Elektromosságtan. III. Szinuszos áramú hálózatok. Magyar Attila

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elektromosságtan. III. Szinuszos áramú hálózatok. Magyar Attila"

Átírás

1 Eletromosságtan III. Szinuszos áramú hálózato Magyar Attila Pannon Egyetem Műszai Informatia Kar Villamosmérnöi és Információs Rendszere Tanszé április 26.

2 Átteintés Szinuszosan váltaozó feszültség és áram leírása 1 Szinuszos áramú lineáris időinvariáns hálózato Szinuszosan váltaozó feszültség és áram leírása Középértée Szinuszosan váltaozó mennyiségere vonatozó alaptörvénye Komplex írásmód Impedancia és admittancia Hálózato számítása Magyar A. (Pannon Egyetem) Eletromosságtan április 2 / 27

3 Szinuszosan váltaozó feszültség és áram leírása Szinuszosan váltaozó feszültség és áram leírása Időben szinuszosan váltaozó áram, illetve feszültség alaja u(t) = Û sin(ωt + ϕ u ) i(t) = Î sin(ωt + ϕ i ), ahol u(t) = a feszültség pillanatértée, [V] i(t) = az áram pillanatértée, [A] Û = a feszültség csúcsértée [V] Î = az áram csúcsértée [A] ω = örfrevencia, [rad/s]=[1/s] f = frevencia, [1/s], ω = 2πf T = periódusidő, [s], ω = 2π T ϕ u = a feszültség ezdőfázisa ϕ i = az áram ezdőfázisa Magyar A. (Pannon Egyetem) Eletromosságtan április 3 / 27

4 Szinuszosan váltaozó feszültség és áram leírása Szinuszosan váltaozó feszültség és áram leírása Magyar A. (Pannon Egyetem) Eletromosságtan április 4 / 27

5 Középértée Középértée A villamos mérőműszere a fesz. és az áram valamilyen özépértéét méri: U A = 1 T = Û T Egyenáramú özépérté: U K = 1 T u(t)dt = Û T sin(ωt + ϕ u )dt = T 0 T 0 = Û ωt [cos(ωt + ϕ u)] T 0 = Û ωt [cos(ωt + ϕ u) cos(ϕ u )] = 0 Ha u(t) = U 0 + Û sin(ωt + ϕ u ), aor U K = 1 T T 0 u(t)dt = U 0 Abszolút özépérté: T 0 T 0 u(t) dt = Û T T 0 sin(ωt dt ) = 2 Û T = 2 Û ωt sin(ωt+ϕ u ) dt, t = t ϕ u ω transzformáció: T /2 0 sin(ωt )dt = 2 Û T T /2 [ cos(ωt ) ] t =T t =0 = 4Û 2 π T T = 2 π Û 0 sin(ωt )dt = Magyar A. (Pannon Egyetem) Eletromosságtan április 5 / 27

6 Középértée Középértée Négyzetes özépérté (effetív érté): 1 T Û2 U = u T 2 (t)dt = T = 0 Û2 2T T [ U 2 = Û2 t sin(2(ωt + ϕ u)) 2T 2ω 0 T 0 [1 cos(2ωt + ϕ u )] dt ] T Csúcstényező ( cs ) és formatényező ( f ): 0 = Û2 2 sin(ωt + ϕ u )dt = cs = Û U = 2, f = U U A = π 2 U = Û 2 Magyar A. (Pannon Egyetem) Eletromosságtan április 6 / 27

7 Szinuszosan váltaozó mennyiségere vonatozó alaptörvénye Szinuszosan váltaozó mennyiségere vonatozó alaptörvénye Kirchoff-törvénye: i (t) = 0 csomóponti törvény rang számú vágatra u (t) = 0 Feszültségforrás forrásfeszültsége: hurotörvény nullitás számú hurora u(t) = u V (t) = 2 U V sin(ωt + ϕ uv ) Áramforrás forrásárama: i(t) = i A (t) = 2 I A sin(ωt + ϕ ia ) Magyar A. (Pannon Egyetem) Eletromosságtan április 7 / 27

