kiskocsik és a nehezékek tömegét, ezekre az adatokra számításaink során szükség lesz.

18 16 Tömegadatok grammban: kiskocsi 1. nehezék 2. nehezék 3. nehezék 4.nehezék Vízszintes pályán két azonos tömegű kiskocsit helyezünk el, közülük az egyikre rugalmas ütközőt teszünk. Kézzel meglökve elindítjuk a kocsikat egymással szemben (közelítőleg) azonos sebességgel. A kocsik összeütköznek. Mérjük meg a sebességüket! Mért értékek: sebesség (cm/s) első kocsi második kocsi rendszer lendülete első kocsi második kocsi rendszer lendülete lendület (gcm/s) Tapasztalat: Ismételjük meg a mérést két azonos tömegű kocsival úgy, hogy az egyik kocsi kezdősebessége nulla, azaz álló kocsi ütközik mozgóval! Mért értékek:

19 17 sebesség ( cm/s ) első kocsi második kocsi 0 rendszer lendülete első kocsi második kocsi rendszer lendülete lendület ( gcm/s ) 0 Tapasztalat: 2. mérés A tanári kísérlethez hasonlóan járunk el, de most a tömegek különbözőek. Válasszunk olyan nehezéket, mellyel az ütköző kocsik tömegaránya hozzávetőleg 1:2! 1. kocsi tömege: 2. kocsi tömege:.. Mért értékek: sebesség (cm/s ) első kocsi második kocsi rendszer lendülete első kocsi második kocsi rendszer lendülete lendület (gcm/s ) Tapasztalat:

20 18 Ismételjük meg a mérést most olyan nehezékkel, hogy az ütköző kocsik tömegaránya hozzávetőleg 1:3 legyen! 1. kocsi tömege:..2. kocsi tömege:.. sebesség ( cm/s ) első kocsi második kocsi rendszer lendülete első kocsi második kocsi rendszer lendülete lendület ( gcm/s ) Tapasztalat: Feladat Vizsgáld meg, hogy az ek során valóban állandó-e a rendszer mozgási energiája!

21 19 6. Rugalmatlan ek A mérés elve Ha két test ekor elhanyagolhatók a külső hatások, és csak az egymásra kifejtett hatást kell figyelembe vennünk, akkor a két test zárt rendszert alkot. Zárt rendszerben érvényesül a lendületmegmaradás törvénye, vagyis a rendszert alkotó testek lendületének vektori összege állandó. Ha a két test e rugalmatlan, a rendszer mozgási energiája csökken. Teljesen rugalmatlan nél a testek közös sebességgel, együtt haladnak tovább. A lendület a tömeg és a sebesség szorzata, jele I,mértékegysége kgm/s. I= mv. A lendület vektormennyiség, iránya megegyezik a sebesség irányával. A mozgási energia: E = 1 2 mv2 Eszközök 1 db légpárnás pálya 2 db kiskocsi rugalmas és tépőzáras ütközőkkel különféle tömegű nehezékek 2 db fotokapu digitális időmérő rugós erőmérő 1. mérés Először rugós erőmérővel megmérjük a kiskocsik és a nehezékek tömegét, ezekre az adatokra számításaink során szükség lesz. Tömegadatok grammban: kiskocsi 1. nehezék 2. nehezék 3. nehezék 4.nehezék

22 20 Azonos tömegű kocsikkal végezzük a kísérletet, de a kocsik egyikére tépőzáras ütközőt rögzítünk. Kézzel meglökve elindítjuk a kocsikat egymással szemben (közelítőleg) azonos sebességgel. Mérjük meg a kocsik i és i sebességét! Mért értékek: sebesség ( cm/s ) első kocsi második kocsi rendszer lendülete első kocsi második kocsi rendszer lendülete lendület ( gcm/s ) Tapasztalat: Ismételjük meg a mérést két azonos tömegű kocsival úgy, hogy az egyik kocsi kezdősebessége nulla, azaz álló kocsi ütközik mozgóval! Mért értékek: sebesség ( cm/s ) lendület ( gcm/s ) első kocsi második kocsi rendszer lendülete első kocsi második kocsi rendszer lendülete

23 21 Tapasztalat: 2. mérés A két rugalmatlanul ütköző kocsi tömege most legyen különböző! Válasszunk olyan nehezéket, mellyel az ütköző kocsik tömegaránya hozzávetőleg 1:2! 1. kocsi tömege: 2. kocsi tömege:.. Mért értékek: sebesség ( cm/s ) első kocsi második kocsi rendszer lendülete első kocsi második kocsi rendszer lendülete lendület ( gcm/s ) Tapasztalat: Ismételjük meg a mérést most olyan nehezékkel, hogy az ütköző kocsik tömegaránya hozzávetőleg 1:3 legyen! 1. kocsi tömege: 2. kocsi tömege:..

24 22 Mért értékek: sebesség ( cm/s ) lendület ( gcm/s ) első kocsi második kocsi rendszer lendülete első kocsi második kocsi rendszer lendülete Tapasztalat: Feladat Számítással ellenőrizd, hogy a testek rugalmatlan ekor valóban csökkent-e a mozgási energia!

25 23 7. Tapadási és csúszási súrlódási együttható meghatározása A mérés elve: A tapadási súrlódási erő mindig akkora, mint amekkora az az erő, amelyik a testet mozgásba akarja hozni,így a test nyugalmi állapotát biztosítja. A tapadási súrlódási erőnek van egy maximuma, ami egyenesen arányos a nyomóerővel, hányadosuk adja a tapadási súrlódási együtthatót: Ftmax/Fny=μ. Ha a test a felületen elmozdul, akkor a csúszási súrlódási erő hat rá, ami fékezi a mozgását. A csúszási súrlódási erő egyenesen arányos a nyomóerővel, hányadosuk adja a csúszási súrlódási együtthatót: Fs/Fny=μ. Eszközök rugós erőmérő, fahasáb különböző minőségű felületekkel, nehezékek 1. mérés Helyezz egy fahasábot a vízszintes asztalra, majd óvatosan kezdd el húzni vízszintesen az erőmérővel mindaddig, amíg meg nem mozdul! Akkor olvasd le az erőmérő állását, amikor a test éppen megmozdul! Az erőmérő ilyenkor a tapadási súrlódási erő maximumát mutatja, hiszen a rugóerő és a tapadási súrlódási erő az elmozdulás pillanatáig kiegyenlíti egymást. Végezd el a mérést úgy is, hogy egy, illetve két nehezéket teszel a hasábra. Mérd meg a hasáb és a nehezékek súlyát is, hiszen a test súlya megegyezik a rá ható nyomóerővel. Számold ki a tapadási súrlódási együtthatót minden esetben, majd vedd ezek átlagát!

