Egyszerű áramkörök árama, feszültsége, teljesítménye

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Egyszerű áramkörök árama, feszültsége, teljesítménye"

Átírás

1 Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez képest, - a fogyasztott P hatásos teljesítény a pozitív és a terelt a negatív, - az induktív fogyasztó Q eddő teljesíténye pozitív, a kapacitívé negatív Ohos ellenállás Váltakozó feszültségre kapcsolt ellenállás feszültségesése inden pillanatban egyensúlyt tart a hálózati (táp)feszültséggel Váltakozó feszültségforrásra kapcsolt ellenállás áraköri vázlata -=0 = Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: ut it = = sinω t = I sinω t, itt I = Ohos ellenálláson az ára fázisban van a feszültséggel, ϕ i =ϕ u, így ϕ=0 eff Az ára és a feszültség effektív értéke közötti összefüggés: Ieff =, vagy I = p(t) Az ellenállás feszültségének, áraának és teljesítényének időfüggvénye A teljesítény pillanatértéke: pt = ut it = sinω t I sinω t= I sin ω t=

2 I Icosω t I = = ( cosω t) A teljesítény egy középérték körül kétszeres frekvenciájú koszinusz függvény szerint leng Előjele indig pozitív, tehát az energiaáralás iránya inden pillanatban azonos A teljesítény középértéke: P I = = eff Ieff = I = = I Az ellenállás teljesíténye hatásos teljesítény, értékegysége [P]=W watt Induktivitás Ideális (ellenállás entes) induktivitásra (tekercsre) kapcsolt váltakozó feszültség hatására folyó ára váltakozó ágneses teret hoz létre A váltakozó ágneses tér az induktivitáson önindukciós feszültséget indukál Ez a feszültség inden pillanatban egyensúlyt tart a hálózati (táp)feszültséggel Váltakozó feszültségforrásra kapcsolt induktivitás áraköri vázlata ut di t = 0 ut = di t dt dt Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it = tdt = t = I t = I t sin ω π cosω cosω sin ω ω, itt I = ω π Az ára 90 -os fáziskéséssel követi a feszültséget ϕi = ϕ = Az ára és a feszültség effektív értéke közötti összefüggés: I eff eff =, vagy I ω = ω X f Az induktív reaktancia frekvencia-függése ω=x - az induktív ellenállás (induktív reaktancia), értékegysége [X ]=Ω oh Az induktív reaktancia X =ω=πf arányos a frekvenciával és az induktivitással A tekercsben indukálódó feszültséget az induktív ellenálláson eső feszültség helyettesíti

3 p(t) Az induktivitás feszültségének, áraának és teljesítényének időfüggvénye A teljesítény pillanatértéke: pt = ut it = sinω t I cosω t= I kétszeres frekvenciájú szinusz függvény szerint változik A tekercsben negyed periódus alatt (pozitív szakasz) felhalozódó energia a következő negyed periódus alatt (negatív szakasz) visszaáralik a tápforrásba A tekercsben energia ne használódik fel, unkát ne végez, ezért eddő teljesíténynek nevezik és a axiális (csúcs) értékével jellezik Az ún fogyasztói pozitív irányok ellett az induktív eddő teljesítény pozitív előjelű: I Q = = eff Ieff = I = = I X, értékegysége [Q]=VAr voltaper reaktív X A eddő teljesítény fenti értelezése csak szinuszos táplálás esetén igaz Neszinuszos vagy többhulláú táplálásnál járulékos veszteségek jelennek eg, ezeket gyakran a eddővel összevonják, pl ipulzus-szerű táplálásnál 3 Kapacitás Egy kondenzátorban tárolt töltés inden pillanatban arányos a fegyverzetei közötti feszültséggel: q(t)= Ha a feszültség változik, változik a tárolt töltés és a töltés változásának egfelelő ára folyik az elektródokhoz (vezetési ára), illetve a dielektrikuon át (eltolási ára) dq t it = = du t dt dt sin ω t Váltakozó feszültségforrásra kapcsolt kapacitás áraköri vázlata 3

4 Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it du t d sinω t π = = = t = t + I t dt dt = + π ω cosω ω sin ω sin ω, itt I = ω = = X ω Az ára 90 -kal siet a feszültséghez képest ϕ ϕ π i = = Az ára és a feszültség effektív értéke közötti összefüggés: I eff =ω eff =X eff, vagy I=X X f ω A kapacitív reaktancia frekvencia-függése = X a kapacitív ellenállás (kapacitív reaktancia), értékegysége [X ]=Ω oh A kapacitív reaktancia X = = fordítottan arányos a frekvenciával és a kapacitással ω π f p(t) A kapacitás feszültségének, áraának és teljesítényének időfüggvénye A teljesítény pillanatértéke: pt = ut it = sinω t I cosω t= I sin ω t 4