8 Ellenállás Szinuszosan váltaozó mennyiségere vonatozó alaptörvénye Az ellenállás feszültsége arányos áramával: u = R i vagy i = G u, azaz 2 UR sin(ωt + ϕ ur ) = R 2 I R sin(ωt + ϕ ir ), amiből U R = R I R, ( vagy I R = G U R, ) és ϕ ur = ϕ ir Az ellenállás árama és feszültsége fázisban van egymással, nincs özöttü fáziseltérés. Magyar A. (Pannon Egyetem) Eletromosságtan április 8 / 27

9 Kondenzátor Szinuszosan váltaozó mennyiségere vonatozó alaptörvénye A ondenzátor árama arányos a feszültségéne idő szerinti deriváltjával i = C du dt, azaz 2IC sin(ωt +ϕ ic ) = ωc 2U C cos(ωt +ϕ uc ) = ωc 2U C sin(ωt +ϕ uc + π 2 ) amiből: U C = 1 ωc I C, és ϕ ic = ϕ uc + π 2 A ondenzátor árama 90 -al siet a feszültségéhez épest, (vagy feszültsége 90 -ot ési áramához épest) Magyar A. (Pannon Egyetem) Eletromosságtan április 9 / 27

10 Teercs Szinuszos áramú lineáris időinvariáns hálózato Szinuszosan váltaozó mennyiségere vonatozó alaptörvénye A teercs feszültsége arányos az áramána idő szerinti deriváltjával u = L di dt, azaz 2UL sin(ωt + ϕ ul ) = ωl 2I L cos(ωt + ϕ il ) = ωl 2I L sin(ωt + ϕ il π 2 ) amiből: U L = ωli L, és ϕ il = ϕ ul π 2 A teercs árama 90 -ot ési a feszültségéhez épest, (vagy feszültsége 90 -al siet áramához épest) Magyar A. (Pannon Egyetem) Eletromosságtan április 10 / 27

11 Komplex írásmód Komplex írásmód A Kirchoff-törvényeből és az ágtörvényeből mindig meghatározható az ismeretlen effetív értée és ezdőfáziso Bonyolult, hosszadalmas, helyette a omplex írásmód használható Komplex számo (Z C) algebrai és exponenciális alaja: Z = x + j y = Z e jϕ Euler-formula: e jϕ = cos(ϕ) + j sin(ϕ) x = Re(Z) = Z cos(ϕ) y = Im(Z) = Z sin(ϕ) Z = Z = x 2 + y 2 ϕ = arc(z) = arctan(y/x) Magyar A. (Pannon Egyetem) Eletromosságtan április 11 / 27

12 Komplex írásmód Komplex írásmód Legyen a feszültség és az áram (valós) pillanatértée u(t) = Û sin(ωt + ϕ u ) i(t) = Î sin(ωt + ϕ i ) Komplex pillanatértée u(t) = Û e j(ωt+ϕu) = Û (cos(ωt + ϕ u ) + j sin(ωt + ϕ u )) i(t) = Î e j(ωt+ϕ i ) = Î (cos(ωt + ϕ i ) + j sin(ωt + ϕ i )) A valós pillanatérté a omplex pillanatérté épzetes része u(t) = Im(u), i(t) = Im(i) Az u vetor ω szögsebességgel forog a omplex számsíon pozitív irányban A valós pillanatérté a épzetes tengelyre eső merőleges vetülete Magyar A. (Pannon Egyetem) Eletromosságtan április 12 / 27

13 Komplex írásmód Komplex írásmód A omplex pillanatérté ismeretében definiálható a omplex csúcsérté (Û) és a omplex effetív érté (U) ˆ U = Û e jϕu = 2 U e jϕu Î = Î e jϕ i = 2 I e jϕ i, és U = U e jϕu I = I e jϕ i A omplex csúcsérté illetve a omplex effetív érté ismeretében felírható a omplex pillanatérté u(t) = Û ejωt = 2 U e jωt i(t) = Î ejωt = 2 I e jωt továbbá U = U I = I, és ϕ u = arc(u) ϕ i = arc(i ) Magyar A. (Pannon Egyetem) Eletromosságtan április 13 / 27

