A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)"

Átírás

1 Villamosságtan

2 A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q 4π

3 Az elektosztatika I. alaptövénye : Ψ = E d A E A cos( ) E d A = E d A Ed A Gauss tétele : E d A = zát felülete Q

4 A ponttöltés tee (levezetés) d A E = E da cos( E d A) ( ) ( ) ( ) Q Téeősség E( ) Zát felülete cos = 1 E da= E da = E da = ( ) ( ) ( ) Gömb sugaa: d A E ( ) = 4 π E = = ( ) ΣQ Q E 1 = 4π ( ) Q

5 Az elektosztatika II alaptövénye : W = F d = Q E d = Q E d l l l E d = Zát göbe vonal menti integáltja Konzevatív eőté (övénymentes) : A munkavégzés csak a kezdő és a végponttól függ. E = gad ( ) ( ) ( ) = E d = Elektomos potenciál W Q Az egységnyi munka : -ból -be viszünk egy ponttöltést. [ ] 1J = 1V = 1 C

6 Ponttöltés potenciálja: Q 1 d ( ) = 4π ( ) Q d Q 1 1 = = 4π 4π = ( ) Q 1 = 4π Ekvipotenciális felület : a felület minden pontja közt, a potenciálkülönbség nulla. Feszültség = Potenciálkülönbség

7 Elektomos dipólus : P α -Q +Q l Ql = p 4π P= Q l cosα ( ) Dipólusmomentum vekto Töltéssűűség : σ Q Q = = A A C m [ σ ] = Kapacitás : Kondenzáto Q = C _

8 Gömbkondenzáto kapacitása : C = 4π 1 1 R R 1 Síkkondenzáto kapacitása : 1C 1F 1V = C = d A Kondenzátook páhuzamos kapcsolása : faad C 1 C = C + C e 1 C Kondenzátook soos kapcsolása : = + + C e C C C 1 3 C 1 C C 3

9 Töltéseloszlás kondenzátookon : +Q -Q +Q -Q +Q -Q Végtelen síklap és ezen a lapon a töltéseloszlás homogén l d A E( ) E ( ) + d E A ( ) + + b + b Téeősség Ψ = E da= E da = E da = ( ) ( ) ΣQ = E( ) l b =

10 E ( ) da cos9 = Tehát, az alsó, felső és oldalsó lapoka a fluxus nulla. Ψ = E l b ( ) E ( ) = = l b σ σ l b σ Ψ = E l b = Q ( ) lap

11 Síkkondenzáto kapacitása : σ σ +σ _ -σ + d _ + _ + _ + σ _ + _ + _ + _ A téeő, itt + _ mindenhol nulla σ A téeő, itt mindenhol: = σ σ σ

12 +Q -Q d Q E = A A σ = Q A = E d = A d Q C = C = Q d A Q = = C Q A kondenzáto enegiája : 1 Q 1 1 W = = Q = C C Enegiasűűség : egységnyi téfogata jutó enegia C = Q W ω = = V 1 E

13 Elektosztatika anyagi közegben : C = C Dielektomos állandó (elatív pemittivitás) Dielektomos polaizáció : D = E + P d P P = dv E Eltolási vekto Polaizációs vekto

14 A Coulomb tövény módosulása : F 1 Q = 1 1 4π Q Sík kondenzáto módosult kapacitása : C sík = A d Az elektosztatika alaptövényei dielektikumokban : D d A= ΣQ D = E A l Ed= ω 1 1 E D = E =

15 Magnetosztatika : a nyugvó elektomos töltés nem lép kölcsönhatásba a nyugvó mágneses töltéssel. mágneses póluseősség : É, D mágneses Coulomb tövény : F 1 m m = 1 1 4πµ mágneses téeőség : F H = m ahol, µ 7 { µ } = π 4 1 [ m] 1 webe a vákuum mágneses pemeabilitása = = Wb

16 A magnetosztatika alaptövényei: I. A H d A = (csak mágneses dipólusok vannak monopólus nincs) II. l H d = A sztatikus mágneses té, foásmentes, konzevatív eőté. Magnetosztatika anyagi közegben : F 1 m1 m = πµ µ 4 ahol, µ elatív mágneses pemeabilitás

17 mágneses indukció vekto : B = µ µ H [ B ] = 1tesla = 1T Mágneses polaizáció típusai : Diamágneses anyagok: µ < 1 (pl.: éz, ólom, víz) Paamágneses anyagok: µ > 1 (pl.:alumínium, platina, oxigén) Feomágneses anyagok: µ > > 1 (pl.: vas, kobalt) Cuie pont: az a hőméséklet, ahol a feomágneses anyagok elvesztik a mágneses képességüket.

