A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei"

Átírás

1 A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív. e egyensúlyi helyzet egléte azaz olyan e pont(ok létezése elyre F(. e e egyensúlyi helyzet stabilitása vagyis az erő egyensúlyi helyzet környezetében az egyensúlyi helyet felé utat. Helyzeti energia: U ( F( ξ dξ e F( U '( A echanikai energia egarad: du d A potenciális energiával egfogalazva: Rezgés akkor jön létre ha U(-nek (lokális iniua van K + U v + U ( E Ez a t t kor is igaz így a teljes energiát a kezdeti feltételek eghatározzák: E K + U v + U ( Haronikus rezgés dinaikus leírása F( Mozgásegyenlet: && U ( & &+ ω a haronikus rezgés differenciálegyenlete ω ( t Asin( + α Az A és α állandókat a kezdeti feltételek határozzák eg.

2 A olekulákat összetartó erők és potenciális energiájuk Az egyensúlyi helyzet körüli kis kitérésekre az erő egyenessel a potenciális energia parabolával közelíthető. Ezért kis kitérésekre a rezgés jó közelítéssel haronikus rezgés Nagyobb kitérésekre anharonikus rezgés alakul ki. Rezgések létrejöttének dinaikai szeléltetése Erő F [N] du 6 F( U '( d 3 [c] 6 A ozgás tartoánya A forduló pontoknál K Ezért itt E K + U U U( E Helyzeti (potenciális energia U [J] 6 E K + U U ( F( ξ dξ e Szeléltetés n_har-rez-.avi [:5] n_har-rez-.avi [:5] n_har-rez-3.avi [:5] U K 3 [c] Kísérlet Pohl-féle készülék nehezékkel ellátva [:]

3 Anharonikus rezgések szeléltetése forgási rezgésekkel U ( ϕ ϕ + g R(cosϕ M U ( ϕ ϕ + gr sin ϕ Mozgásegyenlet: Θϕ && ϕ + gr sin ϕ parabolával közelíthető parabolával közelíthető U( ϕ U( ϕ + U ( ϕ( ϕ ϕ + U ( ϕ( ϕ ϕ U ( ϕ U( ϕ U( ϕ + U ( ϕ( ϕ ϕ

4 A súrlódás hatására csillapodó rezgés alakul ki. U( U( és két egyást követő fordulópont. Munkatétel: v A súrlódási erő unkája indig negatív: v W v & és v & W F + W S A rugalas erő unkája kifejezhető U(-l: U U ( W S W F < ( W S W F U ( U ( < U ( < U ( A aiális kitérés csökken az idővel csillapodás lép fel. Szeléltetés Csill-rez_kicskocsi_rövid.avi [:9] < CsillRez-Pohl_rövid.avi [:] A sebességgel arányos csillapító erő A töegpontra ható erők: Mozgásegyenlet: & F + FS k& Az egyenlet egoldásainak típusai β < ω ( t Ae sin( + α ahol esetén csillapodó rezgés ω ω β Az A és α állandókat a kezdeti feltételek határozzák eg. F rugalas erő && + β& + ω A A/ A/e F S ahol k& súrlódási erő ω és A csillapodásra jellező: τ csillapodási idő β k β Átírható a következő alakba is: ( t c e cos + c e sin A/ τ τ 3τ τ 5τ t β > ω β ω esetén aperiodikus ozgás esetén aperiodikus határeset λt λ t ( t c e + c e λ β ± β ω ( t c e + c te. <