5 kétszeres frekvenciájú szinusz függvény szerint változik A kondenzátorban az ára által szállított töltések építik fel a villaos teret A negyed periódus alatt (pozitív szakasz) felépülő villaos tér a következő negyed periódus alatt lebolik (negatív szakasz) A kondenzátorban energia ne használódik fel, unkát ne végez, ezért eddő teljesíténynek nevezik és a axiális (csúcs) értékével jellezik Az ún fogyasztói pozitív irányok ellett a kapacitív eddő teljesítény negatív előjelű: I Q = = eff Ieff = I = = I X X 4 Soros - kör A sorosan kapcsolt ellenállás feszültségesése és az induktivitás önindukciós feszültsége inden pillanatban egyensúlyt tart a tápfeszültséggel: ut u t u t ut it di t l = = 0 ut = it + di t dt dt X Váltakozó feszültségforrásra kapcsolt soros - kör vázlata A soros árakör eleein azonos az ára, ha szinusz függvény szerint változik, =I sinωt, ϕ i =0, akkor az előző egyenletből: = I sinωt+i ωcosωt=i (sinωt+ωcosωt)=i Zsin(ωt+ϕ u )= sin(ωt+ϕ u ) itt =I Z és sinωt+ωcosωt=sinωt+x cosωt= Zsin(ωt+ϕ u ), ωt=0 esetén X = Zsinϕ u, ωt=π/ esetén = Zsin(π/+ϕ u )= Zcosϕ u Az utóbbi két egyenlet hányadosából: X = tgϕ u, ϕ u = arctg X (ϕ u indig pozitív), a két egyenlet négyzetének összegéből: +X = Z Z = + X az árakör látszólagos ellenállása, ipedanciája, [Z]=Ω oh Z = + X X =ω ϕ Az ellenállás, az X ipedancia és a Z reaktancia összefüggésének illusztrálása 5

6 Az ohos-induktív árakörben az feszültség ϕ u szöggel siet az árahoz képest Mivel ϕ i =0, az ára fázisszöge a feszültséghez képest ϕ=ϕ i -ϕ u =-ϕ u, az ára késik a feszültséghez képest, ϕ = arctg X Z Aennyiben = sinωt, ϕ u =0, akkor it = sin( ω t ) ϕ, Z = = I I u (t) u (t) Soros - kör áraának és feszültségeinek időfüggvénye A teljesítény pillanatértéke: pt = ut it = I sinω t+ X cosω t I sinω t= ( ) cos ω t sin ω t = Isin ω t + IX cosω t sinω t = I + IX p(t) p (t) p (t) Soros - kör áraának és teljesítényeinek időfüggvénye A teljesítény középértékének különböző alakjai: I P I I I = = eff = = = I = I cosϕ, Z + X 6

7 a eddő teljesítény: Q I X I X I X I X X = = eff = = = I = I sinϕ Z + X A unkát (pl hőfejlesztést, echanikai elozdulást) végző hatásos teljesítény kisebb, int az egyenáraú körben száított I szorzat Ezt a szorzatot látszólagos teljesíténynek nevezik: S= eff I eff =I, [S]=VA voltaper A hatásos, a eddő és a látszólagos teljesítény közötti összefüggés az eddigiek alapján: P=Scosϕ, Q=Ssinϕ, illetve P +Q =S S Q ϕ u P A P hatásos, a Q eddő és az S látszólagos teljesítény összefüggésének illusztrálása A villaos elektroechanikai eszközök, berendezések (pl villaos forgógépek) helyettesítő áraköreiben a hatásos teljesítényt (echanikai teljesítény, súrlódási veszteség, vasveszteség stb) egyenértékű ohos veszteségi teljesíténnyel képezik, egfelelő nagyságú ellenállás beiktatásával A fogyasztott hatásos teljesítény a hővé vagy ás fajta energiává alakuló teljesítény középértéke, ai a tápforrásba ne tér vissza 5 Soros - kör A soros - körhöz hasonló képpen száítható Az ellenállás feszültségesése és a kondenzátoron az ára (töltésváltozás) okozta feszültség inden pillanatban egyensúlyt tart a tápfeszültséggel: ut u t uc t = ut it idt = 0 ut = it + idt X Váltakozó feszültségforrásra kapcsolt soros - kör vázlata Ha az ára szinusz függvény szerint változik, =I sinωt, ϕ i =0, akkor az előző egyenletből: I ut = Isinω t cosω t = IZsin( ω t + ϕu) = sin( ω t + ϕ u) ω itt =I Z és 7

8 I sinω t cosω t = sinω t X cosω t = Zsin ω t + ϕ ω ( ) ωt=0 esetén -X = Zsinϕ u, ωt=π/ esetén = Zsin(π/+ϕ u )= Zcosϕ u X Az utóbbi két egyenlet hányadosából: = tgϕ u, vagy ásképpen: X X ϕ u = arctg = arctg (ϕ u indig negatív), a két egyenlet négyzetének összegéből: +X = Z A fázisszög száításánál az X kapacitív reaktancia előjele negatív Z = + X az árakör látszólagos ellenállása, ipedanciája u ϕ u -X =ω Z = + X Az ellenállás, az X ipedancia és a Z reaktancia összefüggésének illusztrálása Az ohos-kapacitív árakörben az feszültség ϕ u szöggel késik az árahoz képest Mivel ϕ i =0, az ára fázisszöge a feszültséghez képest ϕ=ϕ i -ϕ u =-ϕ u, az ára siet a feszültséghez képest, ϕ = arctg X Z Aennyiben = sinωt, ϕ u =0, akkor it = sin( ω t + ) ϕ, Z = = I I u (t) u (t) Soros - kör áraának és feszültségeinek időfüggvénye 8