18 Stacionáius ( egyen )-áamok : I dq dt = [ ] 1ampe 1A C A I = = = I J n da j d A = = Ohm tövénye : A s áamsűűsség : A m [ j] = = R I l R = ρ A [ R ] = 1ohm = 1Ω fajlagos ellenállás (anyaga jellemző)

19 Elektomos vezető képesség : G 1 R = [ G] = 1siemens = 1 S A hőméséklet hatása az ellenállása : ( α ) R R t = 1+ hőméséklet koefficiens Joule tövény : a munka : W = Q a teljesítmény : [ P] = 1watt = 1 W P = = I t W P = = R I R

20 Elektomos hálózatok : Kichhoff tövényei : I. (csomóponti töv.) : I i = II. (huok töv.) : A gejesztési tövény (Ampee-féle) : H d l = I n + I R = n bi i i i= 1 i= 1 A zát göbén átfolyó áamok összege vonal menti integáltja egyenes, végtelen hosszú vezető mágneses tee: (Biot-Savt-féle tövény Stacione áam mágneses tee) I H = πr

21 Végtelen hosszú egyenes vezető mágneses tee ( levezetés ) : I H d = I H( ) H ( ) H da H( ) H d = I H π = H = I π I B H d cos( H, d) = µ µ B= µ H = µ µ H I π

22 Szolenoid mágneses tee : A I l szolenoid mágneses tee: ( hosszú egyenes tekecs ) H ni = n = tekecs menetszáma l l = a tekecs hossza

23 Mágneses té hatása az áama (Loentz-eő) : F = I l B ( ) F = Q E+ Q v B ( ) dóta töltése

24 Faaday-féle indukciótövény : Φ= B da A i dφ = dt Lenz-tövény (Indukált áam iánya) Váltakozó áam : t

25 ω A B α α = ω t B cosα = B cosωt Φ = A B cosωt dφ i = = A B ω sinωt = max sinωt dt

26 Az effektív éték: = sin ωt ( t) ω = π T I = = R sin t ω R I = I sin ω t T t P = I = = R I R ( t ) eff t t+dt T t ( ) t dq = dt R

27 T ( t ) eff Q = dt = T R R T 1 eff sin T = ω t dt A sinus feszültség effektív étéke (levezetés) : eff T 1 T = ( t) dt α = α α = α α = α cos cos sin 1 sin sin 1 sin T T sin ω 1 cos ω t t dt = dt = dt dt t T T T T 1 cos ωt 1 sin ωt + = 4ω T

28 1 T 1 = eff T = eff = Teljesítmény illesztés : Rb R I = R + R k = I R = R R + Rb b

29 I R k R P k R b R

30 Pk = K I = R R + Rb R R + R R b b R b ( R + R ) 4 R b b b ( ) 4RR R + R b R b R + R 4RR = R + RR + R 4RR = ( ) = R RR + R b b b b b b b ( R R ) tehát, ha R = Rb-vel akko a P maximális b étékét éi el.

31 A tanszfomáto : = sin ω t = sin ω t ( t ) max ω = π T n A n1 I( t ) l

32 B = n1i µ l Φ = B A = µ µ n I 1 l ( t ) A d Φ n A di µ µ dt l dt 1 = = n di = L dt 1 ( t) L 1 Kölcsönös induktivitási együttható dφ 1 = n1 dt 1 = µ µ l dt L n A di Öngejesztési feszültség

33 1 di = L dt L önindukciós együttható L = 1 heny = 1H n n A di µ µ 1 n = l dt = 1 n1 A di n1 µ µ l dt n n = 1 1

34 Maxwell egyenletek : I. II. III. IV. a, b, D d A = Q dφ E d = dt B d A = dψ B d = µ I + µ dt B = µ H = µ µ H D = E = E Q E da= E H da= dψ H d = I + dt Izotóp endszee