14 Kirchoff-törvénye omplex alaja Komplex írásmód Kirchoff-törvénye omplex pillanatértéere i (t) = ( ) Im(i (t)) = Im i (t) = 0, azaz i (t) = 0 u (t) = ( ) Im(u (t)) = Im u (t) = 0, azaz u (t) = 0 Kirchoff-törvénye omplex effetív értéere i (t) = 2 I e jωt = 0, azaz I = 0 u (t) = 2 U e jωt = 0, azaz U = 0 Magyar A. (Pannon Egyetem) Eletromosságtan április 14 / 27

15 Impedancia és admittancia Impedancia és admittancia R, L és C elemeből álló passzív étpólus bemenetére apcsoljun u(t) = Û sin(ωt + ϕ u ) feszültséget, melyne omplex effetív értée U = U e jϕu A étpólus bemenetén folyó áram i(t) = Î sin(ωt + ϕ i ), melyne omplex effetív értée I = I e jϕ i A feszültség és áram omplex pillanatértééne hányadosa a étpólus impedanciája (Z) Z = u i = 2 U e jωt 2 I e jωt = U I = U ejϕu I e jϕ i U I ej(ϕu ϕ i ) = Z e jϕ Z ahol Z = U I az impedancia abszolút értée, ϕ Z = ϕ u ϕ i az impedancia szöge Az impedancia reciproa az admittancia (Y = Z 1 ) Magyar A. (Pannon Egyetem) Eletromosságtan április 15 / 27 =

16 Ellenállás Impedancia és admittancia u = R i, amiből Z R = u i = R R ϕ R = 0 Magyar A. (Pannon Egyetem) Eletromosságtan április 16 / 27

17 Kondenzátor Impedancia és admittancia i = C du dt, amiből Im(i) = C d ( Im(u) = Im C du ), azaz i = C du dt dt dt u = 2 Ue jωt du dt = jω 2 Ue jωt = jωu A ondenzátor árama i = C du dt = jωcu Impedanciája Z C = u i = 1 jωc = Z C e j π 2 Z C = 1 ωc, ϕ C = ϕ u ϕ i = π 2 Magyar A. (Pannon Egyetem) Eletromosságtan április 17 / 27

18 Teercs Szinuszos áramú lineáris időinvariáns hálózato Impedancia és admittancia u = L di dt, amiből Im(u) = L d ( Im(i) = Im L di ), azaz u = L di dt dt dt i = 2 I e jωt di dt = jω 2 I e jωt = jωi A teercs feszültsége u = L di dt = jωli Impedanciája Z L = u i = jωl = Z L e j π 2 Z L = ωl, ϕ L = ϕ u ϕ i = π 2 Magyar A. (Pannon Egyetem) Eletromosságtan április 18 / 27

19 Összefoglalva Impedancia és admittancia Az áram és feszültség omplex effetív értée özti apcsolat a omplex Ohm-törvény: U = Z I. A Z omplex impedancia a ülönféle hálózati elemenél az alábbi: Z R = R, Z L = jωl, Z C = 1 jωc A omplex impedancia a feszültség és az áram omplex effetív értééne hányadosa, nagysága a feszültség és az áram effetív értééne hányadosa, szöge pedig a feszültség és az áram ezdőfázisána ülönbsége: Z = U I, Z = U I, ϕ Z = ϕ u ϕ i Impedanciá soros, illetve párhuzamos eredője: n 1 Z s = Z, = Z p =1 n 1 Z =1 Magyar A. (Pannon Egyetem) Eletromosságtan április 19 / 27

20 Összefoglalva Impedancia és admittancia Az impedancia valós és épzetes része Z = R ± j X = Z e jϕ Z, ahol Z = ( ) ±X R 2 + X 2, ϕ Z = arctan R Z a látszólagos ellenálás, R a hatásos ellenállás (rezisztancia), X pedig a meddő ellenállás (reatancia) Az impedancia reciproa az admittancia: Y = 1 Z = G ± j B = Y e jϕ Z = Y e jϕ Y Y a látszólagos vezetés, G a hatásos vezetés (ondutancia), B a meddő vezetés (szuszceptancia) Ohm-törvénye admittanciával ifejezve: I = Y U Magyar A. (Pannon Egyetem) Eletromosságtan április 20 / 27