9 A teljesítény pillanatértéke: pt = ut it = I sinω t X cosω ti sinω t= ( ) cos ω t sin ω t = Isin ω t IX cosω t sinω t = I IX Az ellenállás teljesítényének középértéke a soros - körhöz hasonló képpen: I P I I I = = eff = = = I = I cosϕ, Z + X a eddő teljesítény különböző alakjai: I X Q I X I X I X = = eff = = = I Z X + X = I sinϕ p (t) p(t) p (t) Soros - kör áraának és teljesítényeinek időfüggvénye 6 Soros -- kör A soros - és - körhöz hasonló képpen száítható Az ellenállás feszültségesése, az induktivitás önindukciós feszültsége és a kondenzátoron az ára (töltésváltozás) okozta feszültség inden pillanatban egyensúlyt tart a tápfeszültséggel: u t u t u t u t u t i t di t dt idt = = 0, ebből ut = it + di t dt + idt X X Váltakozó feszültségforrásra kapcsolt soros -- kör vázlata Ha az ára szinusz függvény szerint változik, =I sinωt, ϕ i =0, akkor az előző egyenletből: I I ut = Isinω t+ Iω cosω t cosω t = I sinω t + ω cosω t ω ω 9

10 [ sinω ( ) cosω ] ( sinω cosω ) = I t + X X t = I t X t = =I Zsin(ωt+ϕ u )= sin(ωt+ϕ u ), itt ϕ u - az eredő feszültség fázishelyzete a árahoz képest, X = ω = X X - az eredő reaktancia ω Z = + X X=X - X ϕ u Az ellenállás, az X ipedancia és a Z reaktancia összefüggésének illusztrálása Az előzőekhez hasonlóan az eredő ipedancia: Z = +X, illetve Z = + X, X X X X X X és a fázisszög tgϕ u = =, vagy ϕ u = arctg = arctg u (t) u (t) u (t) Soros -- kör áraának és feszültségeinek időfüggvénye Mivel ϕ i =0, az ára fázisszöge a feszültséghez képest ϕ=ϕ i -ϕ u =-ϕ u : =I sin(ωt-ϕ) ϕ < 0, ha X > 0, azaz ω > ω - az eredő ára késik a feszültséghez képest (- jellegű), ϕ = 0, ha X = 0, azaz ω = ω - az eredő ára fázisban van a feszültséggel ( jellegű), ϕ > 0, ha X < 0, azaz ω < ω - az eredő ára siet a feszültséghez képest (- jellegű), 0

11 A teljesítény pillanatértéke: pt = ut it = I sinω t+ X X cosω ti sinω t= [ ] ( ) cos ω t sin ω t = Isin ω t + IX cosω t sinω t = I IX, részletezve: cos ω t az ellenállás teljesíténye: p t = I, sin ω t az induktivitás teljesíténye: p t = I X, sin ω t a kapacitás teljesíténye: p t = I X A p (t) hatásos teljesítény inden pillanatban pozitív, középértéke P=I p (t) és p (t) kétszeres frekvenciával leng, középértéke zérus, az eredőjük a kettő összege: sin ω t qt = p t + p t = I( X X) p(t) p (t) p (t) p (t) Soros -- kör áraának és teljesítényeinek időfüggvénye Az eredő eddő teljesítény: ( ) ( ) Q I = X X = I X X = I X A eddő teljesítény egyik része az induktivitás és a kapacitás között leng, a ásik részét az árakör a táphálózatból veszi fel és oda juttatja vissza Induktivitás és kapacitás egyidejű jelenléte esetén az induktivitás ágneses energiája (vagy annak egy része) átalakul a kapacitás elektrosztatikus energiájává (vagy annak egy részévé) Aennyiben az induktivitás és kapacitás energiájának axiua egegyezik, ha az induktivitásban ugyanakkora energia halozódik fel, int a kapacitásban, akkor ez a két áraköri ele ellátja egyást energiával és az -- árakör a táphálózatból ne vesz fel eddő teljesítényt és ne is ad oda le Ez a rezonancia jelensége A rezonanciára éretezett árakört rezgőkörnek nevezik Soros árakörben soros rezonanciáról és soros rezgőkörről beszélünk Jelen árakörben a rezonancia feltétele: X = ω = = ω X Így az eredő ipedancia: Z= (ivel X -X =0), az ára és a feszültség fázisban van, a tápforrásból nincs eddő teljesítény felvétel Az induktivitás energiája teljes egészében átalakul kapacitív energiává és fordítva Az induktivitáson és a kapacitáson eső feszültség inden

