Egyszerű áramkörök árama, feszültsége, teljesítménye

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Egyszerű áramkörök árama, feszültsége, teljesítménye"

Átírás

1 Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez képest, - a fogyasztott P hatásos teljesítény a pozitív és a terelt a negatív, - az induktív fogyasztó Q eddő teljesíténye pozitív, a kapacitívé negatív Ohos ellenállás Váltakozó feszültségre kapcsolt ellenállás feszültségesése inden pillanatban egyensúlyt tart a hálózati (táp)feszültséggel Váltakozó feszültségforrásra kapcsolt ellenállás áraköri vázlata -=0 = Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: ut it = = sinω t = I sinω t, itt I = Ohos ellenálláson az ára fázisban van a feszültséggel, ϕ i =ϕ u, így ϕ=0 eff Az ára és a feszültség effektív értéke közötti összefüggés: Ieff =, vagy I = p(t) Az ellenállás feszültségének, áraának és teljesítényének időfüggvénye A teljesítény pillanatértéke: pt = ut it = sinω t I sinω t= I sin ω t=

2 I Icosω t I = = ( cosω t) A teljesítény egy középérték körül kétszeres frekvenciájú koszinusz függvény szerint leng Előjele indig pozitív, tehát az energiaáralás iránya inden pillanatban azonos A teljesítény középértéke: P I = = eff Ieff = I = = I Az ellenállás teljesíténye hatásos teljesítény, értékegysége [P]=W watt Induktivitás Ideális (ellenállás entes) induktivitásra (tekercsre) kapcsolt váltakozó feszültség hatására folyó ára váltakozó ágneses teret hoz létre A váltakozó ágneses tér az induktivitáson önindukciós feszültséget indukál Ez a feszültség inden pillanatban egyensúlyt tart a hálózati (táp)feszültséggel Váltakozó feszültségforrásra kapcsolt induktivitás áraköri vázlata ut di t = 0 ut = di t dt dt Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it = tdt = t = I t = I t sin ω π cosω cosω sin ω ω, itt I = ω π Az ára 90 -os fáziskéséssel követi a feszültséget ϕi = ϕ = Az ára és a feszültség effektív értéke közötti összefüggés: I eff eff =, vagy I ω = ω X f Az induktív reaktancia frekvencia-függése ω=x - az induktív ellenállás (induktív reaktancia), értékegysége [X ]=Ω oh Az induktív reaktancia X =ω=πf arányos a frekvenciával és az induktivitással A tekercsben indukálódó feszültséget az induktív ellenálláson eső feszültség helyettesíti

3 p(t) Az induktivitás feszültségének, áraának és teljesítényének időfüggvénye A teljesítény pillanatértéke: pt = ut it = sinω t I cosω t= I kétszeres frekvenciájú szinusz függvény szerint változik A tekercsben negyed periódus alatt (pozitív szakasz) felhalozódó energia a következő negyed periódus alatt (negatív szakasz) visszaáralik a tápforrásba A tekercsben energia ne használódik fel, unkát ne végez, ezért eddő teljesíténynek nevezik és a axiális (csúcs) értékével jellezik Az ún fogyasztói pozitív irányok ellett az induktív eddő teljesítény pozitív előjelű: I Q = = eff Ieff = I = = I X, értékegysége [Q]=VAr voltaper reaktív X A eddő teljesítény fenti értelezése csak szinuszos táplálás esetén igaz Neszinuszos vagy többhulláú táplálásnál járulékos veszteségek jelennek eg, ezeket gyakran a eddővel összevonják, pl ipulzus-szerű táplálásnál 3 Kapacitás Egy kondenzátorban tárolt töltés inden pillanatban arányos a fegyverzetei közötti feszültséggel: q(t)= Ha a feszültség változik, változik a tárolt töltés és a töltés változásának egfelelő ára folyik az elektródokhoz (vezetési ára), illetve a dielektrikuon át (eltolási ára) dq t it = = du t dt dt sin ω t Váltakozó feszültségforrásra kapcsolt kapacitás áraköri vázlata 3

4 Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it du t d sinω t π = = = t = t + I t dt dt = + π ω cosω ω sin ω sin ω, itt I = ω = = X ω Az ára 90 -kal siet a feszültséghez képest ϕ ϕ π i = = Az ára és a feszültség effektív értéke közötti összefüggés: I eff =ω eff =X eff, vagy I=X X f ω A kapacitív reaktancia frekvencia-függése = X a kapacitív ellenállás (kapacitív reaktancia), értékegysége [X ]=Ω oh A kapacitív reaktancia X = = fordítottan arányos a frekvenciával és a kapacitással ω π f p(t) A kapacitás feszültségének, áraának és teljesítényének időfüggvénye A teljesítény pillanatértéke: pt = ut it = sinω t I cosω t= I sin ω t 4

5 kétszeres frekvenciájú szinusz függvény szerint változik A kondenzátorban az ára által szállított töltések építik fel a villaos teret A negyed periódus alatt (pozitív szakasz) felépülő villaos tér a következő negyed periódus alatt lebolik (negatív szakasz) A kondenzátorban energia ne használódik fel, unkát ne végez, ezért eddő teljesíténynek nevezik és a axiális (csúcs) értékével jellezik Az ún fogyasztói pozitív irányok ellett a kapacitív eddő teljesítény negatív előjelű: I Q = = eff Ieff = I = = I X X 4 Soros - kör A sorosan kapcsolt ellenállás feszültségesése és az induktivitás önindukciós feszültsége inden pillanatban egyensúlyt tart a tápfeszültséggel: ut u t u t ut it di t l = = 0 ut = it + di t dt dt X Váltakozó feszültségforrásra kapcsolt soros - kör vázlata A soros árakör eleein azonos az ára, ha szinusz függvény szerint változik, =I sinωt, ϕ i =0, akkor az előző egyenletből: = I sinωt+i ωcosωt=i (sinωt+ωcosωt)=i Zsin(ωt+ϕ u )= sin(ωt+ϕ u ) itt =I Z és sinωt+ωcosωt=sinωt+x cosωt= Zsin(ωt+ϕ u ), ωt=0 esetén X = Zsinϕ u, ωt=π/ esetén = Zsin(π/+ϕ u )= Zcosϕ u Az utóbbi két egyenlet hányadosából: X = tgϕ u, ϕ u = arctg X (ϕ u indig pozitív), a két egyenlet négyzetének összegéből: +X = Z Z = + X az árakör látszólagos ellenállása, ipedanciája, [Z]=Ω oh Z = + X X =ω ϕ Az ellenállás, az X ipedancia és a Z reaktancia összefüggésének illusztrálása 5