26 24 hasáb hasáb 1 nehezékkel hasáb 2 nehezékkel F tap,max = F r F ny = G μ = F tap,max F ny μ értékek átlaga A fahasábot most úgy húzd az erőmérővel óvatosan az asztalon, hogy egyenes vonalú egyenletes mozgást végezzen! Ekkor az erőmérő éppen a csúszási súrlódási erőt mutatja, hiszen a rugóerő most ellentétes irányú és egyenlő nagyságú a súrlódási erővel Newton II. törvényének értelmében. Számold ki a csúszási súrlódási együtthatót! hasáb hasáb 1 nehezékkel hasáb 2 nehezékkel F s = F r F ny = G μ = F s F ny μ értékek átlaga Tapasztalatok:

27 25 Hasonlítsd össze a csúszási és a tapadási együttható értékét! 2. mérés Végezd el az előző méréseket úgy, hogy a fahasábot más minőségű felületével teszed az asztalra! A tapadási együttható mérésének eredményei hasáb hasáb 1 nehezékkel hasáb 2 nehezékkel F tap,max = F r F ny = G μ = F tap,max F ny μ értékek átlaga A csúszási együttható mérésének eredményei hasáb hasáb 1 nehezékkel hasáb 2 nehezékkel F s = F r F ny = G μ = F s F ny μ értékek átlaga

28 26 Tapasztalatok: 1. Ugyanazt tapasztalod-e a csúszási és a tapadási együttható összehasonlításakor, mint az első mérés esetén? 2. Hasonlítsd össze a különböző felületek esetén mért csúszási együtthatókat, illetve a különböző felületek esetén mért tapadási együtthatókat! Feladat Egy 5 kg tömegű testet vízszintes asztalra helyezünk, ahol μ = 0,2 és μ = 0,25. a) Mekkora erővel tudjuk a testet elmozdítani? b) Mekkora gyorsulással csúszik 15N vízszintes húzóerő hatására?

29 27 8. Rugóerő, rugóállandó A mérés elve A megnyújtott vagy összenyomott rugó erőt fejt ki a hozzá rögzített testekre. Ezt a rugó által kifejtett erőt rugóerőnek nevezzük. A rugóerő egyenesen arányos a rugó megnyúlásával, hányadosuk a rugóra jellemző rugóállandó, ami a rugó erősségétől függ. Eszközök F r l = D állvány, két különböző erősségű rugó, mérőszalag, ismert tömegű testek 1. mérés Függeszd fel az állványra az egyik rugót, és mérd meg a hosszát! l = cm Akassz rá egy testet, és amikor nyugalomba került, mérd meg a rugó hosszát és számítsd ki a megnyúlást! l = l l Egyensúly esetén a rugóerő egyenlő a testre ható gravitációs erővel, vagyis F r = mg. Végezd el a mérést négy különböző tömeg esetén, és töltsd ki a táblázatot! l (cm ) F r (N ) D ( N cm ) D átlag

30 28 2. mérés Végezd el a másik rugóval az előzőhöz hasonlóan a mérést! l (cm ) F r (N ) Ábrázold koordináta-rendszerben a rugóerőt a megnyúlás függvényében! F r (N ) l (cm )

31 29 Rajzold be a pontokra leginkább illeszkedő, origóból kiinduló félegyenest (egyenes arányosság)! Az egyenes meredeksége megadja a rugóállandót. Határozd meg! D = N cm Feladatok 1. Vizsgáld meg a két rugót (próbáld megnyújtani, összenyomni), és hasonlítsd össze a kapott rugóállandókat! Mit tapasztalsz?

32 30 2. Mennyivel nyújtja meg az 1000 N rugóállandójú rugót a ráakasztott 2 kg tömegű test? m

33 31 9. Merev testek egyensúlya A mérés elve A forgatónyomaték a forgásállapot-változtató hatások mennyiségi jellemzője. Egy erőnek egy adott pontra vonatkozó forgatónyomatékán értjük az erő nagyságának és az erőkarjának szorzatát. Az erőkar az erő hatásvonalának a vonatkoztatási ponttól mért távolsága. A forgatónyomaték előjeles mennyiség a forgásiránytól függően. M = F k, ahol M a forgatónyomaték, F az erő, és k az erőkar. Rögzített tengely körül forgó merev test akkor van egyensúlyban, ha a testre ható erők tetszőleges pontra vonatkozó forgatónyomatékainak előjeles összege zérus, vagyis M i = 0 Nm. Ennek alapján, erő és erőkarok mérésével meghatározható egy ismeretlen tömeg. Eszközök közepén tengelyezett emelő állvánnyal, rugós erőmérő, ismeretlen tömegű test, mérőszalag 1. mérés A kétoldalú emelő egyik oldalára, tetszőleges helyre akaszd fel az ismeretlen tömegű testet, és mérd meg az erőkarját! k test = cm

34 32 Hozd létre az emelő vízszintes helyzetében az egyensúlyt úgy, hogy a másik oldalán egy függőleges helyzetű rugós erőmérővel megfelelő nagyságú és irányú erőt fejtesz ki! Olvasd le az erőt az erőmérőről, mérd meg az erőkart, és számítsd ki a forgatónyomatékot! Az erőmérő 5 különböző helyzetében végezd el a mérést, és töltsd ki a táblázatot! erőkar (cm) erő (N) forgatónyomaték (Ncm) M átlag Az ismeretlen tömegű test G=mg erőt fejt ki az emelőre, így az egyensúly feltétele alapján mg k = M átlag m = M átlag gk = kg Miért nem kellett figyelembe venni az emelő rúdjára ható gravitációs erő forgatónyomatékát?

35 33 2. mérés Készíts az emelőből egyoldalú emelőt úgy, hogy a rúd végére teszed a forgástengelyt! Az előző mérésből már ismert tömegű testet függeszd fel az emelőre, az erőmérővel pedig hozd létre a vízszintes egyensúlyi helyzetét! Olvasd le az erő értékét, és mérd meg az erőkarokat! F r = N k r = cm k test = cm Számítsd ki a forgatónyomatékokat! M r = Ncm M test = Ncm Miért nem egyenlő a két forgatónyomaték? Számold ki az egyensúly feltétele alapján az emelő rúdjának tömegét!