12 pillanatban egegyezik egyással és ellentétes előjelű, a kettő eredője zérus, így rövidzárként viselkedik A pillanatértékekre: u (t)=x =-X =u (t) ezért u (t)+u (t)=0, illetve p (t)=u (t)=-u (t)=-p (t), p (t)+p (t)=0 A rezonancia jellezője a rezonancia frekvencia, ainek jelölése f r, f 0 vagy f s, vagy a rezonancia körfrekvencia ω r, ω 0 vagy ω s Száításuk a reaktanciák egyezése alapján: ω 0 =, aiből ω 0 = vagy ω 0 = és f0 = ω 0 π Az összefüggésekből láthatóan akár az induktivitás, akár a kapacitás növelésével a rezonancia frekvencia csökken, fordított feladatnál pedig inél alacsonyabb a szükséges rezonancia frekvencia, annál nagyobb induktivitás és kapacitás értékeket kell választani X X f f 0 A rezonancia frekvencia értelezése 7 Párhuzaos - kör A feszültség indkét eleen azonos, ut i t di t = =, dt az áraok összeadódnak a csoóponti törvény szerint =i (t)+i (t), it = ut + utdt i (t) i (t) X Váltakozó feszültségforrásra kapcsolt párhuzaos - kör vázlata Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it = sinω t cosω t = ( Gsinω t B cosω t) = ω ( ) sin( ) = Y sin ω t + ϕ = I ω t + ϕ Itt ϕ=ϕ i - a fázisszög, az eredő ára fázishelyzete a feszültséghez képest,

13 B = ω - az induktív vezetés (induktív szuszceptancia), értékegysége [B ]=S Sieens i (t) i (t) Párhuzaos - kör feszültségének és áraainak időfüggvénye Gsinωt-B cosωt=ysin(ωt+ϕ), ωt=0 esetén -B = Ysinϕ, ωt=π/ esetén G= Ysin(π/+ϕ u )= Ycosϕ Az utóbbi két egyenlet hányadosából: B = tgϕ, ebből G ω ϕ = = = arctg B arctg arctg, G ω a két egyenlet négyzetének összegéből: G +B = Y Y = G + B az árakör látszólagos vezetése, adittanciája, [Y]=S Sieens A párhuzaos - kör fázisszöge negatív, az eredő ára ϕ szöggel késik a feszültséghez képest ϕ G - B Y = G + B A G konduktivitás, a B szuszceptancia és az Y adittancia összefüggésének illusztrálása 3

14 fordítottan arányos a frekvenciával és az in- Az induktív szuszceptancia B = = ω π f duktivitással B f Az induktív szuszceptancia frekvencia-függése A teljesítény pillanatértéke: pt = ut it = Gsinω t B cosω t sinω t= ( ) cos ω t sin ω t = Gsin ω t B cosω t sinω t = G B, részletezve: cos ω t az ellenállás teljesíténye: p t = G, sin ω t az induktivitás teljesíténye: p t = B p(t) p (t) p (t) Párhuzaos - kör feszültségének és teljesítényeinek időfüggvénye A teljesítény középértékének különböző alakjai: P G eff = = = = I cosϕ, a eddő teljesítény: Q B eff = = = = I sin( ϕ ) X X 4

15 8 Párhuzaos - kör A feszültség indkét eleen azonos, ut = i t = i t dt, az áraok összeadódnak a csoóponti törvény szerint =i (t)+ i (t) vagy ut du t it = + u t dt + dt i (t) i (t) X Váltakozó feszültségforrásra kapcsolt párhuzaos - kör vázlata Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it = sinω t + ω cosω t = ( Gsinω t + B cosω t) = = Ysin ω t + ϕ = I sin ω t + ϕ ( ) ( ) i (t) i (t) Párhuzaos - kör feszültségének és áraainak időfüggvénye Itt ϕ=ϕ i - a fázisszög, az eredő ára fázishelyzete a feszültséghez képest, B =ω - a kapacitív szuszceptancia ω ϕ = arctg B = = ω G arctg arctg, a párhuzaos - kör fázisszöge pozitív, az eredő ára ϕ szöggel siet a feszültséghez képest 5

16 Y = G + B B ϕ G A G konduktivitás, a B szuszceptancia és az Y adittancia összefüggésének illusztrálása A kapacitív szuszceptancia arányos a frekvenciával és a kapacitással B f A kapacitív szuszceptancia frekvencia-függése A teljesítény pillanatértéke: pt = ut it = Gsinω t+ B cosω t sinω t= ( ) cos ω t sin ω t = Gsin ω t + B cosω t sinω t = G + B, részletezve: p(t) p (t) p (t) Párhuzaos - kör feszültségének és teljesítényeinek időfüggvénye cos ω t az ellenállás teljesíténye: p t = G, 6