6 Az ohos-induktív árakörben az feszültség ϕ u szöggel siet az árahoz képest Mivel ϕ i =0, az ára fázisszöge a feszültséghez képest ϕ=ϕ i -ϕ u =-ϕ u, az ára késik a feszültséghez képest, ϕ = arctg X Z Aennyiben = sinωt, ϕ u =0, akkor it = sin( ω t ) ϕ, Z = = I I u (t) u (t) Soros - kör áraának és feszültségeinek időfüggvénye A teljesítény pillanatértéke: pt = ut it = I sinω t+ X cosω t I sinω t= ( ) cos ω t sin ω t = Isin ω t + IX cosω t sinω t = I + IX p(t) p (t) p (t) Soros - kör áraának és teljesítényeinek időfüggvénye A teljesítény középértékének különböző alakjai: I P I I I = = eff = = = I = I cosϕ, Z + X 6

7 a eddő teljesítény: Q I X I X I X I X X = = eff = = = I = I sinϕ Z + X A unkát (pl hőfejlesztést, echanikai elozdulást) végző hatásos teljesítény kisebb, int az egyenáraú körben száított I szorzat Ezt a szorzatot látszólagos teljesíténynek nevezik: S= eff I eff =I, [S]=VA voltaper A hatásos, a eddő és a látszólagos teljesítény közötti összefüggés az eddigiek alapján: P=Scosϕ, Q=Ssinϕ, illetve P +Q =S S Q ϕ u P A P hatásos, a Q eddő és az S látszólagos teljesítény összefüggésének illusztrálása A villaos elektroechanikai eszközök, berendezések (pl villaos forgógépek) helyettesítő áraköreiben a hatásos teljesítényt (echanikai teljesítény, súrlódási veszteség, vasveszteség stb) egyenértékű ohos veszteségi teljesíténnyel képezik, egfelelő nagyságú ellenállás beiktatásával A fogyasztott hatásos teljesítény a hővé vagy ás fajta energiává alakuló teljesítény középértéke, ai a tápforrásba ne tér vissza 5 Soros - kör A soros - körhöz hasonló képpen száítható Az ellenállás feszültségesése és a kondenzátoron az ára (töltésváltozás) okozta feszültség inden pillanatban egyensúlyt tart a tápfeszültséggel: ut u t uc t = ut it idt = 0 ut = it + idt X Váltakozó feszültségforrásra kapcsolt soros - kör vázlata Ha az ára szinusz függvény szerint változik, =I sinωt, ϕ i =0, akkor az előző egyenletből: I ut = Isinω t cosω t = IZsin( ω t + ϕu) = sin( ω t + ϕ u) ω itt =I Z és 7

8 I sinω t cosω t = sinω t X cosω t = Zsin ω t + ϕ ω ( ) ωt=0 esetén -X = Zsinϕ u, ωt=π/ esetén = Zsin(π/+ϕ u )= Zcosϕ u X Az utóbbi két egyenlet hányadosából: = tgϕ u, vagy ásképpen: X X ϕ u = arctg = arctg (ϕ u indig negatív), a két egyenlet négyzetének összegéből: +X = Z A fázisszög száításánál az X kapacitív reaktancia előjele negatív Z = + X az árakör látszólagos ellenállása, ipedanciája u ϕ u -X =ω Z = + X Az ellenállás, az X ipedancia és a Z reaktancia összefüggésének illusztrálása Az ohos-kapacitív árakörben az feszültség ϕ u szöggel késik az árahoz képest Mivel ϕ i =0, az ára fázisszöge a feszültséghez képest ϕ=ϕ i -ϕ u =-ϕ u, az ára siet a feszültséghez képest, ϕ = arctg X Z Aennyiben = sinωt, ϕ u =0, akkor it = sin( ω t + ) ϕ, Z = = I I u (t) u (t) Soros - kör áraának és feszültségeinek időfüggvénye 8

9 A teljesítény pillanatértéke: pt = ut it = I sinω t X cosω ti sinω t= ( ) cos ω t sin ω t = Isin ω t IX cosω t sinω t = I IX Az ellenállás teljesítényének középértéke a soros - körhöz hasonló képpen: I P I I I = = eff = = = I = I cosϕ, Z + X a eddő teljesítény különböző alakjai: I X Q I X I X I X = = eff = = = I Z X + X = I sinϕ p (t) p(t) p (t) Soros - kör áraának és teljesítényeinek időfüggvénye 6 Soros -- kör A soros - és - körhöz hasonló képpen száítható Az ellenállás feszültségesése, az induktivitás önindukciós feszültsége és a kondenzátoron az ára (töltésváltozás) okozta feszültség inden pillanatban egyensúlyt tart a tápfeszültséggel: u t u t u t u t u t i t di t dt idt = = 0, ebből ut = it + di t dt + idt X X Váltakozó feszültségforrásra kapcsolt soros -- kör vázlata Ha az ára szinusz függvény szerint változik, =I sinωt, ϕ i =0, akkor az előző egyenletből: I I ut = Isinω t+ Iω cosω t cosω t = I sinω t + ω cosω t ω ω 9