36 A mechanikai energia megmaradásának törvénye, munkatétel A mérés elve Mechanikai energiák és kiszámításuk: Emozgási= 1 2 mv2 ; Ehelyzeti= mgh; Erugalmas= 1 2 Dx2, ahol m a test tömege, v a test sebessége, g a nehézségi gyorsulás, h a test magassága a nullszinthez viszonyítva, D a rugóállandó és x a rugó megnyúlása. A mechanikai energia megmaradásának törvénye: Zárt rendszerben (ahol csak konzervatív erők hatnak, elhanyagolható a súrlódás és a légellenállás) a mechanikai energiák összege állandó. Azaz: Emozgási+ Ehelyzeti+ Erugalmas= állandó Eszközök állvány, rugó, ismert tömegű test, mérőszalag, fahasáb, rugós erőmérő 1. mérés Függeszd fel a rugót az állványra, amelynek rúdjára mérőszalag van erősítve, és jelöld meg a rugó alsó végének helyzetét! Akaszd rá a testet, és ha nyugalomba került, mérd meg a megnyúlást! l = Számítsd ki az egyensúly alapján a rugóállandót! m mg = D l D = mg l = Ezek emeld fel a rugóra akasztott testet addig, amíg a rugó nyújtatlan állapotba kerül! Ekkor a rugóból és a testből álló rendszernek a rugalmas energiája zérus. A testet hirtelen engedd el! Miközben a test lefelé mozog, a rugó egyre jobban megnyúlik. N m

37 35 Amikor a test megáll, a rugó megnyúlása maximális. Mérd meg ezt a maximális megnyúlást! l max = x = m Mit tapasztalsz, milyen kapcsolat van az egyensúlyi helyzethez tartozó megnyúlás, és a maximális megnyúlás között? Legyen a helyzeti energia nullszintje ott, ahol a test megállt. Számítsd ki a rendszer összes mechanikai energiáját a két szélső helyzetben! Fent: E = E h + E m + E r = mgx = J Lent: E = Dx2 = J Hasonlítsd össze a két helyzetre kapott energia értékét! Mit tapasztalsz? 2. mérés Húzd az asztalon egyenletes mozgással a fahasábot vízszintes helyzetű erőmérővel! Az egyensúly miatt F súrl = F r = N Lökd meg a hasábot, és mérd meg a megállásig megtett útját! s = m A munkatétel alapján számítsd ki a kezdősebességét! 1 2 mv2 = F súrl s

38 36 v = 2F súrls m = m s Feladat 1. Számítsd ki, hogy az első mérés során mekkora sebességgel megy át a test az egyensúlyi helyzetén! 2. Mennyi munkavégzéssel lehet egy 2 kg tömegű testet 10 m/s sebességről felgyorsítani 15 m/s-ra?

39 Felhajtóerő A mérés elve Arkhimédész törvénye szerint a folyadékba merülő testre felhajtóerő hat, ami egyenlő nagyságú a test által kiszorított folyadék súlyával. Ha a test súlya a levegőn G L, és folyadékban G F, akkor a testre ható felhajtóerő: F fel = G L G F és F fel = V t ρ F g Ebből a test térfogata: V t = G L G F ρ F g Mivel a test sűrűsége: ρ t = G L, ebből a test térfogatára kapott kifejezést behelyettesítve: V t g ρ t = G L ρ F illetve ρ G L G F = G L G F ρ F G t L Eszközök arkhimédészi hengerpár, főzőpohár, víz, erőmérő, ismeretlen sűrűségű test, ismeretlen sűrűségű folyadék 1. mérés Egy üres és egy abba pontosan beleillő tömör hengerből álló ún. "arkhimédészi hengerpárt" akasszunk rugós erőmérőre, és jelöljük meg az erőmérő állását, majd merítsük vízbe az alul elhelyezkedő tömör hengert! Az erőmérő kisebb erőt jelez.

40 38 Töltsük fel ez vízzel a felső üres hengert, ügyelve arra, hogy közben továbbra is csak az alsó tömör henger merüljön a vízbe! Mire a henger csordultig telik, az erőmérő ismét az eredeti értéket mutatja. Következésképpen a tömör hengerre valóban a kiszorított víz súlyával egyenlő felhajtóerő hat. 2. mérés Mérd meg a szilárd test súlyát az erőmérővel! G L = N Az erőmérőre függesztett testet merítsd vízbe úgy, hogy teljesen ellepje a víz! G V = N Számítsd ki a test sűrűségét! ρ t = G L ρ víz G L G víz = kg m 3 A víz sűrűsége: 1000 kg m 3 3. mérés Az előbbi módszerrel meghatározott sűrűségű szilárd testet ismeretlen sűrűségű folyadékba merítjük, és megmérjük a test súlyát ebben a folyadékban. G F = N Számítsd ki a folyadék sűrűségét! ρ F = G L G F G L ρ t = kg m 3

41 39 Feladat 1. Egyszerű "Cartesius-búvárt" készíthetünk egy rövidre tört szálon hagyott gyufafejből is. Dobjuk a gyufaszálat egy vízzel színültig töltött szűk nyakú üvegbe, majd hüvelykujjunkat az üveg szájára szorítva vagy parafa dugóval gyakoroljunk erőteljes nyomást a vízre! A gyufaszál elmerül, mert a fej porózus anyagában megkötött légbuborékok térfogata a nyomás hatására csökken, így a gyufa átlagsűrűsége nő. 2. Könnyen készíthetünk Cartesius-búvárt, ha van egy kémcsövünk és egy 1,5-2 literes, puha falú ásványvizes palackunk. Töltsük vízzel színültig a palackot! Öntsünk a kémcsőbe kétharmad részénél kissé feljebb vizet, majd a kémcső száját befogva fordítsuk meg azt, és merítsük a palack vizébe! Csavarjuk rá a kupakot a palackra! A hengeres oldalra kifejtett nyomás segítségével változtathatjuk a "búvár" helyzetét. Alaposan figyeld meg, hogy a palack megnyomásakor mi történik a kémcsővel, és magyarázd meg! 3. Mitől függ, hogy egy test lesüllyed, lebeg vagy úszik a folyadékban?

42 Hidrosztatikai nyomás A mérés elve A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. A hidrosztatikai nyomás minden irányban hat, a folyadék nyomja a tárolóedény falát, és a folyadékba helyezett tárgyakat is. A hidrosztatikai nyomás értéke függ a folyadék sűrűségétől (ρ), és az adott hely fölött lévő folyadékoszlop magasságától (h). Kiszámítása: p = hρg. Eszközök üvegkád, víz, üvegcső gumihártyával, erőmérő, manométer, a vízben elmerülő és erőmérőre akasztható téglatest vagy henger alakú test, mérőszalag 1. mérés Vizsgáld meg a hidrosztatikai nyomás tulajdonságait, írd le tapasztalataidat, következtetéseidet! Gumihártyával lezárt csőbe önts egyre nagyobb mennyiségű vizet! Tapasztalat Az egyik végén gumihártyával lezárt üvegcsövet üresen, gumihártyával lefelé nyomjunk egy tál vízbe úgy, hogy a cső nyitott vége a víz felszíne fölött maradjon!