17 sin ω t az induktivitás teljesíténye: p t = B A teljesítény középértékének különböző alakjai: P G eff = = = = I cosϕ, a eddő teljesítény: B eff Q = = = = I sin( ϕ ) X X 9 Párhuzaos -- kör A feszültség indháro eleen azonos ut i t di t = dt i t dt = =, az áraok összeadódnak a csoóponti törvény szerint =i (t)+i (t)+i (t) vagy ut du t it = + u t dt + dt i (t) i (t) i (t) X X Váltakozó feszültségforrásra kapcsolt párhuzaos -- kör vázlata Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it = sinω t cosω t + ω cosω t = sinω t + ω cosω t = ω ω ( sin cos ) sin( ) sin( ) = G ω t + B ω t = Y ω t + ϕ = I ω t + ϕ Y = G + B B= B - B ϕ G A G konduktivitás, a B szuszceptancia és az Y adittancia összefüggésének illusztrálása Itt ϕ - a fázisszög, az eredő ára fázishelyzete a feszültséghez képest, 7

18 B = ω = B B - az eredő szuszceptancia ω Gsinωt+Bcosωt=Ysin(ωt+ϕ), ωt=0 esetén B= Ysinϕ, ωt=π/ esetén G= Ysin(π/+ϕ u )= Ycosϕ Az utóbbi két egyenlet hányadosából: B G = tgϕ, ebből ω ω ω ϕ = arctg B = = G arctg arctg, ω a két egyenlet négyzetének összegéből: G +B = Y Y = G + B az árakör látszólagos vezetése, adittanciája, [Y]=S Sieens i (t) i (t) i (t) Párhuzaos -- kör feszültségének és áraainak időfüggvénye Gsinωt+Bcosωt=Ysin(ωt+ϕ), ωt=0 esetén B= Ysinϕ, ωt=π/ esetén G= Ysin(π/+ϕ u )= Ycosϕ Az utóbbi két egyenlet hányadosából: B G = tgϕ, ebből ω ω ω ϕ = arctg B = = G arctg arctg, ω a két egyenlet négyzetének összegéből: G +B = Y Y = G + B az árakör látszólagos vezetése, adittanciája Mivel ϕ u =0, az ára fázisszöge a feszültséghez képest ϕ > 0, ha B > 0, azaz ω > ω - az eredő ára siet a feszültséghez képest (- jellegű), 8

19 ϕ = 0, ha B = 0, azaz ω = ω - az eredő ára fázisban van a feszültséggel ( jellegű), ϕ < 0, ha B < 0, azaz ω < ω - az eredő ára késik a feszültséghez képest (- jellegű) A teljesítény pillanatértéke: pt = ut it = Gsinω t+ Bcosω t sinω t= ( ) cos ω t sin ω t = Gsin ω t + Bcosω t sinω t = G + B, részletezve: cos ω t az ellenállás teljesíténye: p t = G, sin ω t az induktivitás teljesíténye: p t = B, sin ω t a kapacitás teljesíténye: p t = B A p (t) hatásos teljesítény inden pillanatban pozitív, középértéke P=I p (t) és p (t) kétszeres frekvenciával leng, középértéke zérus, az eredőjük a kettő összege: sin ω t qt = p t + p t = ( B B) p(t) p (t) p (t) p (t) Párhuzaos -- kör feszültségének és teljesítényeinek időfüggvénye A teljesítény középértékének különböző alakjai: P G eff = = = = I cosϕ, a eddő teljesítény: ( ) Q B B = = I sin( ϕ ) Párhuzaos árakörben párhuzaos rezonanciáról és párhuzaos rezgőkörről beszélünk Jelen árakörben a rezonancia feltétele: B = ω = = B, vagy X =X ω 9

20 ezonancia esetén Y=G (ivel B -B =0), az ára és a feszültség fázisban van, a tápforrásból nincs eddő teljesítény felvétel Az induktivitás energiája teljes egészében átalakul kapacitív energiává és fordítva Az induktivitáson és a kapacitáson folyó ára inden pillanatban egegyezik egyással és ellentétes előjelű, a kettő eredője zérus, így szakadásként viselkedik A párhuzaos rezgőkör sajátfrekvenciája és sajátkörfrekvenciája ugyanúgy száítható, int a soros körben 0

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény.

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény. 11/1. Teljesítén száítása szinuszos áraú álózatokban. Hatásos, eddô és látszólagos teljesítén. Szinuszos áraú álózatban az ára és a feszültség idıben változik. Íg a pillanatni teljesítén is változik az

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

3. mérés. Villamos alapmennyiségek mérése

3. mérés. Villamos alapmennyiségek mérése Budapesti Műszaki és Gazdaságtudoányi Egyete Autoatizálási és Alkalazott Inforatikai Tanszék Elektrotechnika Alapjai Mérési Útutató 3. érés Villaos alapennyiségek érése Dr. Nagy István előadásai alapján

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

MUNKAANYAG. Danás Miklós. Váltakozó áramú hálózatok. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Danás Miklós. Váltakozó áramú hálózatok. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Danás Miklós Váltakozó áramú hálózatok A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