10 [ sinω ( ) cosω ] ( sinω cosω ) = I t + X X t = I t X t = =I Zsin(ωt+ϕ u )= sin(ωt+ϕ u ), itt ϕ u - az eredő feszültség fázishelyzete a árahoz képest, X = ω = X X - az eredő reaktancia ω Z = + X X=X - X ϕ u Az ellenállás, az X ipedancia és a Z reaktancia összefüggésének illusztrálása Az előzőekhez hasonlóan az eredő ipedancia: Z = +X, illetve Z = + X, X X X X X X és a fázisszög tgϕ u = =, vagy ϕ u = arctg = arctg u (t) u (t) u (t) Soros -- kör áraának és feszültségeinek időfüggvénye Mivel ϕ i =0, az ára fázisszöge a feszültséghez képest ϕ=ϕ i -ϕ u =-ϕ u : =I sin(ωt-ϕ) ϕ < 0, ha X > 0, azaz ω > ω - az eredő ára késik a feszültséghez képest (- jellegű), ϕ = 0, ha X = 0, azaz ω = ω - az eredő ára fázisban van a feszültséggel ( jellegű), ϕ > 0, ha X < 0, azaz ω < ω - az eredő ára siet a feszültséghez képest (- jellegű), 0

11 A teljesítény pillanatértéke: pt = ut it = I sinω t+ X X cosω ti sinω t= [ ] ( ) cos ω t sin ω t = Isin ω t + IX cosω t sinω t = I IX, részletezve: cos ω t az ellenállás teljesíténye: p t = I, sin ω t az induktivitás teljesíténye: p t = I X, sin ω t a kapacitás teljesíténye: p t = I X A p (t) hatásos teljesítény inden pillanatban pozitív, középértéke P=I p (t) és p (t) kétszeres frekvenciával leng, középértéke zérus, az eredőjük a kettő összege: sin ω t qt = p t + p t = I( X X) p(t) p (t) p (t) p (t) Soros -- kör áraának és teljesítényeinek időfüggvénye Az eredő eddő teljesítény: ( ) ( ) Q I = X X = I X X = I X A eddő teljesítény egyik része az induktivitás és a kapacitás között leng, a ásik részét az árakör a táphálózatból veszi fel és oda juttatja vissza Induktivitás és kapacitás egyidejű jelenléte esetén az induktivitás ágneses energiája (vagy annak egy része) átalakul a kapacitás elektrosztatikus energiájává (vagy annak egy részévé) Aennyiben az induktivitás és kapacitás energiájának axiua egegyezik, ha az induktivitásban ugyanakkora energia halozódik fel, int a kapacitásban, akkor ez a két áraköri ele ellátja egyást energiával és az -- árakör a táphálózatból ne vesz fel eddő teljesítényt és ne is ad oda le Ez a rezonancia jelensége A rezonanciára éretezett árakört rezgőkörnek nevezik Soros árakörben soros rezonanciáról és soros rezgőkörről beszélünk Jelen árakörben a rezonancia feltétele: X = ω = = ω X Így az eredő ipedancia: Z= (ivel X -X =0), az ára és a feszültség fázisban van, a tápforrásból nincs eddő teljesítény felvétel Az induktivitás energiája teljes egészében átalakul kapacitív energiává és fordítva Az induktivitáson és a kapacitáson eső feszültség inden

12 pillanatban egegyezik egyással és ellentétes előjelű, a kettő eredője zérus, így rövidzárként viselkedik A pillanatértékekre: u (t)=x =-X =u (t) ezért u (t)+u (t)=0, illetve p (t)=u (t)=-u (t)=-p (t), p (t)+p (t)=0 A rezonancia jellezője a rezonancia frekvencia, ainek jelölése f r, f 0 vagy f s, vagy a rezonancia körfrekvencia ω r, ω 0 vagy ω s Száításuk a reaktanciák egyezése alapján: ω 0 =, aiből ω 0 = vagy ω 0 = és f0 = ω 0 π Az összefüggésekből láthatóan akár az induktivitás, akár a kapacitás növelésével a rezonancia frekvencia csökken, fordított feladatnál pedig inél alacsonyabb a szükséges rezonancia frekvencia, annál nagyobb induktivitás és kapacitás értékeket kell választani X X f f 0 A rezonancia frekvencia értelezése 7 Párhuzaos - kör A feszültség indkét eleen azonos, ut i t di t = =, dt az áraok összeadódnak a csoóponti törvény szerint =i (t)+i (t), it = ut + utdt i (t) i (t) X Váltakozó feszültségforrásra kapcsolt párhuzaos - kör vázlata Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it = sinω t cosω t = ( Gsinω t B cosω t) = ω ( ) sin( ) = Y sin ω t + ϕ = I ω t + ϕ Itt ϕ=ϕ i - a fázisszög, az eredő ára fázishelyzete a feszültséghez képest,

13 B = ω - az induktív vezetés (induktív szuszceptancia), értékegysége [B ]=S Sieens i (t) i (t) Párhuzaos - kör feszültségének és áraainak időfüggvénye Gsinωt-B cosωt=ysin(ωt+ϕ), ωt=0 esetén -B = Ysinϕ, ωt=π/ esetén G= Ysin(π/+ϕ u )= Ycosϕ Az utóbbi két egyenlet hányadosából: B = tgϕ, ebből G ω ϕ = = = arctg B arctg arctg, G ω a két egyenlet négyzetének összegéből: G +B = Y Y = G + B az árakör látszólagos vezetése, adittanciája, [Y]=S Sieens A párhuzaos - kör fázisszöge negatív, az eredő ára ϕ szöggel késik a feszültséghez képest ϕ G - B Y = G + B A G konduktivitás, a B szuszceptancia és az Y adittancia összefüggésének illusztrálása 3

14 fordítottan arányos a frekvenciával és az in- Az induktív szuszceptancia B = = ω π f duktivitással B f Az induktív szuszceptancia frekvencia-függése A teljesítény pillanatértéke: pt = ut it = Gsinω t B cosω t sinω t= ( ) cos ω t sin ω t = Gsin ω t B cosω t sinω t = G B, részletezve: cos ω t az ellenállás teljesíténye: p t = G, sin ω t az induktivitás teljesíténye: p t = B p(t) p (t) p (t) Párhuzaos - kör feszültségének és teljesítényeinek időfüggvénye A teljesítény középértékének különböző alakjai: P G eff = = = = I cosϕ, a eddő teljesítény: Q B eff = = = = I sin( ϕ ) X X 4