43 41 Tapasztalat: Nyomd lefelé a csövet! Mi történik? A manométer gumihártyás tölcsérét nyomd bele a vízbe úgy, hogy a hártya függőleges helyzetű legyen! Tapasztalat:. Mozgasd vízszintes irányban a tölcsért! Tapasztalat: 2. mérés A felhajtóerő a hidrosztatikai nyomásból származó erők következménye. Ellenőrizzük ezt méréssel! Mérd meg a téglatest súlyát levegőben és vízben is, majd számold ki a felhajtóerőt! G L = N G V = N

44 42 F fel = G L G V = N Az erőmérőt függeszd fel egy állványra, akaszd rá a téglatestet, és lógasd vízbe! Mérd meg az alsó és felső lapjának a víz felszínétől való távolságát! h alsó = h felső = m m Számítsd ki az adott szinteken a hidrosztatikai nyomást! ρ víz = 1000 kg m 3 p alsó = h alsó ρ víz g = p felső = Pa Számítsd ki a lapok területét! A alsó = A felső = m 2 Számítsd ki a hidrosztatikai nyomásból származó nyomóerőket! F alsó = p alsó A = F felső = N Számítsd ki a felhajtóerőt! F fel = F alsó F felső = N

45 43 Hasonlítsd össze a mérés során kapott értékkel! Miért nem kellett számolni az oldallapokra ható nyomóerővel?

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens Tanulói munkafüzet FIZIKA 11. évfolyam emelt szintű tananyag 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Egyenes vonalú mozgások..... 3 2. Periodikus

Részletesebben

Szakköri segédlet. FIZIKA 7-8. évfolyam 2015. Összeállította: Bolykiné Katona Erzsébet

Szakköri segédlet. FIZIKA 7-8. évfolyam 2015. Összeállította: Bolykiné Katona Erzsébet Szakköri segédlet FIZIKA 7-8. évfolyam 2015. Összeállította: Bolykiné Katona Erzsébet 1 Tartalomjegyzék 1. Szakköri tematika. 2 2. Szakköri tanári segédlet... 8 2.1. Hosszúság, terület, idő, térfogat,

Részletesebben

Tanulói munkafüzet. FIZIKA 10. évfolyam 2015.

Tanulói munkafüzet. FIZIKA 10. évfolyam 2015. Tanulói munkafüzet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János Szakképző Iskola és ban 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2.

Részletesebben

Fizika 9. osztály. 1. Egyenes vonalú egyenletes mozgás... 2. 2. Az egyenes vonalú egyenletesen változó mozgás vizsgálata lejtőn...

Fizika 9. osztály. 1. Egyenes vonalú egyenletes mozgás... 2. 2. Az egyenes vonalú egyenletesen változó mozgás vizsgálata lejtőn... Fizika 9. osztály 1 Fizika 9. osztály Tartalom 1. Egyenes vonalú egyenletes mozgás............................................. 2 2. Az egyenes vonalú egyenletesen változó mozgás vizsgálata lejtőn....................

Részletesebben

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete A Siófoki Perczel Mór Gimnázium tanulói segédlete FIZIKA munkafüzet Tanulói kísérletgyűjtemény-munkafüzet az általános iskola 7. osztálya számára 7. o s z t ály CSODÁLATOS TERMÉSZET TARTALOM 1. Egyenes

Részletesebben

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 9. évfolyam Tanári segédanyag. Szemes Péter

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 9. évfolyam Tanári segédanyag. Szemes Péter FELADATLAPOK FIZIKA 9. évfolyam Tanári segédanyag Szemes Péter ajánlott korosztály: 9. évfolyam! 1. HOGYAN VADÁSZIK A DENEVÉR? fizika-9- BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A kísérlet során

Részletesebben

Az Egyszerű kvalitatív kísérletek és az egész órás mérési gyakorlatok időzítése, szervezési kérdései!

Az Egyszerű kvalitatív kísérletek és az egész órás mérési gyakorlatok időzítése, szervezési kérdései! Tartalomjegyzék Az Egyszerű kvalitatív kísérletek és az egész órás mérési gyakorlatok időzítése, szervezési kérdései! Egyszerű kvalitatív kísérletek 1. Forog vagy nem? 2. Szívószál-rakéta 3. Itt a golyó

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

Szakköri munkafüzet. FIZIKA 7-8. évfolyam 2015. Összeállította: Bolykiné Katona Erzsébet

Szakköri munkafüzet. FIZIKA 7-8. évfolyam 2015. Összeállította: Bolykiné Katona Erzsébet Szakköri munkafüzet FIZIKA 7-8. évfolyam 2015. Összeállította: Bolykiné Katona Erzsébet Szakképző Iskola és ban Tartalomjegyzék 1. Hosszúság, terület, idő, térfogat, tömeg, sűrűség mérése. 3 2. Kölcsönhatások.

Részletesebben

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B

Részletesebben

FIZIKA Tananyag a tehetséges gyerekek oktatásához

FIZIKA Tananyag a tehetséges gyerekek oktatásához HURO/1001/138/.3.1 THNB FIZIKA Tananyag a tehetséges gyerekek oktatásához Készült A tehetség nem ismer határokat HURO/1001/138/.3.1 című projekt keretén belül, melynek finanszírozása a Magyarország-Románia

Részletesebben

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye

Részletesebben

FIZIKA MUNKAFÜZET EME LT SZI NT

FIZIKA MUNKAFÜZET EME LT SZI NT FIZIKA MUNKAFÜZET EME LT SZI NT Készült a TÁMOP-3.1.3-11/2-2012-0008 azonosító számú "A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Vajda Péter Evangélikus Gimnáziumban"

Részletesebben

Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I.

Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I. Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika 1.5. Mennyi ideig esik le egy tárgy 10 cm magasról, és mekkora lesz a végsebessége?

Részletesebben

Szakköri segédlet. FIZIKA 9-10. évfolyam 2015. Összeállította: Scitovszky Szilvia

Szakköri segédlet. FIZIKA 9-10. évfolyam 2015. Összeállította: Scitovszky Szilvia Szakköri segédlet FIZIKA 9-10. évfolyam 2015. Összeállította: Scitovszky Szilvia A természettudományos oktatás megújítása és laboratórium kialakítása az ózdi BAZ Megyei József Attila Gimnázium, Szakképző

Részletesebben

Fizika 7. osztály. 1. Az egyenes vonalú egyenletes mozgás vizsgálata Mikola-csővel... 2

Fizika 7. osztály. 1. Az egyenes vonalú egyenletes mozgás vizsgálata Mikola-csővel... 2 Fizika 7. osztály 1 Fizika 7. osztály Tartalom 1. Az egyenes vonalú egyenletes mozgás vizsgálata Mikola-csővel...................... 2 2. Az egyenes vonalú egyenletesen változó mozgás vizsgálata lejtőn....................

Részletesebben

Tanulói munkafüzet. Fizika. 8. évfolyam 2015.

Tanulói munkafüzet. Fizika. 8. évfolyam 2015. Tanulói munkafüzet Fizika 8. évfolyam 2015. Összeállította: Dr. Kankulya László Lektorálta: Dr. Kornis János 1 Tartalom Munkavédelmi, balesetvédelmi és tűzvédelmi szabályok... 2 I. Elektrosztatikai kísérletek...