2. ábra Változó egyenfeszültségek

2. ábra Változó egyenfeszültségek 3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

2. ábra Változó egyenfeszültségek

2. ábra Változó egyenfeszültségek 3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Elektrotechnika- Villamosságtan

Elektrotechnika- Villamosságtan Elektrotechnika- Villamosságtan Általános áramú hálózatok 1 Magyar Attila Tömördi Katalin Alaptörvények-áttekintés Alaptörvények Áram, feszültség, teljesítmény, potenciál Források Ellenállás Kondenzátor

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Ergépek csoportosítása

Ergépek csoportosítása Ergépek csoportosítása 1 2 3 4 5 6 Villamos gépek u = U sinωt U = U max eff U = max 2 7 8 u = R I max sinωt = U max sinωt ohmos ellenállás 9 induktivitás u = U max sin( ωt + 90 0 ) kapacitás u = U sin(

Részletesebben

Ellenáll. llások a. ltség. A szinuszosan váltakozv U = 4V U = 4V I = 0,21A

Ellenáll. llások a. ltség. A szinuszosan váltakozv U = 4V U = 4V I = 0,21A A szinuszosan váltakozv ltakozó feszülts ltség Ellenáll ok a váltakozó áramú körben = Összeállította: CSSZÁ ME SZTE, Ságvári E. Gyakorló Gimnázium SZEGED, 006. május ( = sin( 314, 16 nduktív v ellenáll

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

VÁLTAKOZÓ ÁRAM JELLEMZŐI

VÁLTAKOZÓ ÁRAM JELLEMZŐI VÁLTAKOZÓ ÁA JELLEZŐI Ohmos fogyasztók esetén - a feszültség és az áramerősség fázisban van egymással Körfrekvencia: ω = π f I eff = 0,7 max I eff = 0,7 I max Induktív fogyasztók esetén - az áramerősség

Részletesebben

Egyfázisú aszinkron motor

Egyfázisú aszinkron motor AGISYS Ipari Keverés- és Hajtástecnika Kft. Egyfázisú aszinkron otor 1 Egy- és árofázisú otorok főbb jellegzetességei 1.1 Forgórész A kalickás aszinkron otorok a forgórész orony alakjának kialakításától

Részletesebben

Elektrotechnika Feladattár megoldások

Elektrotechnika Feladattár megoldások mpresszum Szerző: auscher stván Szakmai lektor: Érdi Péter Módszertani szerkesztő: Gáspár Katalin Technikai szerkesztő: Bánszki András Készült a TÁMOP-..-7/-F-8-4 azonosítószámú projekt keretében. A projekt

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

Négypólusok helyettesítő kapcsolásai

Négypólusok helyettesítő kapcsolásai Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

ELEKTROTECHNIKA. Áramkör számítási példák és feladatok. MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék

ELEKTROTECHNIKA. Áramkör számítási példák és feladatok. MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék ELEKTROTECHNIKA Áramkör számítási példák és feladatok Összeállította: Dr. Radács László Gépészmérnöki és Informatikai Kar Villamosmérnöki

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T) - 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására

Részletesebben

4. ASZINKRON MOTOROS HAJTÁSOK A villamos hajtások 2/3 része aszinkron motoros hajtás. Az aszinkron motorok elterjedésének

4. ASZINKRON MOTOROS HAJTÁSOK A villamos hajtások 2/3 része aszinkron motoros hajtás. Az aszinkron motorok elterjedésének Villaos hajtások AZNKON OTOO HAJTÁOK 4. AZNKON OTOO HAJTÁOK A villaos hajtások /3 észe aszinkon otoos hajtás. Az aszinkon otook eltejedésének okai: - közvetlenül csatlakoztathatók háo fázisú táphálózata,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

6. fejezet: Transzformátorok

6. fejezet: Transzformátorok 6. Fejezet Transzformátorok Transzformátorok/1 TARTALOMJEGYZÉK 6. FEJEZET TRANSZFORMÁTOROK 1 6.1. Egyfázisú transzformátorok 4 6.1.1. Működési elv és helyettesítő kapcsolás 4 6.1.. Fázorábra. Feszültségkényszer.

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei 10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

A mágneses kölcsönhatás

A mágneses kölcsönhatás TÓTH A.: Mágneses erőtér/1 (kibővített óravázlat) 1 A ágneses kölcsönhatás Azt a kölcsönhatást, aelyet később ágnesesnek neveztek el, először bizonyos ásványok darabjai között fellépő a gravitációs és

Részletesebben

Az elektromos töltések eloszlása atomokban, molekulákban, ionokon belül és a vegyületekben. Vezetők, félvezetők és szigetelők molekuláris szerkezete.