15 8 Párhuzaos - kör A feszültség indkét eleen azonos, ut = i t = i t dt, az áraok összeadódnak a csoóponti törvény szerint =i (t)+ i (t) vagy ut du t it = + u t dt + dt i (t) i (t) X Váltakozó feszültségforrásra kapcsolt párhuzaos - kör vázlata Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it = sinω t + ω cosω t = ( Gsinω t + B cosω t) = = Ysin ω t + ϕ = I sin ω t + ϕ ( ) ( ) i (t) i (t) Párhuzaos - kör feszültségének és áraainak időfüggvénye Itt ϕ=ϕ i - a fázisszög, az eredő ára fázishelyzete a feszültséghez képest, B =ω - a kapacitív szuszceptancia ω ϕ = arctg B = = ω G arctg arctg, a párhuzaos - kör fázisszöge pozitív, az eredő ára ϕ szöggel siet a feszültséghez képest 5

16 Y = G + B B ϕ G A G konduktivitás, a B szuszceptancia és az Y adittancia összefüggésének illusztrálása A kapacitív szuszceptancia arányos a frekvenciával és a kapacitással B f A kapacitív szuszceptancia frekvencia-függése A teljesítény pillanatértéke: pt = ut it = Gsinω t+ B cosω t sinω t= ( ) cos ω t sin ω t = Gsin ω t + B cosω t sinω t = G + B, részletezve: p(t) p (t) p (t) Párhuzaos - kör feszültségének és teljesítényeinek időfüggvénye cos ω t az ellenállás teljesíténye: p t = G, 6

17 sin ω t az induktivitás teljesíténye: p t = B A teljesítény középértékének különböző alakjai: P G eff = = = = I cosϕ, a eddő teljesítény: B eff Q = = = = I sin( ϕ ) X X 9 Párhuzaos -- kör A feszültség indháro eleen azonos ut i t di t = dt i t dt = =, az áraok összeadódnak a csoóponti törvény szerint =i (t)+i (t)+i (t) vagy ut du t it = + u t dt + dt i (t) i (t) i (t) X X Váltakozó feszültségforrásra kapcsolt párhuzaos -- kör vázlata Ha a tápfeszültség szinusz függvény szerint változik, = sinωt, ϕ u =0, akkor az előző egyenletből: it = sinω t cosω t + ω cosω t = sinω t + ω cosω t = ω ω ( sin cos ) sin( ) sin( ) = G ω t + B ω t = Y ω t + ϕ = I ω t + ϕ Y = G + B B= B - B ϕ G A G konduktivitás, a B szuszceptancia és az Y adittancia összefüggésének illusztrálása Itt ϕ - a fázisszög, az eredő ára fázishelyzete a feszültséghez képest, 7

18 B = ω = B B - az eredő szuszceptancia ω Gsinωt+Bcosωt=Ysin(ωt+ϕ), ωt=0 esetén B= Ysinϕ, ωt=π/ esetén G= Ysin(π/+ϕ u )= Ycosϕ Az utóbbi két egyenlet hányadosából: B G = tgϕ, ebből ω ω ω ϕ = arctg B = = G arctg arctg, ω a két egyenlet négyzetének összegéből: G +B = Y Y = G + B az árakör látszólagos vezetése, adittanciája, [Y]=S Sieens i (t) i (t) i (t) Párhuzaos -- kör feszültségének és áraainak időfüggvénye Gsinωt+Bcosωt=Ysin(ωt+ϕ), ωt=0 esetén B= Ysinϕ, ωt=π/ esetén G= Ysin(π/+ϕ u )= Ycosϕ Az utóbbi két egyenlet hányadosából: B G = tgϕ, ebből ω ω ω ϕ = arctg B = = G arctg arctg, ω a két egyenlet négyzetének összegéből: G +B = Y Y = G + B az árakör látszólagos vezetése, adittanciája Mivel ϕ u =0, az ára fázisszöge a feszültséghez képest ϕ > 0, ha B > 0, azaz ω > ω - az eredő ára siet a feszültséghez képest (- jellegű), 8

19 ϕ = 0, ha B = 0, azaz ω = ω - az eredő ára fázisban van a feszültséggel ( jellegű), ϕ < 0, ha B < 0, azaz ω < ω - az eredő ára késik a feszültséghez képest (- jellegű) A teljesítény pillanatértéke: pt = ut it = Gsinω t+ Bcosω t sinω t= ( ) cos ω t sin ω t = Gsin ω t + Bcosω t sinω t = G + B, részletezve: cos ω t az ellenállás teljesíténye: p t = G, sin ω t az induktivitás teljesíténye: p t = B, sin ω t a kapacitás teljesíténye: p t = B A p (t) hatásos teljesítény inden pillanatban pozitív, középértéke P=I p (t) és p (t) kétszeres frekvenciával leng, középértéke zérus, az eredőjük a kettő összege: sin ω t qt = p t + p t = ( B B) p(t) p (t) p (t) p (t) Párhuzaos -- kör feszültségének és teljesítényeinek időfüggvénye A teljesítény középértékének különböző alakjai: P G eff = = = = I cosϕ, a eddő teljesítény: ( ) Q B B = = I sin( ϕ ) Párhuzaos árakörben párhuzaos rezonanciáról és párhuzaos rezgőkörről beszélünk Jelen árakörben a rezonancia feltétele: B = ω = = B, vagy X =X ω 9

20 ezonancia esetén Y=G (ivel B -B =0), az ára és a feszültség fázisban van, a tápforrásból nincs eddő teljesítény felvétel Az induktivitás energiája teljes egészében átalakul kapacitív energiává és fordítva Az induktivitáson és a kapacitáson folyó ára inden pillanatban egegyezik egyással és ellentétes előjelű, a kettő eredője zérus, így szakadásként viselkedik A párhuzaos rezgőkör sajátfrekvenciája és sajátkörfrekvenciája ugyanúgy száítható, int a soros körben 0

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény.