5 A csillapodó rezgés tulajdonságai és jellező ennyiségei A csillapodás értékét a β T csillapítási állandó és a τ A /β csillapodási idő jellezi. T/ A aiális kitérések és a burkoló érintési helyei T/ időközönként követik egyást. Az egyensúlyi helyzeten T/ időnként halad át. Az egyensúlyi helyzetből a aiuig azonban T/-nél rövidebb a aiutól a egyensúlyi helyzetig T/-nél hosszabb idő telik el. 3 5 k + τ Ae 3 5 τ Ae T ( t Ae sin( + α T 6 T T π ω A szoszédos azonos oldali aiális kitérések hányadosa állandó. Ez a K hányados a csillapodási hányados: 3 k k K K és K K T/ T/ k + t Logaritikus dekreentu: K 3 ( t ( t + T Ae Ae β β( t + T Λ ln K t sin( + α sin[ ω( t + T + α] T e β Λ βt Kényszerrezgés rezonancia A rezgő rendszerre rugalas erőn és a sebességgel arányos súrlódási erőn kívül ég egy külső zavaró periodikus erő is hat: F k& F sin. Mozgásegyenlet: & F + F S + FG Kísérleti szeléltetés Töeg-rugó rendszer Pohl-féle készülék Ingák Az egyenlet egoldása: ( t Asin( δ + ( t A k& + F sin cs a ( ω ω + β ω rugalas erő F S &&+ β& + ω a sin ω súrlódási erő k β F G és ahol Kény-rez_Pohl_rövid.avi [:5] gerjesztő erő F a Kény-rez_ingák_rövid.avi [:57] A csillapodó rezgés differenciálegyenletének egoldása bizonyos idő után elhanyagolható (tranziens jelenségek. Állandósult rezgés kényszerrezgés frekvenciája egegyezik a gerjesztés frekvenciájával! Az aplitúdó és a fáziskésés függ a gerjesztés frekvenciájától βω tg δ ω ω

6 A egoldás eghatározása forgó vektorokkal Ha ( t Asin( δ akkor & ( t Aω cos( δ Aω sin( δ + π & & ( t Aω sin( δ Aω sin( δ + π Az & & + β& + ω a sin egyenlet azt fejezi ki hogy a bal oldalán álló haronikus rezgések összege a jobb oldalon látható haronikus rezgés. A rezgések összeadását szeléltető forgó vektorok a következők: tg δ βωa Aω Aω δ ω A a ω A βωa Pitagorasz-tétel: a ( Aω Aω + (βωa A βω tg δ ω ω a ( ω ω + β ω Rezonanciagörbe A [F /] 8 6 Ha Ω ω ω A Q 5 és F ( Ω ω Q β + ( Ω Q Q Q 5 Q jósági tényező ennyiségeket bevezetjük akkor egyszerű száolással: δ [rad] Ω tgδ Q Ω Q Q Q Ω ω/ω.5. Ω ω/ω A rezonanciagörbének Q nagyobb értékeire éles aiua van az ω ω helyen! Ez a rezonancia jelensége ekkor aiális a kialakult kényszerrezgés aplitúdója. Rezonancia akkor lép fel ha gerjesztés frekvenciája egegyezik a rezgő rendszer sajátfrekvenciájával (ω ω. π π

7 Rezonancia katasztrófa Az előző kísérletek és a száolás is azt utatja hogy rezonancia esetén ég az igen kicsi gerjesztés is igen nagy aplitúdójú rezgésekre kényszerítheti a rendszert. Ezt a jelenséget épületek hidak és járűvek (stb tervezésénél figyelebe kell venni! Ilyen külső gerjesztő hatásként léphetnek fel például a szél következtében periodikusan leváló örvények földrengés során a talaj rezgései stb. Tacoa-híd [3:5] A kényszerrezgések fontosabb alkalazásai igen kicsi hatások kiutatása (pl. Eötvös-effektus rezgések frekvenciájának eghatározása (pl. nyelves frekvenciaérő sajátrezgések kiutatása és sajátfrekvenciák eghatározása rezgések regisztrálása földrengések regisztrálása (szeizográf (stb. Csatolt rezgések Kísérlet kiskocsikkal ( [:37] k O O Hogyan agyarázhatjuk a bonyolult ozgást? Mozgásegyenletek && && k( k( Kísérlet kettős-ingával [:] Ekkor a jelenség tanulányozása egyszerűbb ivel a két csatolt rezgő rendszer teljesen azonos a csatolás gyengébb. Szeléltetés Azonos fázisú sajátrezgés Ellentétes fázisú sajátrezgés a ozgásegyenletek egyszerűsödnek A kísérlet értelezése Az ingák ozgása lebegés! Ez azt utatja hogy egyszerre végeznek két különböző de közeli frekvenciájú haronikus rezgést hiszen a lebegés két ilyen rezgés összege. A kezdeti feltételek egfelelő egválasztásával elérhetjük hogy a két rezgés közül csak az egyik utatkozzon eg.