35 Izotóp: az anyag minden iányban egyfomán viselkedik µ = 4π 1 7 = 8,854 1 = 1 4π k Vs Am 1 As Vm { k} = 9 1 9

36 Az eltolási áam ( levezetése ) : B H d = I B d = Iµ µ = µ I Gauss tételéből I = dq dt I ' dq = = A dt dq A de AdE = = dt d Ψ dt Eltolási áam B d = I + d dt µ µ Ψ

37 Az elektomágneses hullámok tejedési sebessége : ds E B l K da d Φ B ds l E l = = dt dt d Ψ E ds l B l = µ dt v E = B v M.. µ E v= B M.4.

38 M.. M.4. E = B v= µ E v µ 1 = v 1 v = , π az elektomágneses hullámok tejedési sebessége vákuumban 8 m s A töésmutató levezetése : c c 1 1 = = µ µ µ 1 = c µ vák C 1 = C vák µ 1 n =

39 Poynting-vekto ω ED H B 1 1 de dv = + = E + B = µ 1 S = E H = E B µ ( ) Poynting-vekto B E S

40 Kvázistacionáius hálózatok : C R L Q + i = I R + C di L = I R + dt Q C di Q L + R I + = dt C I = dq dt

41 d Q dq Q dt dt C L + R + = d x dx m + c + D x = F dt dt i i R Q Q + i Q L + LC = = i i i Q + β Q + ω Q = β = R L ω = 1 LC Q = Ae sin ωt + α βt ( ) ( t) ha, β < ω ω = ω β

42 Csillapított ezgőmozgás : R = β = ω = 1 LC π 1 = T LC Váltakozó áamú hálózatok : ^ R L C = cosωt + j sin ωt = e ( ) t T = Rezgőkö saját fekvenciája π LC Thomson képlet di L + RI + I dt = dt C jωt 1 t i ( Komplex geneáto feszültség ) ^ ^ ^ ^ 1 t L I + R I + I dt = C ( j = i,imagináius egység) ( t) sinωt cosωt

43 megoldás : ^ I ^ j t I e ω j t I = jω I e ω = ω i ^ ^ ^ ^ ^ jωt jωt jωt Lj I e + R I e + I e = ^ 1 I jωt + R + = jωt ^ I ^ ^ ^ ^ 1 jω = = 1 ^ jωt + R + Z komplex impedancia jωt, t ^ 1 jωt I dt = I e = jω ^ ^ I jω Impedancia ( váltakozó áamú ellenállás) ^ 1 = = + ω Z Z R L Cω

44 Az RLC kö legkisebb ellenállása : X X ^ I L C ^ Z ( t ) = = Lω 1 Cω j = Z e ϕ ^ Induktív eaktancia és Kapacitív eaktancia 1 Lω X L X C tgϕ = = Cω R R jωt e = = = ^ j Z e Z Z ϕ e ( ϕ ) jωt ha, ( ) = sin t ωt ^ I j I t Z ( ) = m ( ) = sin t t ( ω ϕ )

45 Rezonancia : RLC kö ellenállása minimális ( ) Z = R + X X = R min L C I max 1 1 = Lω ω = Thomson képlet Cω LC RLC kö : R L C X ^ ^ R L = R X = Lω j ^ 1 1 X C = = j C ω j C ω ^ ^ ^ ^ 1 ω Z = X R + X L + X C = R + L j j C ω

46 Páhuzamos RLC köök eedő impedanciája : R1 L1 C1 R L C ^ Z ^ Z = + ^ j Ze R + jl ω R + jl ω = + ^ ^ ^ Ze Z Z 1 1 C1ω C 1 j ω

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,

Részletesebben

Fizika és 14. Előadás

Fizika és 14. Előadás Fizika 11 13. és 14. Előadás Kapacitás C Q V fesz. méő Métékegység: F C, faad V Jelölés: Síkkondenzáto I. Láttuk, hogy nagy egyenletesen töltött sík tee: E σ ε o E ε σ o Síkkondenzáto II. E σ ε o σ Q A

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos

Részletesebben

Időben változó elektromos erőtér, az eltolási áram

Időben változó elektromos erőtér, az eltolási áram őben változó elektomos eőté, az olási áam Ha az ábán látható, konenzátot tatalmazó áamköbe iőben változó feszültségű áamfoást kapcsolunk, akko az áamméő áamot mutat, annak ellenée, hogy az áamkö nem zát