21 Hálózato számítása Hálózato számítása A feszültsége és áramo effetív értéével és impedanciáal számolva a szinuszos áramú hálózato számítása megegyezi az egyenárú hálózato számításával. Kirchoff-törvényeből és az ágtörvényeből b + b számú lineáris algebrai egyenlet. Alalmazható az egyenáramú hálózatonál megismert módszere: Szuperpozíció elve Thévenin-, és Norton-tétel Csillag-háromszög átalaítás Csomóponti potenciálo, és huroáramo módszere Millmann-tétele A feszültsége és áramo omplex effetív értéét vetorábrán szemléltetjü Magyar A. (Pannon Egyetem) Eletromosságtan április 21 / 27

22 Soros RL ör Hálózato számítása A apocsfeszültség u(t) = 2U sin(ωt + ϕ u ), azaz U = Ue jϕu A hálózat impedanciája Z = R + jωl = Ze jϕ Z ahol Z = R 2 + ω 2 L 2, ϕ Z = arctan( ωl R ) Áramerősség Ellenállás feszültsége U R = RI = RIe jϕ i = U R e jϕ i Teercs feszültsége U L = jωli = = ωlie j( π 2 +ϕ i ) = = U L e j( π 2 +ϕ i ) I = U Z = Uejϕu Ze jϕ Z = Iejϕ i Magyar A. (Pannon Egyetem) Eletromosságtan április 22 / 27

23 Soros RC ör Hálózato számítása Impedancia Z = R + 1 jωc = R j 1 ωc = Zejϕ Z ahol Z = R ω 2 C 2, ϕ 1 Z = arctan( ωrc ) Ellenállás feszültsége U R = RI = RIe jϕ i = U R e jϕ i Kondenzátor feszültsége U L = 1 jωc I = = 1 ωc Iej(ϕ i π 2 ) = = U C e j(ϕ i π 2 ) Magyar A. (Pannon Egyetem) Eletromosságtan április 23 / 27

24 Párhuzamos rezgőör Hálózato számítása Eredő impedancia Z = (R + jωl) 1 jωc = R + jωl 1 + jωrc ω 2 LC Ideális párhuzamos rezgőör esetén (R = 0) ( ) jωl Z = 1 ω 2 LC, ϕ ωl Z = arctan 1 ω 2 LC Magyar A. (Pannon Egyetem) Eletromosságtan április 24 / 27

25 Párhuzamos rezgőör Hálózato számítása Antirezonáns örfrevencia (ω 0 = 1 LC ): Z = jωl 1 ( ω ω 0 ) 2 ω < ω 0 : a ör indutív, (ϕ Z > 0) ω = ω 0 : a ör rezisztív, (ϕ Z = 0) - itt végtelen az impedancia ω > ω 0 : a ör apacitív, (ϕ Z < 0) Áramerősség: I = I L + I C = ( ) 1 jωl + jωc U = Y U Nem ideális esetben (R > 0) az impedancia egyetlen frevencián sem lesz végtelen nagy. Ha R ω 0 L, aor az antirezonáns örfrevencián: Z = jω 0 L 1 ω 2 0 LC + jω 0RC = L RC (rezonancia inpedancia) Magyar A. (Pannon Egyetem) Eletromosságtan április 25 / 27

26 Soros rezgőör Hálózato számítása Eredő impedancia Z = R +jωl+ 1 ( jωc = R +j ωl 1 ) ( ) ωl 1 ωc, ϕ Z = arctan ωc R Magyar A. (Pannon Egyetem) Eletromosságtan április 26 / 27

27 Soros rezgőör Hálózato számítása Rezonáns örfrevencia (ω 0 = 1 LC ): ( Z = R + jωl 1 ( ω0 ) ) ( ( 2 ωl, ϕ Z = arctan 1 ω R Ha ω = ω 0, aor Z = R, és ϕ Z = 0 ω < ω 0 : a ör indutív, (ϕ Z > 0) ω = ω 0 : a ör rezisztív, (ϕ Z = 0) ω > ω 0 : a ör apacitív, (ϕ Z < 0) Feszültség: U = U R + U L + U C = ( R + jωl + 1 ) I = Z I jωc ( ω0 ) )) 2 ω Magyar A. (Pannon Egyetem) Eletromosságtan április 27 / 27