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény. 11/1. Teljesítén száítása szinuszos áraú álózatokban. Hatásos, eddô és látszólagos teljesítén. Szinuszos áraú álózatban az ára és a feszültség idıben változik. Íg a pillanatni teljesítén is változik az

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

2. ábra Változó egyenfeszültségek

2. ábra Változó egyenfeszültségek 3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Egyfázisú aszinkron motor

Egyfázisú aszinkron motor AGISYS Ipari Keverés- és Hajtástecnika Kft. Egyfázisú aszinkron otor 1 Egy- és árofázisú otorok főbb jellegzetességei 1.1 Forgórész A kalickás aszinkron otorok a forgórész orony alakjának kialakításától

Részletesebben

Ergépek csoportosítása

Ergépek csoportosítása Ergépek csoportosítása 1 2 3 4 5 6 Villamos gépek u = U sinωt U = U max eff U = max 2 7 8 u = R I max sinωt = U max sinωt ohmos ellenállás 9 induktivitás u = U max sin( ωt + 90 0 ) kapacitás u = U sin(

Részletesebben

VÁLTAKOZÓ ÁRAM JELLEMZŐI

VÁLTAKOZÓ ÁRAM JELLEMZŐI VÁLTAKOZÓ ÁA JELLEZŐI Ohmos fogyasztók esetén - a feszültség és az áramerősség fázisban van egymással Körfrekvencia: ω = π f I eff = 0,7 max I eff = 0,7 I max Induktív fogyasztók esetén - az áramerősség

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Elektrotechnika jegyzet

Elektrotechnika jegyzet SZÉCHENY STVÁN EGYETEM ATOMATZÁLÁS TANSZÉK Elektrotechnika jegyzet Elektrotechnika jegyzet Készítette: dr. Hodossy László főiskolai docens előadásai alapján Tomozi György Győr, 4. - - Tartalomjegyzék.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELŐADÁS AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS

ELŐADÁS AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS ANALÓG ELEKTRONIKA ELŐADÁS 2011-2012 tanév, II. félév AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS ÓRASZÁMOK AUTOMATIZÁLÁS Á ÉS IPARI INFORMATIKA hetente 2 óra előadás, 2 óra labor kéthetente

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév)

VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév) 1 VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév) 1. Ismertesse a villamosenergia-hálózat feladatkrk szerinti felosztását a jellegzetes feszültségszinteket és az azokhoz tartozó átvihető teljesítmények

Részletesebben

VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport

VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport MEGOLDÁS 2014. május 21. 1.1. Tekintsünk egy megoszló terheléssel jellemezhető hálózatot! A hosszegységre eső áramfelvétel i = 0,24 A/m fázisonként egyenlő

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Teljesítménymérési jegyzőkönyv

Teljesítménymérési jegyzőkönyv Teljesítménymérési jegyzőkönyv Marosi Imre DOIN8J Faipari mérnökhallgató Levelező Teljesítmény elméleti alapok, teljesítménytényező Egy berendezés pillanatnyi villamos teljesítménye: P (t) = U (t) *I (t)

Részletesebben

Fizika összefoglaló kérdések (11. évfolyam)

Fizika összefoglaló kérdések (11. évfolyam) I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU HÁLÓZATOK MÉRETEZÉSE

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU HÁLÓZATOK MÉRETEZÉSE SZÉCHENY STÁN EGYETEM HTT://N.SZE.H HÁLÓZATOK MÉRETEZÉSE Marcsa Dániel illamos gépek és energetika 2013/2014 - őszi szemeszter Kisfeszültségű hálózatok méretezése A leggyakrabban kisfeszültségű vezetékek

Részletesebben

19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:

19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges: 9.B Alapáramkörök alkalmazásai Oszcillátorok Ismertesse a szinuszos rezgések elıállítására szolgáló módszereket! Értelmezze az oszcillátoroknál alkalmazott pozitív visszacsatolást! Ismertesse a berezgés

Részletesebben

Az együttfutásról általában, és konkrétan 2.

Az együttfutásról általában, és konkrétan 2. Az együttfutásról általában, és konkrétan 2. Az első részben áttekintettük azt, hogy milyen számítási eljárás szükséges ahhoz, hogy egy szuperheterodin készülék rezgőköreit optimálisan tudjuk megméretezni.

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

Irodaépület fényforrásainak vizsgálata különös tekintettel a hálózati visszahatásokra

Irodaépület fényforrásainak vizsgálata különös tekintettel a hálózati visszahatásokra Diplomaterv Prezentáció Irodaépület fényforrásainak vizsgálata különös tekintettel a hálózati visszahatásokra Készítette: Ruzsics János Konzulens: Dr. Dán András Dátum: 2010.09.15 Irodaépület fényforrásainak

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

energiahatékonys konyság Hunyadi Sándor energiagazdálkodási szakmérnök

energiahatékonys konyság Hunyadi Sándor energiagazdálkodási szakmérnök Fázisjavítás és energiahatékonys konyság Hunyadi Sándor energiagazdálkodási szakmérnök Hogyan járul j hozzá a fázisjavf zisjavítás s a Virtuális Erőmű Programhoz? Fázisjavítás megközelítései: Tarifális

Részletesebben

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A villamos szigetelőanyagok és szigetelések egyik legfontosabb jellemzője a szigetelési ellenállás. Szigetelési ellenálláson az anyagra kapcsolt

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Kényszerrezgések, rezonancia

Kényszerrezgések, rezonancia TÓTH A: Rezgése/ (ibővített óavázlat 13 Kényszeezgése, ezonancia Gyaolatilag is igen fontos eset az, aio egy ezgése épes endsze ezgései valailyen ülső, peiodius hatás (énysze űödése özben zajlana le Az

Részletesebben

Mérési útmutató. A transzformátor működésének vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 3. sz. méréséhez

Mérési útmutató. A transzformátor működésének vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 3. sz. méréséhez BDPESTI MŰSZKI ÉS GZDSÁGTDOMÁNYI EGYETEM VILLMOSMÉRNÖKI ÉS INFORMTIKI KR VILLMOS ENERGETIK TNSZÉK Mérési útmutató transzformátor működésének vizsgálata z Elektrotechnika tárgy laboratóriumi gyakorlatok

Részletesebben

Villamos fogyasztók által keltett felharmonikus áramok és azok hálózati visszahatása. Schulcz Gábor LIGHTRONIC Kft. www.lightronic.