Részletesebben

A magnetosztatika törvényei anyag jelenlétében

A magnetosztatika törvényei anyag jelenlétében TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok

Részletesebben

Fizika és 16 Előadás

Fizika és 16 Előadás Fizika 5. és 6 lőadás Önindukció, RL kö, kölcsönös indukció, mágneses té enegiája, tanszfomáto, mágnesség, Ampèe tövény általános alakja Mágneses adattáolás Az önindukció B ds µ o s j I j µ B oni l Szolenoidban

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.) Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I

Részletesebben

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i 0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

4. STACIONÁRIUS MÁGNESES TÉR

4. STACIONÁRIUS MÁGNESES TÉR 4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

Elektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp

Elektromos állapot. Görög tudomány, Thales ηλεκτρν=borostyán (elektron) Elektromos állapot alapjelenségei. Elektroszkóp Elektomos állapot Göög tudomány, Thales ηλεκτρνboostyán (elekton) Elektomos állapot alapjelenségei Kétféle elektomos állapot pozitív üveg negatív ebonit Elektoszkóp Tapasztalatok Testek alapállapota semleges

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben

László István, Fizika A2 (Budapest, 2013) Előadás

László István, Fizika A2 (Budapest, 2013) Előadás László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben

Részletesebben

Elektrosztatika (Vázlat)

Elektrosztatika (Vázlat) lektosztatika (Vázlat). Testek elektomos állapota. lektomos alapjelenségek 3. lektomosan töltött testek közötti kölcsönhatás 4. z elektosztatikus mezőt jellemző mennyiségek a) elektomos téeősség b) Fluxus

Részletesebben

FIZIKA I Villamosságtan

FIZIKA I Villamosságtan FZKA Viamosságtan D. ványi Miósné egyetemi taná 8. óa Készüt az ERFO-DD-Hu-- szeződésszámú pojet támogatásáva, 4. PTE PMMK Műszai nfomatia Tanszé EA-V/ . Foytonossági fetétee-ét mágneses anyag hatáfeüetén

Részletesebben

Négypólusok helyettesítő kapcsolásai

Négypólusok helyettesítő kapcsolásai Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési

Részletesebben

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH : ielektikumok (kibővített óavázlat) z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alaptövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet

BSC fizika tananyag MBE. Mechatronika szak. Kísérleti jegyzet SC fizika tananyag ME Mechatonika szak Kíséleti jegyzet Készítette: Sölei József . Elektosztatika.. Elektosztatikai alapjelenségek vákuumban. z elektomos töltés. Coulomb Tövény z elektosztatika a nyugvó

Részletesebben

Kvázistacionárius jelenségek

Kvázistacionárius jelenségek 0-0 Kvázistacionárius jelenségek Majdnem időben állandó = lassú (periodikus) változás. Időben lassan változó mezők: eltolási áram elhanyagolható a konduktív áram mellet Maxwell-egyenletek: rot E = 1 c

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

X. MÁGNESES TÉR AZ ANYAGBAN

X. MÁGNESES TÉR AZ ANYAGBAN X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének

Részletesebben

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007 ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

3. GYAKORLATI ELEKTROMOSSÁGTAN

3. GYAKORLATI ELEKTROMOSSÁGTAN 3. GYKORLI ELEKROMOSSÁGN 1. lapfogalmak z elektomos töltés z anyagi testek általában elektomosan semlegesek, de egyszeű fizikai módszeel (pl. dözselektomosság) pozitív vagy negatív töltésűvé tehetők. z

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN

ELEKTROMOSAN TÖLTÖTT RÉSZECSKÉKET TARTALMAZÓ HOMOGÉN ÉS HETEROGÉN RENDSZEREK A TERMODINAMIKÁBAN ELEKTOKÉMI ELEKTOMOSN TÖLTÖTT ÉSZECSKÉKET TTLMZÓ HOMOGÉN ÉS HETEOGÉN ENDSZEEK TEMODINMIKÁN Homogén vs. inhomogén rendszer: ha a rendszert jellemz fizikai mennyiségek értéke független vagy függ a helytl.

Részletesebben

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ.