Részletesebben

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban Fizika tanulói segédletek, 8. évfolyam Műveltség terület Ember és természet fizika Összeállította Kardos Andrea

Részletesebben

Szaktanári segédlet. FIZIKA 9. évfolyam 2015. egyetemi docens

Szaktanári segédlet. FIZIKA 9. évfolyam 2015. egyetemi docens Szaktanári segédlet FIZIKA 9. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata... 3 2. Az egyenes vonalú

Részletesebben

Hatvani István fizikaverseny 2015-16. 3. forduló. 1. kategória

Hatvani István fizikaverseny 2015-16. 3. forduló. 1. kategória 1. kategória 1.3.1. Február 6-a a Magyar Rádiótechnikai Fegyvernem Napja. Arra emlékezünk ezen a napon, hogy 1947. február 6-án Bay Zoltán és kutatócsoportja radarral megmérte a Föld Hold távolságot. 0,06

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I. Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

Ha vasalják a szinusz-görbét

Ha vasalják a szinusz-görbét A dolgozat szerzőjének neve: Szabó Szilárd, Lorenzovici Zsombor Intézmény megnevezése: Bolyai Farkas Elméleti Líceum Témavezető tanár neve: Szász Ágota Beosztása: Fizika Ha vasalják a szinusz-görbét Tartalomjegyzék

Részletesebben

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3 Természettudományos 11. ÉVFOLYAM FIZIKA Szerző: Pálffy Tamás Lektorálta: Szabó Sarolta Tartalomjegyzék Bevezető... 3 Laborhasználati szabályok, balesetvédelem, figyelmeztetések... 4 A mágneses

Részletesebben

Szakács Jenő Megyei Fizikaverseny

Szakács Jenő Megyei Fizikaverseny Szakács Jenő Megyei Fizikaverseny 04/05. tanév I. forduló 04. december. . A világ leghosszabb nyílegyenes vasútvonala (Trans- Australian Railway) az ausztráliai Nullarbor sivatagon át halad Kalgoorlie

Részletesebben

1. mérés. Egyenes vonalú egyenletes mozgás vizsgálata

1. mérés. Egyenes vonalú egyenletes mozgás vizsgálata 1. mérés Egyenes vonalú egyenletes mozgás vizsgálata Emlékeztető Az egyenes vonalú egyenletes mozgás a mozgásfajták közül a legegyszerűbben írható le. Ha a mozgó test egyenes pályán mindig egy irányban

Részletesebben

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!

b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást! 2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának

Részletesebben

Fizika verseny kísérletek

Fizika verseny kísérletek Fizika verseny kísérletek 7-8. évfolyam 7.2.5.1. kísérlet Sűrűség mérése Eszközök: mérendő tárgyak, mérleg, mérőhenger, víz Mérd meg szabályos és szabálytalan alakú vas, réz és alumínium tárgyak (hengerek,

Részletesebben

Eszközök: Két egyforma, könnyen mozgó iskolai kiskocsi rugós ütközőkkel, különböző nehezékek, sima felületű asztal vagy sín.

Eszközök: Két egyforma, könnyen mozgó iskolai kiskocsi rugós ütközőkkel, különböző nehezékek, sima felületű asztal vagy sín. 1. Newton törvényei Két egyforma, könnyen mozgó iskolai kiskocsi rugós ütközőkkel, különböző nehezékek, sima felületű asztal vagy sín. Mindkét kocsira helyezzen ugyanakkora nehezéket, majd az egyik kocsit

Részletesebben

Az erő legyen velünk!

Az erő legyen velünk! A közlekedés dinamikai problémái 8. Az erő legyen velünk! Utazási szokásainkat jelentősen meghatározza az üzemanyag ára. Ezért ha lehet, gyalog, kerékpárral vagy tömegközlekedési eszközökkel utazzunk!

Részletesebben

Testek mozgása. Készítette: Kós Réka

Testek mozgása. Készítette: Kós Réka Testek mozgása Készítette: Kós Réka Fizikai mennyiségek, átváltások ismétlése az általános iskolából, SI Nemzetközi Mértékegység Rendszer 1. óra Mérés A mérés a fizikus alapvető módszere. Mérőeszközre,

Részletesebben

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja FELADATLAPOK FIZIKA 11. évfolyam Gálik András ajánlott korosztály: 11. évfolyam 1. REZGÉSIDŐ MÉRÉSE fizika-11-01 1/3! BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A mérés során használt eszközökkel

Részletesebben

FOLYTONOS TESTEK. Folyadékok sztatikája. Térfogati erők, nyomás. Hidrosztatikai nyomás. www.baranyi.hu 2010. szeptember 19.

FOLYTONOS TESTEK. Folyadékok sztatikája. Térfogati erők, nyomás. Hidrosztatikai nyomás. www.baranyi.hu 2010. szeptember 19. FOLYTONOS TESTEK Folyadékok sztatikája Térfogati erők, nyomás A deformáció szempontjából a testre ható erőket két csoportba soroljuk. A térfogati erők a test minden részére, a belső részekre és a felületi

Részletesebben

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása

Póda László Urbán János: Fizika 10. Emelt szintű képzéshez c. tankönyv (NT-17235) feladatainak megoldása Póda László Urbán ános: Fizika. Emelt szintű képzéshez c. tankönyv (NT-75) feladatainak megoldása R. sz.: RE75 Nemzedékek Tudása Tankönyvkiadó, Budapest Tartalom. lecke Az elektromos állapot.... lecke

Részletesebben

Newton törvények, erők

Newton törvények, erők Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső

Részletesebben

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete A Siófoki Perczel Mór Gimnázium tanulói segédlete FIZIKA munkafüzet Tanulói kísérletgyűjtemény-munkafüzet az általános iskola 8. osztálya számára 8. o s z t ály CSODÁLATOS TERMÉSZET TARTALOM 1. Elektrosztatika

Részletesebben

Szaktanári segédlet. FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia

Szaktanári segédlet. FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia Szaktanári segédlet FIZIKA 10. évfolyam 2015. Összeállította: Scitovszky Szilvia 1 Tartalom Munka- és balesetvédelmi, tűzvédelmi szabályok... 2 1-2. Elektrosztatika... 4 3. Egyszerű áramkörök... 9 4. Ohm

Részletesebben

12. FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

12. FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete A Siófoki Perczel Mór Gimnázium tanulói segédlete FIZIKA munkafüzet Tanulói kísérletgyűjtemény-munkafüzet az általános iskola 12. osztálya számára 12. o s z t ály CSODÁLATOS TERMÉSZET TARTALOM 1. Egyenes

Részletesebben

Kutakodók Fizika verseny

Kutakodók Fizika verseny Kutakodók Fizika verseny Feladatok listája 7. osztályos 1) Mozgások típusai - Mikola-cső - vasgolyó - vezetősín - stopper - mérőszalag - Mérjük meg, mennyi idő alatt tesz meg a buborék 20, 40, 60 cm-t.