8 A ozgásegyenletek egoldása azonos oszcillátorok esetén && && k( k( ( && + & ( && & + k( + k( && + & ( + + k && & ( & & + ω ahol + & & + ω ahol és és ω ω + k ( t A sin( + α ( t A sin( + α és az u.n. norál koordináták ( + ( A A ( t sin( + α + sin( + α A A ( t sin( + α sin( + α Tehát a töegpontok ozgása két haronikus rezgés összege. Ha a csatolás gyenge ( k «akkor a két frekvencia közeli így lebegés jön létre. Hogyan érhetjük el hogy a ozgásban csak az egyik rezgés jelenjen eg? A -hez vagy -höz tartozó rezgés eltűnéséhez nyílván A vagy A szükséges. A esetén csak az ω körfrekvenciájú rezgés van jelen. ( ( ( ( ( A & ( & ( & ( v ( v( ( t ( A sin( + α ( t ( A sin( + α Azaz indkét töegpont ω körfrekvenciájú vagyis azonos frekvenciájú haronikus rezgést végez és a rezgések fázisa egegyezik! A esetén viszont csak az ω körfrekvenciájú rezgés jelenik eg! A ( ( + ( & ( & ( + & ( ( ( v( v( ( t ( A sin( + α ( t ( A sin( + α Azaz indkét töegpont ω körfrekvenciájú vagyis azonos frekvenciájú haronikus rezgést végez és a rezgések fázisa ellentétes! Sajátrezgések a rezgő rendszer azon rezgései ikor a rendszer inden tagja azonos frekvenciájú haronikus rezgést végez azonos vagy ellentétes fázisban. A sajátrezgések frekvenciáit sajátfrekvenciáknak nevezik. Megutatható hogy általában egy f szabadági fokú rendszernek f darab sajátrezgése van. A rendszer általános ozgása a sajátrezgéseinek az összege (szuperpozíciója.

9 Ne azonos oszcillátorok esetén a ozgásegyenletet nehezebb egoldani azonban ekkor is egutatható hogy a töegpontok ozgása két haronikus rezgés összege ( t c A sin( + α + c A sin( + α ( t c A sin( + α + c A sin( + α A sajátfrekvenciák és a hozzájuk tartozó sajátrezgések ozgáshoz való hozzájárulását leíró c c c és c együtthatók eghatározása nehezebb. A sajátrezgések kísérleti szeléltetése kiskocsikkal (Pasco 5 kg: 39 c Mért adatok: k 373 N/ N/ 5 kg 7 kg V-scope Pasco sín 65 c k 59 N/ Száolt sajátkörfrekvenciák: ω 68 Hz (T 76 s ω 97 Hz (T 5 s Az együtthatók viszonya: c 3333 c c 57 c Azonos fázisú sajátrezgés ( Ellentétes fázisú sajátrezgés ( ( 3333 ( v( 3333 v( ( 57 ( v( 57 v( ( ± 8 c ( ± 6 c v ( v( ( ± 35 c ( 6 c v ( v( Belátható hogy a rezgő rendszer echanikai energiája a sajátrezgések energiáinak összege. haronikus rezgés energiája: E v + ( & + ω A vizsgált rendszer energiája E v + v k ( esetén E & + & k ( Az energiát egadó képletbeli ennyiségeket + ( + kifejezhetjük a norálkoordinátákkal: ( E [ ] [ ] & & + & & + & & & & + & & & + & + + & k + & & [ & + ω ] + µ [ + ω ] E µ & + k & + f Általánosabban f szabadsági fokú rendszer esetén: E µ i ( & i + ωi i i