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ. 5.A 5.A 5.A Szinszos mennyiségek ezgıköök Ételmezze a ezgıköök ogalmát! ajzolja el a soos és a páhzamos ezgıköök ezonanciagöbéit! Deiniálja a ezgıköök hatáekvenciáit, a ezonanciaekvenciát, és a jósági

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

ELEKTROKÉMIA. Alapmennyiségek. I: áramersség, mértékegysége (SI alapegység): A:

ELEKTROKÉMIA. Alapmennyiségek. I: áramersség, mértékegysége (SI alapegység): A: ELEKTOKÉMIA Alapmennyiségek I: áramersség, mértékegysége (SI alapegység): A: A az áram erssége, ha 2 végtelen hosszú, elhanyagolható átmérj vezetben áramló konstans áram hatására a két vezet között 2 0-7

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Elektromosságtan. III. Szinuszos áramú hálózatok. Magyar Attila

Elektromosságtan. III. Szinuszos áramú hálózatok. Magyar Attila Eletromosságtan III. Szinuszos áramú hálózato Magyar Attila Pannon Egyetem Műszai Informatia Kar Villamosmérnöi és Információs Rendszere Tanszé amagyar@almos.vein.hu 2010. április 26. Átteintés Szinuszosan

Részletesebben

Fizika 1 Elektrodinamika

Fizika 1 Elektrodinamika Kály-Kullai Kristóf (kakukri@eik.bme.hu) Fizika 1 Elektrodinamika Csak menjek át valahogy! Rövidített jegyzet 1. Maxwell-egyenletek, elektrodinamika felosztása Maxwell-egyenletek Maxwell-egyenletek lokális

Részletesebben

MIB02 Elektronika 1. Passzív áramköri elemek

MIB02 Elektronika 1. Passzív áramköri elemek MIB02 Elektronika 1. Passzív áramköri elemek ELLENÁLLÁSOK -állandóértékű ellenállások - változtatható ellenállások - speciális ellenállások (PTK, NTK, VDR) Állandó értékű ellenállás Felépítés: szigetelő

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

A stacionárius elektromos áram és a mágneses tér kapcsolata

A stacionárius elektromos áram és a mágneses tér kapcsolata A stacionáius elektomos áam és a mágneses té kapcsolata I. Az áamtól átfolyt vezető mágneses tee. Oested és Ampèe kíséletei. Az elektomos és mágneses jelenségek sokban hasonlítanak egymása, és ezét égóta

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Elektrotechnika 9. évfolyam

Elektrotechnika 9. évfolyam Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Tantárgycím: Kísérleti Fizika II. (Elektrodinamika és Optika)

Tantárgycím: Kísérleti Fizika II. (Elektrodinamika és Optika) Eötvös Loránd Tudományegyetem Természettudományi Kar TANTÁRGYI ADATLAP és tantárgyi követelmények 2006/07 Földtudományi Szak Kötelező tantárgy Tantárgycím: Kísérleti Fizika II. (Elektrodinamika és Optika)

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

2. STATIKUS ELEKTROMOS TÉR

2. STATIKUS ELEKTROMOS TÉR . STATIKUS ELEKTROMOS TÉR A nyugvó töltések iőben állanó elektomos teet keltenek amelyet statikus elektomos tének az elektomágneses témoellt elektosztatikus tének nevezzük. Az elektosztatikus té jelenlétét

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

ELÕADÁSVÁZLAT ELEKTRONIKAI ALAPISMERETEK

ELÕADÁSVÁZLAT ELEKTRONIKAI ALAPISMERETEK Gábor Dénes Fõiskola ELÕADÁSVÁZLAT 005 Vezetõtanár: DR. DOMONKOS SÁNDOR SI RENDSZER ALAPEGYSÉGEI Mennyiség Egység neve Egység jele Jelölése képletben út, hosszúság, távolság méter m s, l, r idõ másodperc,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint ÉETTSÉGI VIZSGA. május. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ NEMZETI EŐOÁS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

Elektromechanika. 6. mérés. Teljesítményelektronika

Elektromechanika. 6. mérés. Teljesítményelektronika Elektromechanika 6. mérés Teljesítményelektronika 1. Rajzolja fel az ideális és a valódi dióda feszültségáram jelleggörbéjét! Valódi dióda karakterisztikája: Ideális dióda karakterisztikája (3-as jelű