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

Elektrotechnika- Villamosságtan

Elektrotechnika- Villamosságtan Elektrotechnika- Villamosságtan Általános áramú hálózatok 1 Magyar Attila Tömördi Katalin Alaptörvények-áttekintés Alaptörvények Áram, feszültség, teljesítmény, potenciál Források Ellenállás Kondenzátor

Részletesebben

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω.

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. 1. Feladat Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. A 1 2 B 3 4 5 6 7 A B pontok között C 13 = 1 + 3 = 2 = 200 Ω 76

Részletesebben

Elektrotechnika- Villamosságtan

Elektrotechnika- Villamosságtan Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati

Részletesebben

Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei:

Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei: Egyfázisú hálózatok Elektrotechnika Dr Vajda István Egyfázisú hálózatok komponensei: Egyfázisú hálózatok Feszültség- és áramforrások Impedanciák (ellenállás, induktivitás, and kapacitás) A komponensek

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

1. konferencia: Egyenáramú hálózatok számítása

1. konferencia: Egyenáramú hálózatok számítása 1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell

Részletesebben

Elektromosságtan. II. Általános áramú hálózatok. Magyar Attila

Elektromosságtan. II. Általános áramú hálózatok. Magyar Attila Elektromosságtan II. Általános áramú hálózatok Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010. március 22. Áttekintés

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

2.11. Feladatok megoldásai

2.11. Feladatok megoldásai Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

Elektrotechnika. 1. előad. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet

Elektrotechnika. 1. előad. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai ntézet Elektrotechnika. előad adás Összeállította: Langer ngrid főisk. adjunktus A tárgy t tematikája

Részletesebben

Elektromosságtan. I. Egyenáramú hálózatok általános számítási módszerei. Magyar Attila

Elektromosságtan. I. Egyenáramú hálózatok általános számítási módszerei. Magyar Attila Elektromosságtan I. Egyenáramú hálózatok általános számítási módszerei Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010.

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

HARDVEREK VILLAMOSSÁGTANI ALAPJAI. 9. Gyakorlat

HARDVEREK VILLAMOSSÁGTANI ALAPJAI. 9. Gyakorlat HADVEEK VILLAMOSSÁGTANI ALAPJAI 9. Gyakorlat Hardverek Villamosságtani Alapjai/GY-9/1 9. Gyakorlat feladatai A gyakorlat célja: A szuperpozíció elv, a Thevenin és a Norton helyettesítő kapcsolások meghatározása,

Részletesebben

Összetett hálózat számítása_1

Összetett hálózat számítása_1 Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint az áramkörben folyó eredő áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

A váltakozó áramú hálózatok

A váltakozó áramú hálózatok A váltakozó áramú hálózatok Az egyenáramú hálózatokkal foglalkozó fejezeteinkben a vizsgált áramkörökben minden ág árama és feszültsége az idő függvényében állandó volt, vagyis sem az irányuk, sem a nagyságuk

Részletesebben

9. SZINUSZOS GERJESZTÉS VÁLASZA

9. SZINUSZOS GERJESZTÉS VÁLASZA 9. SZINSZOS GERJESZTÉS VÁLASZA A Kirchhff típusú hálózatk általában dinamikus kmpnenseket (tekercseket és kndenzát6rkat) is tartalmaznak, így a hálózatt dinamikus hálózatnak tekintjük. A dinamikus hálózatk

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény.

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény. 11/1. Teljesítén száítása szinuszos áraú álózatokban. Hatásos, eddô és látszólagos teljesítén. Szinuszos áraú álózatban az ára és a feszültség idıben változik. Íg a pillanatni teljesítén is változik az

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17.