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI 2014. Témakörök

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI 2014. Témakörök A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI 2014. Témakörök I. Mechanika 1. Newton törvényei 2. Egyenes vonalú mozgások 3. Munka, mechanikai energia 4. Pontszerű és merev test egyensúlya,

Részletesebben

7 10. 7.o.: 1 50. feladat 8. o.: 26 75. feladat 9 10. o.: 50 100. feladat

7 10. 7.o.: 1 50. feladat 8. o.: 26 75. feladat 9 10. o.: 50 100. feladat -1- Fizikaiskola 2012 FELADATGYŰJTEMÉNY a 7 10. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 7.o.: 1 50. feladat 8. o.: 26 75. feladat 9 10. o.: 50 100. feladat Szerkesztette: Jármezei Tamás (1 75. feladat)

Részletesebben

Fizika vetélkedő 7.o 2013

Fizika vetélkedő 7.o 2013 Fizika vetélkedő 7.o 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány Celsius fokot mutat a hőmérő? 2 Melyik állítás hamis? A Ez egy termikus kölcsönhatás. B A hőmérsékletek egy pár perc múlva

Részletesebben

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban Fizika tanári segédletek, 8. évfolyam Műveltség terület Ember és természet fizika Összeállította Kardos Andrea

Részletesebben

Gáztörvények. Alapfeladatok

Gáztörvények. Alapfeladatok Alapfeladatok Gáztörvények 1. Ha egy bizonyos mennyiségő tökéletes gázt izobár módon három fokkal felhevítünk, a térfogata 1%-al változik. Mekkora volt a gáz kezdeti hımérséklete. (27 C) 2. Egy ideális

Részletesebben

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I.

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I. Oktatási Hivatal A 8/9. tanévi FIZIKA Országos Közéiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

A középszintű fizika érettségi témakörei:

A középszintű fizika érettségi témakörei: A középszintű fizika érettségi témakörei: 1. Mozgások. Vonatkoztatási rendszerek. Sebesség. Az egyenletes és az egyenletesen változó mozgás. Az s(t), v(t), a(t) függvények grafikus ábrázolása, elemzése.

Részletesebben

NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat

NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat A fizika tankönyvcsalád és a tankönyv célja A Fedezd fel a világot! című természettudományos tankönyvcsalád fizika sorozatának első köteteként

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 18. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

FIZIKA PRÓBAÉRETTSÉGI FELADATSOR - B - ELSŐ RÉSZ

FIZIKA PRÓBAÉRETTSÉGI FELADATSOR - B - ELSŐ RÉSZ FIZIKA PRÓBAÉRETTSÉGI FELADATSOR - B - HALLGATÓ NEVE: CSOPORTJA: Az írásbeli vizsga időtartama: 240 perc A feladatsor megoldásához kizárólag Négyjegyű Függvénytáblázat és szöveges információ megjelenítésére

Részletesebben

BALASSI BÁLINT GIMNÁZIUM FIZIKA HELYI TANTERV 2013

BALASSI BÁLINT GIMNÁZIUM FIZIKA HELYI TANTERV 2013 BALASSI BÁLINT GIMNÁZIUM FIZIKA HELYI TANTERV 2013 Tartalomjegyzék Óraszámok... 2 Célok és feladatok... 2 Az ismeretek ellenőrzésének formái és módjai... 2 Nyolc évfolyamos matematika-fizika emelt óraszámú

Részletesebben

Tanári segédlet. Fizika 12. évfolyam fakultációs mérések. Készítette: Láng Róbert. Lektorálta: Rózsa Sándor 2014.

Tanári segédlet. Fizika 12. évfolyam fakultációs mérések. Készítette: Láng Róbert. Lektorálta: Rózsa Sándor 2014. Tanári segédlet Fizika 12. évfolyam fakultációs mérések Készítette: Láng Róbert Lektorálta: Rózsa Sándor 2014. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

Fizika 1i gyakorlat példáinak kidolgozása 2012. tavaszi félév

Fizika 1i gyakorlat példáinak kidolgozása 2012. tavaszi félév Fizika 1i gyakorlat példáinak kidolgozása 2012. tavaszi félév Köszönetnyilvánítás: Az órai példák kidolgozásáért, és az otthoni példákkal kapcsolatos kérdések készséges megválaszolásáért köszönet illeti

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

5. Pontszerű és merev test egyensúlya, egyszerű gépek.

5. Pontszerű és merev test egyensúlya, egyszerű gépek. FIZIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA SZÓBELI TÉMAKÖREI a 2014-2015. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.b Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai

Részletesebben

Helyi tanterv Hallássérült évfolyamok számára

Helyi tanterv Hallássérült évfolyamok számára Helyi tanterv Hallássérült évfolyamok számára Fizika 7 8. ( A központi tanterv B változatából készült a helyi tanterv.) Célok és feladatok Az általános iskolai természettudományos oktatás, ezen belül a

Részletesebben

Gyakorló feladatok Tömegpont kinematikája

Gyakorló feladatok Tömegpont kinematikája Gyakorló feladatok Tömegpont kinematikája 2.3.1. Feladat Egy részecske helyzetének időfüggését az x ( t) = 3t 3 [m], t[s] pályagörbe írja le, amint a = indulva a pozitív x -tengely mentén mozog. Határozza

Részletesebben

Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja. ρ = m V.

Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja. ρ = m V. mérés Faminták sűrűségének meghatározása meg: Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja ρ = m V Az inhomogén szerkezetű faanyagok esetén ez az összefüggés az átlagsűrűséget

Részletesebben

JÁTSZÓTÉRI FIZIKA GIMNAZISTÁKNAK

JÁTSZÓTÉRI FIZIKA GIMNAZISTÁKNAK JÁTSZÓTÉRI FIZIKA GIMNAZISTÁKNAK Gallai Ditta BME Két Tanítási Nyelvű Gimnázium, Budapest, gallai.ditta@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS Az oktatás sikerességében

Részletesebben

METEOROLÓGIAI MÉRÉSEK, MŰSZEREK. 2004. 11.9-11.-12. Meteorológia-gyakorlat

METEOROLÓGIAI MÉRÉSEK, MŰSZEREK. 2004. 11.9-11.-12. Meteorológia-gyakorlat METEOROLÓGIAI MÉRÉSEK, MŰSZEREK 2004. 11.9-11.-12. Meteorológia-gyakorlat Sugárzási fajták Napsugárzás: rövid hullámú (0,286 4,0 µm) A) direkt: közvetlenül a Napból érkezik (Napkorong irányából) B) diffúz

Részletesebben

A fizika középszintű szóbeli érettségi vizsga témakörei és a hozzá kapcsolódó kísérletek/ mérések/ ábraelemzések 2015.