Az elektromos töltések eloszlása atomokban, molekulákban, ionokon belül és a vegyületekben. Vezetők, félvezetők és szigetelők molekuláris szerkezete. Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 11.a Évfolyam: 11. 36 hét, heti 2 óra, évi 72 óra Ok Dátum: 2013.09.21

Részletesebben

Váltakozó áram (Vázlat)

Váltakozó áram (Vázlat) Váltakozó áram (Vázlat) 1. Váltakozó áram fogalma és előállítása. A váltakozó áram pillanatnyi és effektív értékei 3. Ellenállások váltakozó áramú áramkörben a) Ohmos ellenállás b) Induktív ellenállás

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Elektrotechnika jegyzet

Elektrotechnika jegyzet SZÉCHENY STVÁN EGYETEM ATOMATZÁLÁS TANSZÉK Elektrotechnika jegyzet Elektrotechnika jegyzet Készítette: dr. Hodossy László főiskolai docens előadásai alapján Tomozi György Győr, 4. - - Tartalomjegyzék.

Részletesebben

Összetett hálózat számítása_1

Összetett hálózat számítása_1 Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint a körben folyó áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás felhasználásával

Részletesebben

2013. április 15. NÉV:... NEPTUN-KÓD:...

2013. április 15. NÉV:... NEPTUN-KÓD:... VILLAMOS ENERGETIKA A CSOPORT 2013. április 15. NÉV:... 390.4C, 160.2A, 104H, ---, 1.3E, 201.4C, 302.2G, 205.1G, 210.1B, 211.1B NEPTUN-KÓD:... 380.1A,???, 80.1B, 284A Terem és ülőhely:... 1. 2. 3. 4. 5.

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben

Háromfázisú aszinkron motorok

Háromfázisú aszinkron motorok Háromfázisú aszinkron motorok 1. példa Egy háromfázisú, 20 kw teljesítményű, 6 pólusú, 400 V/50 Hz hálózatról üzemeltetett aszinkron motor fordulatszáma 950 1/min. Teljesítmény tényezője 0,88, az állórész

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II. Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

Vízműtani számítás. A vízműtani számítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha]

Vízműtani számítás. A vízműtani számítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha] Vízűtani száítás A vízűtani száítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha] ahol ip a p visszatérési csapadék intenzitása, /h a a 10 perces időtartaú

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

III. Áramkör számítási módszerek, egyenáramú körök

III. Áramkör számítási módszerek, egyenáramú körök . Árakör száítás ódszerek, egyenáraú körök A vllaos ára a vllaos töltések rendezett áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb

Részletesebben

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 10. 1.1. Egy öntözőrendszer átlagosan 14,13 A áramot vesz fel 0,8 teljesítménytényező mellett a 230 V fázisfeszültségű hálózatból.

Részletesebben

1. mérés: Indukciós fogyasztásmérő hitelesítése wattmérővel

1. mérés: Indukciós fogyasztásmérő hitelesítése wattmérővel 1. mérés: ndukciós fogyasztásmérő hitelesítése wattmérővel 1.1. A mérés célja ndukciós fogyasztásmérő hibagörbéjének felvétele a terhelés függvényében wattmérő segítségével. 1.2. A méréshez szükséges eszközök

Részletesebben

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v - III. 1- ALAKÍTÁSTECHNIKA Előadásjegyzet Prof Ziaja György III.rész. ALAKÍTÓ GÉPEK Az alakítási folyaatokhoz szükséges erőt és energiát az alakító gépek szolgáltatják. Az alakképzés többnyire az alakító

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

VILLAMOS ENERGETIKA ELŐVIZSGA - A csoport

VILLAMOS ENERGETIKA ELŐVIZSGA - A csoport VILLAMOS ENERGETIKA ELŐVIZSGA - A csoport MEGOLDÁS 2014. május 21. 1.1. Tekintsünk egy megoszló terheléssel jellemezhető hálózatot! A hosszegységre eső áramfelvétel i m = 0,2 A/m fázisonként egyenlő (cosϕ

Részletesebben

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció Fizika. tatárgy 4. előadásáak vázlata MÁGNESES NDKÓ, VÁLÓÁAM, VÁLÓÁAMÚ HÁLÓAOK. Mágeses idukció: Mozgási idukció B v - Vezetőt elmozdítuk mágeses térbe B-re merőlegese, akkor a vezetőbe áram keletkezik,

Részletesebben

2014. április 14. NÉV:...

2014. április 14. NÉV:... VILLAMOS ENERGETIKA A CSOPORT 2014. április 14. NÉV:... NEPTUN-KÓD:... Terem és ülőhely:... 1. 2. 3. 4. 5. 1. feladat 10 pont 1.1. Az ábrán látható transzformátor névleges teljesítménye 125 MVA, százalékos

Részletesebben

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!)