Villamos fogyasztók által keltett felharmonikus áramok és azok hálózati visszahatása. Schulcz Gábor LIGHTRONIC Kft. www.lightronic. Villamos fogyasztók által keltett felharmonikus áramok és azok hálózati visszahatása Schulcz Gábor LIGHTRONIC Kft. www.lightronic.hu Felharmonikus fogalma Felharmonikus áramok keletkezése Felharmonikus

Részletesebben

Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és

Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és 1. fejezet Az elektromechanikai energiaátalakítás Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és fordítva. Ezeknek a berendezéseknek a felépítése különböző lehet, a

Részletesebben

Fizikai példatár 4. Elektromosságtan Csordásné Marton, Melinda

Fizikai példatár 4. Elektromosságtan Csordásné Marton, Melinda Fizikai példatár 4. Elektromosságtan Csordásné Marton, Melinda Fizikai példatár 4.: Elektromosságtan Csordásné Marton, Melinda Lektor: Mihályi, Gyula Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

Áramerősség, feszültség és ellenállásmérés eszközei

Áramerősség, feszültség és ellenállásmérés eszközei Áramerősség, feszültség és ellenállásmérés eszközei (áramerősség, feszültség, ellenállás, fáziseltolás, teljesítmény) A villamos mérőműszereket működésük elve alapján az alábbi csoportokba oszthatjuk.

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

Wien-hidas oszcillátor mérése (I. szint)

Wien-hidas oszcillátor mérése (I. szint) Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Természeti jelenségek fizikája gyakorlat. Pogány Andrea andrea@titan.physx.u-szeged.hu

Természeti jelenségek fizikája gyakorlat. Pogány Andrea andrea@titan.physx.u-szeged.hu Terészeti jelenségek fizikája gyakorlat Pogány Andrea andrea@titan.physx.u-szeged.hu Vektorok vektor: a tér egy rendezett pontpárja által kijelölt, az első pontból a ásodikba utató irányított szakasz nagysággal

Részletesebben

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató! Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk

Részletesebben

Elektronikus műszerek Analóg oszcilloszkóp működés

Elektronikus műszerek Analóg oszcilloszkóp működés 1 1. Az analóg oszcilloszkópok általános jellemzői Az oszcilloszkóp egy speciális feszültségmérő. Nagy a bemeneti impedanciája, ezért a voltmérőhöz hasonlóan a mérendővel mindig párhuzamosan kell kötni.

Részletesebben

HELYI TANTERV ELEKTRONIKAI ALAPISMERETEK Tantárgy

HELYI TANTERV ELEKTRONIKAI ALAPISMERETEK Tantárgy Energetikai Szakközépiskola és Kollégium 7030 Paks, Dózsa Gy. út 95. OM 036396 75/519-300 75/414-282 HELYI TANTERV ELEKTRONIKAI ALAPISMERETEK Tantárgy 0-0 - 2-2 óraszámokra Készítette: Csanádi Zoltán munkaközösség-vezető

Részletesebben

feszültség hullámossága csökken, ugyanakkor a hálózat mind erõsebben torzított árammal terhelõdik.

feszültség hullámossága csökken, ugyanakkor a hálózat mind erõsebben torzított árammal terhelõdik. 2 Alapkapcsolások a teljesítményelektronikában A teljesítményelektronikában használatos átalakító egységek rendszerint egy fajta átalakítást képesek elvégezni az 1.2 fejezetben említett felosztás értelmében.

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü

Részletesebben

Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö

Részletesebben

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf.

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf. HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás 2010/2011.BSc.II.évf. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók 1.Ellenállás változáson alapuló

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Extrém alacsony frekvenciájú mágneses terek mérése környezetünkben

Extrém alacsony frekvenciájú mágneses terek mérése környezetünkben Extrém alacsony frekvenciájú mágneses terek mérése környezetünkben TDK dolgozat Zsigmond Anna Julia ELTE TTK Fizika BSc 2. évfolyam Témavezető: dr. Veres Gábor ELTE TTK Atomfizikai Tanszék ELTE TTK 28

Részletesebben

NKE típusú napelemes kiserőművek fejlesztése a VHJ Kft.-ben

NKE típusú napelemes kiserőművek fejlesztése a VHJ Kft.-ben NKE típusú napelemes kiserőművek fejlesztése a VHJ Kft.-ben 1. A projekt 1. ábra: A projekthez készült ÚMFT információs tábla A VHJ Kft. 2009. végén az Új Magyarország Fejlesztési Terv keretében lehetőséget

Részletesebben

Villamosenergia minőség Alkalmazási segédlet. Harmonikusok. Kondenzátorok torzított hálózaton 3.1.2. Rezonanciaerősítés. Frekvencia.