A fizika középszintű szóbeli érettségi vizsga témakörei és a hozzá kapcsolódó kísérletek/ mérések/ ábraelemzések 2015. A fizika középszintű szóbeli érettségi vizsga témakörei és a hozzá kapcsolódó kísérletek/ mérések/ ábraelemzések 2015. 1. Egyenletes mozgások Végezze el az alábbi kísérletek egyikét! 1. Igazolja, hogy

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA É RETTSÉGI VIZSGA 2015. október 22. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Fúrógép forgásának vizsgálata az Audacity hangszerkesztő szoftver segítségével

Fúrógép forgásának vizsgálata az Audacity hangszerkesztő szoftver segítségével 1. tétel A) feladat Fúrógép forgásának vizsgálata az Audacity hangszerkesztő szoftver segítségével Feladat: Határozza meg az elektromos fúrógép fordulatszámát, majd vizsgálja a fordulatszám változását

Részletesebben

Sebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy

Sebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy Haladó mozgások Alapfogalmak: Pálya: Az a vonal, amelyen a tárgy, test a mozgás során végighalad. Megtett út : A pályának az a szakasza, amelyet a mozgó tárgy, test megtesz. Elmozdulás: A kezdőpont és

Részletesebben

A fizika középszintű szóbeli érettségi vizsga témakörei és a hozzá kapcsolódó kísérletek/ mérések/ ábraelemzések 2016.

A fizika középszintű szóbeli érettségi vizsga témakörei és a hozzá kapcsolódó kísérletek/ mérések/ ábraelemzések 2016. A fizika középszintű szóbeli érettségi vizsga témakörei és a hozzá kapcsolódó kísérletek/ mérések/ ábraelemzések 2016. 1. Egyenletes mozgások Végezze el az alábbi kísérletek egyikét! 1. Igazolja, hogy

Részletesebben

Fizika!" Mechanika és hőtan. Baló Péter KOMPETENCIAALAPÚ AP 091403. Fizika 9. Mechanika és hőtan

Fizika! Mechanika és hőtan. Baló Péter KOMPETENCIAALAPÚ AP 091403. Fizika 9. Mechanika és hőtan AP 091403 KOMPETENCIAALAPÚ Baló Péter könyve egy merőben újszerű tankönyv: a tananyag felépítésében szakított a mechanika hagyományos kinematika, dinamika, energia témájú felosztásával. Helyette egy-egy

Részletesebben

Kísérletek újrafelhasznált anyagokkal

Kísérletek újrafelhasznált anyagokkal Kísérletek újrafelhasznált anyagokkal Item: 3287 Hunor: 20255 Szülők figyelmébe: Kérjük olvassa végig a használati útmutatót mielőtt gyermeke kezébe adná a játékot. A) Biztonsági előírások 1. Mielőtt munkához

Részletesebben

Név:...EHA kód:... 2007. tavasz

Név:...EHA kód:... 2007. tavasz VIZSGA_FIZIKA II (VHNB062/210/V/4) A MŰSZAKI INFORMATIKA SZAK Név:...EHA kód:... 2007. tavasz 1. Egy 20 g tömegű testet 8 m/s sebességgel függőlegesen felfelé dobunk. Határozza meg, milyen magasra repül,

Részletesebben

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) I. Pontszerű test 1. Pontszerű test modellje. Pontszerű test egyensúlya 3. Pontszerű test mozgása a) Egyenes vonalú egyenletes

Részletesebben

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

1. A gyorsulás Kísérlet: Eszközök Számítsa ki 1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse

Részletesebben

NEM A MEGADOTT FORMÁBAN ELKÉSZÍTETT DOLGOZATRA 0 PONTOT ADUNK!

NEM A MEGADOTT FORMÁBAN ELKÉSZÍTETT DOLGOZATRA 0 PONTOT ADUNK! Villamosmérnök alapszak Fizika 1 NÉV: Csintalan Jakab 2011 tavasz Dátum: Neptuntalan kód: ROSSZ1 NagyZH Jelölje a helyes választ a táblázat megfelelő helyére írt X-el. Kérdésenként csak egy válasz helyes.

Részletesebben

4. modul Poliéderek felszíne, térfogata

4. modul Poliéderek felszíne, térfogata Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott

Részletesebben

Azonosító kód: d A. d B

Azonosító kód: d A. d B A Öveges korcsoport Azonosító kód: Jedlik Ányos Fizikaverseny országos döntő 8. o. 2013. május 10-12. 1. feladat Egy 0,2 kg tömegű kiskocsi két végét egy-egy azonos hosszúságú és erősségű, nyújtatlan rugóhoz

Részletesebben

Szerszámgépek. 1999/2000 II. félév Dr. Lipóth András által leadott anyagrész vázlata

Szerszámgépek. 1999/2000 II. félév Dr. Lipóth András által leadott anyagrész vázlata Szerszámgépek 1999/000 II. félév Dr. Lipóth András által leadott anyagrész vázlata Megjegyzés: További információ a View/Notes Page módban olvasható. Korszerű szerszámgép Gépészeti szempontból a CNC szerszámgép

Részletesebben

FIZIKA B változat. A tantárgy oktatásának célja, feladata

FIZIKA B változat. A tantárgy oktatásának célja, feladata FIZIKA B változat A tantárgy oktatásának célja, feladata Az általános iskolai természettudományos oktatás, ezen belül a 7 8. évfolyamon a fizika tantárgy célja a gyermekekben ösztönösen meglévő kíváncsiság,

Részletesebben

FIZIKA B VÁLTOZAT (hat évfolyamos gimnázium, 2x1x2x2x2) 7. évfolyam Éves óraszám: 72

FIZIKA B VÁLTOZAT (hat évfolyamos gimnázium, 2x1x2x2x2) 7. évfolyam Éves óraszám: 72 FIZIKA B VÁLTOZAT (hat évfolyamos gimnázium, 2x1x2x2x2) 7. évfolyam Éves óraszám: 72 Tematikai egység/ Fejlesztési cél Előzetes tudás A tematikai egység nevelési-fejlesztési céljai Problémák, jelenségek,

Részletesebben

7-8. évf. Fizika. 72 óra. Tematikai egység/ Fejlesztési cél Kötelező. Szabad Összesen. 1. Természettudományos vizsgálati módszerek 6 1 7

7-8. évf. Fizika. 72 óra. Tematikai egység/ Fejlesztési cél Kötelező. Szabad Összesen. 1. Természettudományos vizsgálati módszerek 6 1 7 2.2.09.2 b 2+1 7. évfolyam Az általános iskolai természettudományos oktatás, ezen belül a 7 8. évfolyamon a fizika tantárgy célja a gyermekekben ösztönösen meglévő kíváncsiság, tudásvágy megerősítése,

Részletesebben

Középszintű érettségi témakörök fizikából 2015/2016-os tanév

Középszintű érettségi témakörök fizikából 2015/2016-os tanév Középszintű érettségi témakörök fizikából 2015/2016-os tanév 1.Egyenes vonalú egyenletes mozgás A mozgások leírására használt alapfogalmak. Térbeli jellemzők. A mozgást jellemző függvények. Dinamikai feltétel.