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1 A XXII. Öveges József fizika tanulányi verseny első fordulójának feladatai és azok egoldásának pontozása 2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1. Egy odellvasút ozdonya egyenletesen

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

A fázismoduláció és frekvenciamoduláció közötti különbség

A fázismoduláció és frekvenciamoduláció közötti különbség Fázismoduláció (PM) A fázismoduláció és frekvenciamoduláció közötti különbség A fázismoduláció, akárcsak a frekvenciamoduláció, a szögmoduláció kategóriájába sorolható. Mivel a modulációs index és a fázislöket

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

ELŐADÁS AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS

ELŐADÁS AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS ANALÓG ELEKTRONIKA ELŐADÁS 2011-2012 tanév, II. félév AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS ÓRASZÁMOK AUTOMATIZÁLÁS Á ÉS IPARI INFORMATIKA hetente 2 óra előadás, 2 óra labor kéthetente

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

2. ábra Soros RL- és soros RC-kör fázorábrája

2. ábra Soros RL- és soros RC-kör fázorábrája SOOS C-KÖ Ellenállás, kondenzátor és tekercs soros kapcsolása Az átmeneti jelenségek vizsgálatakor soros - és soros C-körben egyértelművé vált, hogy a tekercsen késik az áram a feszültséghez képest, a

Részletesebben

Mechatronika Modul 5: Mechatronikus komponensek

Mechatronika Modul 5: Mechatronikus komponensek Mechatronika Modul 5: Mechatronikus komponensek Jegyzet (Elképzelés) Készítették: Wojciech Kwaśny Andrzej Błażejewski Wroclaw-i Műszaki Egyetem, Gyártástechnológiai és Automatizálási Intézet, engyelország

Részletesebben

VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév)

VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév) 1 VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév) 1. Ismertesse a villamosenergia-hálózat feladatkrk szerinti felosztását a jellegzetes feszültségszinteket és az azokhoz tartozó átvihető teljesítmények

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

energiahatékonys konyság Hunyadi Sándor energiagazdálkodási szakmérnök

energiahatékonys konyság Hunyadi Sándor energiagazdálkodási szakmérnök Fázisjavítás és energiahatékonys konyság Hunyadi Sándor energiagazdálkodási szakmérnök Hogyan járul j hozzá a fázisjavf zisjavítás s a Virtuális Erőmű Programhoz? Fázisjavítás megközelítései: Tarifális

Részletesebben

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2013. január 3.

Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2013. január 3. Név, felvételi azonosító, Neptun-kód: VI pont(45) : Csak felvételi vizsga: csak záróvizsga: közös vizsga: Közös alapképzéses záróvizsga mesterképzés felvételi vizsga Villamosmérnöki szak BME Villamosmérnöki

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU HÁLÓZATOK MÉRETEZÉSE

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU HÁLÓZATOK MÉRETEZÉSE SZÉCHENY STÁN EGYETEM HTT://N.SZE.H HÁLÓZATOK MÉRETEZÉSE Marcsa Dániel illamos gépek és energetika 2013/2014 - őszi szemeszter Kisfeszültségű hálózatok méretezése A leggyakrabban kisfeszültségű vezetékek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport

VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport VLLAMOS ENERGETKA PÓTPÓTZÁRTHELY DOLGOZAT - A csoport 2013. május 22. NÉV:... NEPTN-KÓD:... Terem és ülőhely:... A dolgozat érdemjegye az összpontszámtól függően: 40%-tól 2, 55%-tól 3, 70%-tól 4, 85%-tól

Részletesebben

VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport

VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport MEGOLDÁS 2014. május 21. 1.1. Tekintsünk egy megoszló terheléssel jellemezhető hálózatot! A hosszegységre eső áramfelvétel i = 0,24 A/m fázisonként egyenlő

Részletesebben

EGYENÁRAMÚ GÉP VIZSGÁLATA Laboratóriumi mérési útmutató

EGYENÁRAMÚ GÉP VIZSGÁLATA Laboratóriumi mérési útmutató BUDAPESTI MÛSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Villamos gépek és hajtások csoport EGYENÁRAMÚ GÉP VIZSGÁLATA Laboratóriumi mérési útmutató

Részletesebben

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 2013. M E G O L D Á S A I ELSŐ FORDULÓ. A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I 2.

XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 2013. M E G O L D Á S A I ELSŐ FORDULÓ. A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I 2. XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 01. ELSŐ FORDULÓ M E G O L D Á S A I A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I. H H I H. H I H 4. I H H 5. H I I 6. H I H 7. I I I I 8. I I I 9.

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját!

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! 1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! A villamos áram a villamos töltések rendezett mozgása. A villamos áramerősség egységét az áramot vivő vezetők közti

Részletesebben

Elektromos áramkörök és hálózatok, Kirchhoff törvényei

Elektromos áramkörök és hálózatok, Kirchhoff törvényei TÓTH : Eletroos ára/ (ibővített óravázlat) Eletroos áraörö és hálózato, Kirchhoff törvényei gyaorlatban az eletroos ára ülönböző vezetőrendszereben folyi gen fontos, hogy az áraot fenntartó telepe iseretében

Részletesebben

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás FIZIKA Elekromágneses indukció, válakozó 6 március 14. 3. előadás FIZIKA II. 5/6 II. félév Áram ás mágneses ér egymásra haása Válakozó feszülség jellemzése FIZIKA II. 5/6 II. félév Lorenz erő mal ájár

Részletesebben