Villamosenergia minőség Alkalmazási segédlet. Harmonikusok. Kondenzátorok torzított hálózaton 3.1.2. Rezonanciaerősítés. Frekvencia. Villamosenergia minőség Alkalmazási segédlet Harmonikusok Kondenzátorok torzított hálózaton 3.1.2 Rezonanciaerősítés Frekvencia Harmonikusok Harmonikusok Kondenzátorok torzított hálózaton Stafan Fassbinder

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Merev testek mechanikája. Szécsi László

Merev testek mechanikája. Szécsi László Merev testek mechanikája Szécsi László Animáció időfüggés a virtuális világmodellünkben bármely érték lehet időben változó legjellemzőbb: a modell transzformáció időfüggése mozgó tárgyak módszerek az időfüggés

Részletesebben

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata Mérési jegyzõkönyv A mérés megnevezése: Mérések Microcap Programmal Mérõcsoport: L4 Mérés helye: 14 Mérés dátuma: 2010.02.17 Mérést végezte: Varsányi Péter A Méréshez felhasznált eszközök és berendezések:

Részletesebben

Vagyonkezelési irányelvek (Befektetési politika tartalmi kivonata) Allianz Hungária Önkéntes Nyugdíjpénztár 2015. február 1.

Vagyonkezelési irányelvek (Befektetési politika tartalmi kivonata) Allianz Hungária Önkéntes Nyugdíjpénztár 2015. február 1. Vagyonkezelési irányelvek (Befektetési politika tartali kivonata) Allianz Hungária Önkéntes Nyugdíjpénztár 2015. február 1. napjától Az Allianz Hungária Nyugdíjpénztár a befektetések során az egyes portfoliók

Részletesebben

Unidrive - a vektorszabályozás alappillére

Unidrive - a vektorszabályozás alappillére Unidrive - a vektorszabályozás alappillére A vektorszabályozás jelenleg a váltakozó áramú ipari hajtások széles körben elfogadott és alkalmazott megoldása, amely kiváló szabályozást nyújt a mai szabványokhoz

Részletesebben

10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások

10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások 10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások "Elektrós"-Zoli 2013. november 3. 1 Tartalomjegyzék 1. Erősítő fokozatok összekapcsolása

Részletesebben

Villamosság biztonsága

Villamosság biztonsága Óbudai Egyetem ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utótechnikai ntézet Villamosság biztonsága Dr. Noothny Ferenc jegyzete alapján, Összeállította: Nagy stán tárgy tematikája iztonságtechnika

Részletesebben

[ MEDDÕ TELJESÍTMÉNY KOMPENZÁLÁS ]

[ MEDDÕ TELJESÍTMÉNY KOMPENZÁLÁS ] [ MEDDÕ TELJESÍTMÉNY KOMPENZÁLÁS ] TARTALOMJEGYZÉK Hatásos és meddõ teljesítmény, meddõ teljesítmény kompenzálás 2 Meddõvételezésre vonatkozó árszabás 3 A fázisjavítás általános méretezése 4 Átszámítási

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Autóelektronikai műszerész szakma gyakorlati oktatásához OKJ száma: 54 525 01 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma:

Részletesebben

Aktív felharmonikus szűrő fizikai modell vizsgálata

Aktív felharmonikus szűrő fizikai modell vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Villamosművek Tanszék Aktív szűrő fizikai modell vizsgálata Löcher János 2001. szeptember 12. 1. Bevezető Nemlineáris

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

A rádió. IV. Az audionlámpás felvevőkészülék.

A rádió. IV. Az audionlámpás felvevőkészülék. A rádió IV. Az audionlámpás felvevőkészülék. A rádióhullámok energiaszállítása. A múlt alkalommal megismertük a hangátvitel alapelvét és a kristálydetektoros felvevőkészülék működését. Most először is

Részletesebben

A ferritmagos parametron alkalmazása nagy biztonságú logikai kapcsolóelemként

A ferritmagos parametron alkalmazása nagy biztonságú logikai kapcsolóelemként KŐRÖSLADÁNYI Telefongyár MÁRTON A ferritmagos parametron alkalmazása nagy biztonságú logikai kapcsolóelemként BTO 621.375.7:621.377.622.33:887.325.6 5 Az elektronikus eszközök és kapcsolások utóbbi években

Részletesebben

Alacsonyfrekvenciás RFID alkalmazások az autóiparban

Alacsonyfrekvenciás RFID alkalmazások az autóiparban RFID Alacsonyfrekvenciás RFID alkalmazások az autóiparban CSURGAI PÉTER EPCOS Elektronikai Alkatrész Kft., Szombathely csurgaip@freemail.hu Kulcsszavak: RFID-rendszerek, LF RFID, terhelésmoduláció, autóipar,

Részletesebben

Teljesítményelektronika szabályozása. Összeállította dr. Blága Csaba egyetemi docens

Teljesítményelektronika szabályozása. Összeállította dr. Blága Csaba egyetemi docens Teljesítményelektronika szabályozása Összeállította dr. Blága Csaba egyetemi docens Szakirodalom 1. Ferenczi Ödön, Teljesítményszabályozó áramkörök, Műszaki Könyvkiadó, Budapest, 1981. 2. Ipsits Imre,

Részletesebben

Mérési metodika és a műszer bemutatása

Mérési metodika és a műszer bemutatása Mérési metodika és a műszer bemutatása CPT kábelnélküli rendszer felépítése A Cone Penetration Test (kúpbehatolási vizsgálat), röviden CPT, egy olyan talajvizsgálati módszer, amely segítségével pontos

Részletesebben

Elektrotechnika I. dr. Hodossy, László

Elektrotechnika I. dr. Hodossy, László Elektrotechnika I. dr. Hodossy, László Elektrotechnika I. írta dr. Hodossy, László Publication date 2012 Szerzői jog 2012 dr. Hodossy László Kézirat lezárva: 2012. január 31. Készült a TAMOP-4.1.2.A/2-10/1

Részletesebben

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,

Részletesebben

Zaj és rezgésvédelem Rezgéstan és hangtan

Zaj és rezgésvédelem Rezgéstan és hangtan Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar felsőfokú munkavédelmi szakirányú továbbképzés Zaj és rezgésvédelem Rezgéstan és hangtan Márkus Miklós zaj és rezgésvédelmi