Részletesebben

9. Áramlástechnikai gépek üzemtana

9. Áramlástechnikai gépek üzemtana 9. Áramlástechnikai gépek üzemtana Az üzemtan az alábbi fejezetekre tagozódik: 1. Munkapont, munkapont stabilitása 2. Szivattyú indítása soros 3. Stacionárius üzem kapcsolás párhuzamos 4. Szivattyú üzem

Részletesebben

Ember és természet. műveltségterület. Fizika. 7-8. évfolyam

Ember és természet. műveltségterület. Fizika. 7-8. évfolyam Ember és természet műveltségterület Fizika 7-8. évfolyam Szandaszőlősi Általános és Alapfokú Művészeti Iskola 2013 Ajánlás A fizika tanterv a Mozaik Kiadó kerettantervének kiegészített változata. Az átdolgozásnál

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2010. október 28. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 28. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

Helyi tanterv Fizika az általános iskolák 7 8. évfolyama számára

Helyi tanterv Fizika az általános iskolák 7 8. évfolyama számára Helyi tanterv Fizika az általános iskolák 7 8. évfolyama számára A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy

Részletesebben

Tartalomjegyzék. Tanmenetek és szakmódszertani felvetések. 1. Szakmódszertani felvetések, javaslatok! 2. Fizika tanmenet 9. osztály (heti 2 óra)

Tartalomjegyzék. Tanmenetek és szakmódszertani felvetések. 1. Szakmódszertani felvetések, javaslatok! 2. Fizika tanmenet 9. osztály (heti 2 óra) Tartalomjegyzék ek és szakmódszertani felvetések 1. Szakmódszertani felvetések, javaslatok! 2 2. Fizika tanmenet 9. osztály (heti 2 óra) 5 3. Fizika tanmenet 9. osztály (heti 1,5 óra) 18 1 Bevezetô szakmódszertani

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1111 ÉRETTSÉGI VIZSGA 011. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Projektmunka. Aerodinamika Az alaktényező meghatározása. Ábrám Emese. Ferences Gimnázium. 2014. május

Projektmunka. Aerodinamika Az alaktényező meghatározása. Ábrám Emese. Ferences Gimnázium. 2014. május Pojektmunka Aeodinamika Az alaktényező meghatáozása Ábám Emese 04. május Pojektmunka Aeodinamika Az alaktényezők meghatáozása Ebben a dolgozatban az általam végzett kíséletet szeetném kiétékelni és bemutatni.

Részletesebben

2010. május- június A fizika szóbeli érettségi mérései, elemzései

2010. május- június A fizika szóbeli érettségi mérései, elemzései 2010. május- június A fizika szóbeli érettségi mérései, elemzései 1. A rendelkezésre álló eszközökkel szemléltesse a hőtágulás jelenségét! Eszközök: Gravesande karika, üveg egy forintossal (és némi víz),

Részletesebben

Fizika az általános iskolák 7 8. évfolyama számára

Fizika az általános iskolák 7 8. évfolyama számára Fizika az általános iskolák 7 8. évfolyama számára A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy a természet működésének

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 17. FIZIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 10 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM írásbeli vizsga 0513

Részletesebben

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)... 2. 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú...

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)... 2. 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú... Fizika 11. osztály 1 Fizika 11. osztály Tartalom 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)............. 2 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú......................................

Részletesebben

FIZIKA KÖZÉPSZINTŐ ÉRETTSÉGI TÉTELSOR KÍSÉRLETEI

FIZIKA KÖZÉPSZINTŐ ÉRETTSÉGI TÉTELSOR KÍSÉRLETEI FIZIKA KÖZÉPSZINTŐ ÉRETTSÉGI TÉTELSOR KÍSÉRLETEI 2011 Barabás Péter AZ EGYENLETESEN GYORSULÓ MOZGÁS VIZSGÁLATA Lejtın leguruló golyó (vagy kiskocsi) gyorsulásának mérése különbözı meredekség esetén. hosszú

Részletesebben

HITELESÍTÉSI ELŐÍRÁS HE 24-2012

HITELESÍTÉSI ELŐÍRÁS HE 24-2012 HITELESÍTÉSI ELŐÍRÁS GÉPJÁRMŰ-GUMIABRONCSNYOMÁS MÉRŐK HE 24-2012 TARTALOMJEGYZÉK 1. AZ ELŐÍRÁS HATÁLYA... 5 2. MÉRTÉKEGYSÉGEK, JELÖLÉSEK... 6 2.1 Használt mennyiségek... 6 2.2 Jellemző mennyiségi értékek

Részletesebben

MEGOLDÁS a) Bernoulli-egyenlet instacioner alakja: p 1 +rgz 1 =p 0 +rgz 2 +ra ki L ahol: L=12m! z 1 =5m; z 2 =2m Megoldva: a ki =27,5 m/s 2

MEGOLDÁS a) Bernoulli-egyenlet instacioner alakja: p 1 +rgz 1 =p 0 +rgz 2 +ra ki L ahol: L=12m! z 1 =5m; z 2 =2m Megoldva: a ki =27,5 m/s 2 2. FELADAT (6p) / A mellékelt ábrán látható módon egy zárt, p t nyomású tartályra csatlakozó ÆD=50mm átmérőjű csővezeték 10m hosszú vízszintes szakasz után az utolsó 2 méteren függőlegesbe fordult. A cső

Részletesebben

Különféle erőhatások és erőtörvényeik (vázlat)

Különféle erőhatások és erőtörvényeik (vázlat) Különféle erőhatások és erőtörvényeik (vázlat) 1. Erőhatás és erőtörvény fogalma. Erőtörvények a) Rugalmas erő b) Súrlódási erő Tapadási súrlódási erő Csúszási súrlódási erő Gördülési súrlódási erő c)

Részletesebben

S T A T I K A. Az összeállításban közremûködtek: Dr. Elter Pálné Dr. Kocsis Lászlo Dr. Ágoston György Molnár Zsolt

S T A T I K A. Az összeállításban közremûködtek: Dr. Elter Pálné Dr. Kocsis Lászlo Dr. Ágoston György Molnár Zsolt S T A T I K A Ez az anyag az "Alapítvány a Magyar Felsôoktatásért és Kutatásért" és a "Gépészmérnök Képzésért Alapítvány" támogatásával készült a Mûszaki Mechanikai Tanszéken kísérleti jelleggel, hogy

Részletesebben

Méréssel kapcsolt 3. számpélda

Méréssel kapcsolt 3. számpélda Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat

Részletesebben