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17. Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007. április 17. ALAPOK Töltés 1 elektron töltése 1,602 10-19 C 1 C (coulomb) = 6,24 10 18 elemi elektromos töltés. Áram Feszültség I=Q/t

Részletesebben

Villamosság biztonsága

Villamosság biztonsága Óbudai Egyetem ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utótechnikai ntézet Villamosság biztonsága Dr. Noothny Ferenc jegyzete alapján, Összeállította: Nagy stán tárgy tematikája iztonságtechnika

Részletesebben

2. ábra Változó egyenfeszültségek

2. ábra Változó egyenfeszültségek 3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az

Részletesebben

ELEKTROTECHNIKA. Áramkör számítási példák és feladatok. MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék

ELEKTROTECHNIKA. Áramkör számítási példák és feladatok. MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék ELEKTROTECHNIKA Áramkör számítási példák és feladatok Összeállította: Dr. Radács László Gépészmérnöki és Informatikai Kar Villamosmérnöki

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

4. Hálózatszámítás: a hurokmódszer

4. Hálózatszámítás: a hurokmódszer 4. Hálózatszámítás: a hurokmódszer Kirchhoff törvényeinek alkalmazásával bármely hálózatban meghatározhatók az egyes ágakban folyó áramok és a hálózat tetszés szerinti két pontja közötti feszültség. A

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük

Részletesebben

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú 1. laboratóriumi gyakorlat Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú kismintán 1 Elvi alapok Távvezetékek villamos számításához, üzemi viszonyainak vizsgálatához a következő

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben

Elektrotechnika példatár

Elektrotechnika példatár Elektrotechnika példatár Langer Ingrid Tartalomjegyzék Előszó... 2 1. Egyenáramú hálózatok... 3 1.1. lapfogalmak... 3 1.2. Példák passzív hálózatok eredő ellenállásának kiszámítására... 6 1.3. Impedanciahű

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Kétpólusok vizsgálata

Kétpólusok vizsgálata 6. mérés Kétpólusok vizsgálata Bevezetés Az áramkör modellezés és a gyakorlati kapcsolások építése során egyaránt a passzív kétpólusok a legegyszerűbb építőelemek (R, L, C). A gyakorlatban használt kétpólusok

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

Kvázistacionárius jelenségek

Kvázistacionárius jelenségek 0-0 Kvázistacionárius jelenségek Majdnem időben állandó = lassú (periodikus) változás. Időben lassan változó mezők: eltolási áram elhanyagolható a konduktív áram mellet Maxwell-egyenletek: rot E = 1 c

Részletesebben

Elektrotechnika jegyzet

Elektrotechnika jegyzet SZÉCHENY STVÁN EGYETEM ATOMATZÁLÁS TANSZÉK Elektrotechnika jegyzet Elektrotechnika jegyzet Készítette: dr. Hodossy László főiskolai docens előadásai alapján Tomozi György Győr, 4. - - Tartalomjegyzék.

Részletesebben

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r) Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Elektronika Oszcillátorok

Elektronika Oszcillátorok 8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

6. fejezet: Transzformátorok

6. fejezet: Transzformátorok 6. Fejezet Transzformátorok Transzformátorok/1 TARTALOMJEGYZÉK 6. FEJEZET TRANSZFORMÁTOROK 1 6.1. Egyfázisú transzformátorok 4 6.1.1. Működési elv és helyettesítő kapcsolás 4 6.1.. Fázorábra. Feszültségkényszer.

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

1. Egyenáramú feszültséggenerátor teljesítményviszonyainak elemzése

1. Egyenáramú feszültséggenerátor teljesítményviszonyainak elemzése . Eyenáramú eszültséenerátor teljesítményviszonyaina elemzése Áramerıssé: A apocseszültsé (eszültséosztással özvetlenül elírható): A enerátor által ejlesztett teljesítmény: A oyasztóna átadott teljesítmény:

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek

Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek Gingl Zoltán, Szeged, 05. 05.09.9. 9:4 Elektronika - Hálózatszámítási módszerek 05.09.9. 9:4 Elektronika - Alapok 4 A G 5 3 3 B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Huroktörvény általánosítása változó áramra

Huroktörvény általánosítása változó áramra Huroktörvény általánosítása változó áramra A tekercsben indukálódott elektromotoros erő: A tekercs L önindukciós együtthatója egyben a kör önindukciós együtthatója. A kondenzátoron eső feszültség (g 2