Részletesebben

13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások

13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások 3.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások Ismertesse a többfokozatú erısítık csatolási lehetıségeit, a csatolások gyakorlati vonatkozásait és azok alkalmazási korlátait! Rajzolja

Részletesebben

Transzformátorok tervezése

Transzformátorok tervezése Transzformátorok tervezése Többféle céllal használhatunk transzformátorokat, pl. a hálózati feszültség csökken-tésére, invertereknél a feszültség növelésére, ellenállás illesztésre, mérőműszerek méréshatárának

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2005. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Fizika középszint írásbeli vizsga

Részletesebben

ÉPÜLETGÉPÉSZETI ELEKTROMOS ÉS SZABÁLYOZÓ RENDSZEREK

ÉPÜLETGÉPÉSZETI ELEKTROMOS ÉS SZABÁLYOZÓ RENDSZEREK 6203-11 modul ÉPÜLETGÉPÉSZETI ELEKTROMOS ÉS SZABÁLYOZÓ RENDSZEREK I. rész ÉPÜLETGÉPÉSZETI ELEKTROMOS SZERELÉSEK II. RÉSZ VEZÉRLÉS ÉS SZABÁLYOZÁSTECHNIKA TARTALOMJEGYZÉKE Szerkesztette: I. Rész: Tolnai

Részletesebben

Mértékegysége: 1A (amper) az áramerősség, ha a vezető keresztmetszetén 1s alatt 1C töltés áramlik át.

Mértékegysége: 1A (amper) az áramerősség, ha a vezető keresztmetszetén 1s alatt 1C töltés áramlik át. 1. Az áram fogalma 2. Az egyenáram hatásai 3. Az áramkör elemei 4. Vezetők ellenállása a) Ohm-törvénye b) fajlagos ellenállás c) az ellenállás hőmérsékletfüggése 5. Az ellenállások kapcsolása a) soros

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

2.1. A zajos jelátvitel modellje

2.1. A zajos jelátvitel modellje Sajnálatos módon a folyamat és főként a környezet nem csak szép arcát mutatja a számítógép felé, hanem rút vonásai is lépten-nyomon kiütköznek. Ezek a rút vonások a zavarjelek. Figyelemreméltó tény, hogy

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul.

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul. MUNKA, NRGIA izikai érteleben unkavégzéről akkor bezélünk, ha egy tet erő hatáára elozdul. Munkavégzé történik ha: feleelek egy könyvet kihúzo az expandert gyorítok egy otort húzok egy zánkót özenyoo az

Részletesebben

ELEKTROMOS ÉS ELEKTROMÁGNESES MÓDSZEREK A VÍZBÁZISVÉDELEM SZOLGÁLATÁBAN

ELEKTROMOS ÉS ELEKTROMÁGNESES MÓDSZEREK A VÍZBÁZISVÉDELEM SZOLGÁLATÁBAN JÁKFALVI SÁNDOR 1, SERFŐZŐ ANTAL 1, BAGI ISTVÁN 1, MÜLLER IMRE 2, SIMON SZILVIA 3 1 okl. geológus (info@geogold.eu, tel.: +36-20-48-000-32) 2 okl. geológus (címzetes egyetemi tanár ELTE-TTK; imre.muller

Részletesebben

TANMENET FIZIKA 8. osztály Elektromosság, fénytan

TANMENET FIZIKA 8. osztály Elektromosság, fénytan TANMENET FIZIKA 8. osztály Elektromosság, fénytan A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató 2015-2016 Általános célok, feladatok:

Részletesebben

Szünetmentes áramforrások. Felhasználói Kézikönyv PRO2050 - PRO2120 500VA 1200VA

Szünetmentes áramforrások. Felhasználói Kézikönyv PRO2050 - PRO2120 500VA 1200VA Szünetmentes áramforrások Felhasználói Kézikönyv PRO2050 - PRO2120 500VA 1200VA 1. Bemutatás Az UPS más néven szünetmentes áramforrás megvédi az ön elektromos berendezéseit, illetve a hálózat kimaradása

Részletesebben

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre:

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre: Válaszoljatok a következő kérdésekre: 1. feladat Adott mennyiségű levegőt Q=1050 J hőközléssel p 0 =10 5 Pa állandó nyomáson melegítünk. A kezdeti térfogat V=2l. (γ=7/5). Mennyi a végső térfogat és a kezdeti

Részletesebben

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése.

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése. Matematika 10. első kötet Témák Az óra témája (tankönyvi 1. Bevezető óra (101. Ismerkedés a tankönyvvel 2. Nyílt végű feladat: Szálloda tervezése (102. 3. Matematikai logika: Igaz vagy hamis (103. 4. Matematikai

Részletesebben

Az SI mértékegységrendszer

Az SI mértékegységrendszer PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Az SI mértékegységrendszer http://hu.wikipedia.org/wiki/si_mértékegységrendszer 1 2015.09.14.. Az SI mértékegységrendszer Mértékegységekkel szembeni

Részletesebben

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A mérésre történő felkészüléshez ismételjék át az elméleti anyag Villamos tulajdonságok, Szigetelőanyagok c. fejezetét! A szigetelőanyagok alapvető

Részletesebben

Generátor gerjesztés kimaradási védelmi funkcióblokk leírása

Generátor gerjesztés kimaradási védelmi funkcióblokk leírása Generátor gerjesztés kimaradási védelmi funkcióblokk leírása Dokumentum ID: PP-13-20540 Budapest, 2014. július A leírás verzió-információja Verzió Dátum Változás Szerkesztette V1.0 2014.04.16. Első kiadás

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

Elektronika és méréstechnika. Varga Dezső és Bagoly Zsolt

Elektronika és méréstechnika. Varga Dezső és Bagoly Zsolt Elektronika és méréstechnika Varga Dezső és Bagoly Zsolt Tue Jun 5 12:00:00 CEST 2013 Tartalomjegyzék 1. Elektronikai alapfogalmak 3 1.1. Az elektronika szerepe a méréstechnikában................. 3 1.2.

Részletesebben