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27 Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007 március 27 Ellenállások R = U I Fajlagos ellenállás alapján hosszú vezeték Nagy az induktivitása Bifiláris Trükkös tekercselés Nagy mechanikai

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

EHA kód:...2009-2010-1f. As,

EHA kód:...2009-2010-1f. As, MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza

Részletesebben

1. tétel: A harmonikus rezgőmozgás

1. tétel: A harmonikus rezgőmozgás 1. tétel: A harmonikus rezgőmozgás 1. A harmonikus rezgőmozgás kinematikája 1.a. A kitérés-idő függvény származtatása egyenletes körmozgásból 1.b. A sebesség-idő függvény származtatása egyenletes körmozgásból

Részletesebben

Elektromosságtan. II. Általános áramú hálózatok. Magyar Attila

Elektromosságtan. II. Általános áramú hálózatok. Magyar Attila Elektromosságtan II. Általános áramú hálózatok Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010. március 22. Áttekintés

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17.

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17. Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007. április 17. ALAPOK Töltés 1 elektron töltése 1,602 10-19 C 1 C (coulomb) = 6,24 10 18 elemi elektromos töltés. Áram Feszültség I=Q/t

Részletesebben

FIZIKA FELADATLAP Megoldási útmutató

FIZIKA FELADATLAP Megoldási útmutató 1. C 2. A 3. X 4. B 5. C 6. D 7. D 8. C 9. D 10. B 11. D 12. C 13. A 14. C 15. C 16. D 17. C 18. C 19. C 20. B FIZIKA FELADATLAP Megoldási útmutató I. RÉSZ Összesen 1 1. téma II. RÉSZ Atommodellek: Thomson

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Az SI mértékegységrendszer

Az SI mértékegységrendszer PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Az SI mértékegységrendszer http://hu.wikipedia.org/wiki/si_mértékegységrendszer 1 2015.09.14.. Az SI mértékegységrendszer Mértékegységekkel szembeni

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

2.11. Feladatok megoldásai

2.11. Feladatok megoldásai Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz

Részletesebben

Marcsa Dániel Transzformátor - példák 1. feladat : Egyfázisú transzformátor névleges teljesítménye 125kVA, a feszültsége U 1 /U 2 = 5000/400V. A névleges terheléshez tartozó tekercsveszteség 0,06S n, a

Részletesebben

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika 14. Elektromosságtan és mágnességtan az életfolyamatokban 3.. Bari Ferenc egyetemi tanár SZTE ÁOK-TTK Orvosi Fizikai és Orvosi nformatikai ntézet Szeged, 2011. december 19. 2. DEMO eredménye

Részletesebben

Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei:

Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei: Egyfázisú hálózatok Elektrotechnika Dr Vajda István Egyfázisú hálózatok komponensei: Egyfázisú hálózatok Feszültség- és áramforrások Impedanciák (ellenállás, induktivitás, and kapacitás) A komponensek

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. május 23. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok

Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok TÓTH.: Dielektikumok (kibővített óavázlat) 1 z elektosztatika tövényei anyag jelenlétében, dielektikumok z elektosztatika alatövényeinek vizsgálata a kezdeti időkben levegőben tötént, és a különféle töltéselendezések

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

0. Matematika és mértékegységek

0. Matematika és mértékegységek . Matematka és métékegységek Defnált fogalom Meghatáozás Kö keülete, teülete K = π [m], = π [m ] églalap keülete, teülete K = (a+b) [m], = ab [m ] Deékszögű háomszög keülete, teülete K = a+b+c [m], = ab

Részletesebben

Elektrotechnika- Villamosságtan

Elektrotechnika- Villamosságtan Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 08 ÉETTSÉGI VIZSG 008. május 6. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM Egyszerű, rövid

Részletesebben

Mérőátalakítók Összefoglaló táblázat a mérőátalakítókról

Mérőátalakítók Összefoglaló táblázat a mérőátalakítókról Összefoglaló táblázat a mérőátalakítókról http://www.bmeeok.hu/bmeeok/uploaded/bmeeok_162_osszefoglalas.pdf A mérőátalakító a mérőberendezésnek az a része, amely a bemenő nem villamos mennyiséget villamos

Részletesebben