10 További példák és alkalazások csatolt rezgésekre Wilberforce-inga Paraéteres inga Rezgések csillapítása (hajók: Frah-féle tank felhőkarcolók

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Rezgések. x(t) x(t) TÓTH A.: Rezgések/1 (kibővített óravázlat) 1

Rezgések. x(t) x(t) TÓTH A.: Rezgések/1 (kibővített óravázlat) 1 TÓTH A.: Rezgések/1 (kibővített óravázlat) 1 Rezgések A rezgés általános érteleben valailyen ennyiség értékének bizonyos határok közötti periodikus vagy ne periodikus ingadozását jelenti. Mivel az ilyen

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Rezgések és hullámok

Rezgések és hullámok Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

Rezgőmozgás, lengőmozgás

Rezgőmozgás, lengőmozgás Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást

Részletesebben

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

A harmonikus rezgőmozgás

A harmonikus rezgőmozgás Esszé a rezgőozgásról A haronikus rezgőozgás A környezetünkben sok periodikus (isétlődő) jelenséggel találkozunk. Ezen jelenségek egy része a rezgések közé sorolható. Például: rezgő gitárhúr, billegő teáscsésze,

Részletesebben

Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. Rezgőmozgások Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. , Egyirányú 2 / 66 Rezgőmozgásnak nevezünk egy mozgást, ha van a térnek egy olyan pontja, amihez a mozgást végző test többször

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Mechanikai rezgések = 1 (1)

Mechanikai rezgések = 1 (1) 1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek

Részletesebben

Hullámtan. Hullám Valamilyen közeg kis tartományában keltett, a közegben tovaterjedő zavar.

Hullámtan. Hullám Valamilyen közeg kis tartományában keltett, a közegben tovaterjedő zavar. Hulláan A hullá fogala. A hulláok oszályozása. Kísérleek Kis súlyokkal összeköö ingsor elején kele rezgés áerjed a öbbi ingára is [0:6] Kifeszíe guiköélen kele zavar végig fu a köélen [0:08] Kifeszíe rugón

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia. 4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ Oktatási Hivatal A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ 1./ Bevezetés Ha egy rezgésre képes rugalmas testet például ütéssel rezgésbe

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész Rugalas egtáasztású erev test táaszreakióinak eghatározása I. rész Bevezetés A következő, több dolgozatban beutatott vizsgálataink tárgya a statikai / szilárdságtani szakirodalo egyik kedvene. Ugyanis

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara:

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara: 8 évi Mikola forduló egoldásai: 9 gináziu ) Megoldás Mivel azonos és állandó nagyságú sebességgel történik a ozgás a egtett utak egyenlők: sa sb vat vbt 4 π s 4π 57 s Ha a B testnek ne nulla a gyorsulása

Részletesebben

3. 1 dimenziós mozgások, fázistér

3. 1 dimenziós mozgások, fázistér Drótos G.: Fejezetek az eléleti echanikából 3. rész 3. dienziós ozgások, fázistér 3.. Az dienziós ozgások leírása, a fázistér fogala dienziós ozgás alatt egy töegpont olyan ozgását értjük ebben a jegyzetben,

Részletesebben

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 05/06. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató. feladat: Vékony, nyújthatatlan fonálra M töegű, R sugarú karikát

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató! Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk

Részletesebben

Kifejtendő kérdések december 11. Gyakorló feladatok

Kifejtendő kérdések december 11. Gyakorló feladatok Kifejtendő kérdések 2016. december 11. Gyakorló feladatok 1. Adja meg és a pályagörbe felrajzolásával értelmezze egy tömegpont általános síkbeli mozgását jellemző kinematikai mennyiségeket (1p)! Vezesse