Részletesebben

4.1. VÁLTÓÁRAMÚ HÁLÓZATSZÁMÍTÁS

4.1. VÁLTÓÁRAMÚ HÁLÓZATSZÁMÍTÁS 4. VÁTAKOZÓ ÁRAM A váltóáramú hálózatszámításhoz szükséges általános alapismeretek a Váltóáramú hálózatszámítás c. részben vannak leírva, de a legfontosabbakat itt is összefoglaljuk. 4.. VÁTÓÁRAMÚ HÁÓZATSZÁMÍTÁS

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

2. ábra Változó egyenfeszültségek

2. ábra Változó egyenfeszültségek 3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

Villamos hálózati zavarok

Villamos hálózati zavarok - - Dr. arni stván Villamos hálózati zavaro Az utóbbi néhány évben az épülettechnia szaágazatban jelentős változáso övetezte be. Ebbe a szaágazatba sorolju jelenleg az energiatechniát, a világítástechniát,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1 1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

Egyszerű váltakozó áramú körök árama, feszültsége, teljesítménye

Egyszerű váltakozó áramú körök árama, feszültsége, teljesítménye Egyszerű váltakozó áraú körök áraa, feszültsége, teljesíténye Feszültség előállítása indukcióval Hoogén ágneses térben forgó vezetőben és enetben indukálódó feszültség Az órán elhangzottak szerint dőben

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Házi Feladat. Méréstechnika 1-3.

Házi Feladat. Méréstechnika 1-3. Házi Feladat Méréstechnika 1-3. Tantárgy: Méréstechnika Tanár neve: Tényi V. Gusztáv Készítette: Fazekas István AKYBRR 45. csoport 2010-09-18 1/1. Ismertesse a villamos jelek felosztását, és az egyes csoportokban

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

ö ö Ö ü í í í ü ü í í í ű Ö ü ö ú ű ö í ú ú ú ü ö ü í

ö ö Ö ü í í í ü ü í í í ű Ö ü ö ú ű ö í ú ú ú ü ö ü í ü ö ö Ö ü ú ü ö ö ú ö ö ö Ö í ü í í ü ö í ö ü í í í ü ü í ü ö ü ö ö Ö ü í í í ü ü í í í ű Ö ü ö ú ű ö í ú ú ú ü ö ü í ö ö ü í ö ö Ö ü ú ö ö í í ű ú ú ü ö í í ü ö ú ú í ű ú í ú ú í ö ö ö í ű ú ö ú ö ö í

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 3. 1.1. Mekkora áramot (I w, I m ) vesz fel az a fogyasztó, amelynek adatai: U n = 0,4 kv (vonali), S n = 0,6 MVA (3 fázisú), cosφ

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

Marcsa Dániel Transzformátor - példák 1. feladat : Egyfázisú transzformátor névleges teljesítménye 125kVA, a feszültsége U 1 /U 2 = 5000/400V. A névleges terheléshez tartozó tekercsveszteség 0,06S n, a

Részletesebben

Elektronika 2. TFBE5302

Elektronika 2. TFBE5302 Elektronika 2. TFBE5302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3

Részletesebben

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Jelek és rendszerek 1

Jelek és rendszerek 1 Jelek és rendszerek 1 Tantárgykód: Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Jelek és rendszerek 1 tárgyhoz.

Részletesebben

Vízgépészeti és technológiai berendezésszerelő Épületgépészeti rendszerszerelő

Vízgépészeti és technológiai berendezésszerelő Épületgépészeti rendszerszerelő Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2011. (VII. 18.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27 Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007 március 27 Ellenállások R = U I Fajlagos ellenállás alapján hosszú vezeték Nagy az induktivitása Bifiláris Trükkös tekercselés Nagy mechanikai

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Rendszer és irányításelmélet Rendszerek idő és frekvencia tartományi vizsgálata Irányítástechnika Budapest, 29 2 Az előadás felépítése

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK zonosító ÉRETTSÉGI VIZSG 2016. május 18. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSELI VIZSG 2016. május 18. 8:00 z írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMERI ERŐFORRÁSOK

Részletesebben