Részletesebben

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2 Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 08 ÉRESÉGI VIZSGA 008. ájus 4. FIZIKA KÖZÉPSZINŰ ÍRÁSBELI ÉRESÉGI VIZSGA JAVÍÁSI-ÉRÉKELÉSI ÚMUAÓ OKAÁSI ÉS KULURÁLIS MINISZÉRIUM A dolgozatokat az útutató utasításai szerint, jól követhetően

Részletesebben

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útutató Az önindukciós és kölcsönös indukciós tényező eghatározása Az Elektrotechnika

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint Javítási-értékelési útutató 063 ÉRETTSÉGI VIZSGA 006. ájus 5. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fizika eelt szint Javítási-értékelési

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

Hullámtan és optika. Rezgések és hullámok; hangtan Rezgéstan Hullámtan Optika Geometriai optika Hullámoptika

Hullámtan és optika. Rezgések és hullámok; hangtan Rezgéstan Hullámtan Optika Geometriai optika Hullámoptika Rezgések és hullámok; hngtn Rezgéstn Hullámtn Optik Geometrii optik Hullámoptik Hullámtn és optik Ajánlott irodlom Budó Á.: Kísérleti fizik I, III. (Tnkönyvkidó, 99) Demény-Erostyák-Szbó-Trócsányi: Fizik

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Mechanikai rezgések, rezonancia

Mechanikai rezgések, rezonancia Mechanikai rezgések rezonancia Az emberi testben mechanikai rezgések keletkezhetnek terjedhetnek és csillapodhatnak (tűnhetnek el). Már 76-ben bevezették az orvosi vizsgálatokba a beteg kopogtatásának

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 4 ÉRETTSÉGI VIZSGA 04. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint,

Részletesebben

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgések/3 (kibővített óravázlat Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre jelenik meg és meg

Részletesebben

A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája

A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható

Részletesebben

A 2009/2010. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából. II. kategória

A 2009/2010. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából. II. kategória Oktatási Hivatal 9/. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából II. kategória dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

4. Ingamozgás periodikus külső erő hatására

4. Ingamozgás periodikus külső erő hatására . Ingamozgás periodikus külső erő hatására.1. Fékezetlen ingamozgás periodikus külső erő hatására Fékezetlen lineáris matematikai inga Ha az ''+k =0 egenletre valamilen periodikus külső erő hat, akkor

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

Állóhullámok megfeszített, rugalmas húrban

Állóhullámok megfeszített, rugalmas húrban Állóhullámok megfeszített, rugalmas húrban A mérés célja: - az állóhullámokkal kapcsolatos ismeretek elmélyítése, - az állóhullámokra és a hullámterjedésre vonatkozó legfontosabb összefüggések kísérleti

Részletesebben

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi. AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN várfalvi. IDÉZZÜK FEL A STACIONER HŐVEZETÉST q áll. t x áll. q λ t x t λ áll x. λ < λ t áll. t λ áll x. x HŐMÉRSÉKLETELOSZLÁS INSTACIONER ESETBEN Hőáram, hőmérsékleteloszlás

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Dinamika. p = mυ = F t vagy. = t

Dinamika. p = mυ = F t vagy. = t Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus

Részletesebben

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye.

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye. 5 Pontrenszerek echankája kontnuuok Euler-féle leírása Töegérleg Bernoull-egyenlet Hrosztatka Felhajtóerő és rhéesz törvénye Töegpontrenszerek Töegpontok eghatározott halaza, ng ugyanazok a pontok tartoznak

Részletesebben

ELMÉLET REZGÉSEK, HULLÁMOK. Készítette: Porkoláb Tamás

ELMÉLET REZGÉSEK, HULLÁMOK. Készítette: Porkoláb Tamás REZGÉSEK, HULLÁMOK Kézítette: Porkoláb Taá ELMÉLET 1. Mi a perióduidı? 2. Mi a frekvencia? 3. Rajzold fel, hogy a haroniku rezgıozgát végzı tet pályáján hol iniáli illetve axiáli a kitérée, a ebeége é

Részletesebben

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer Gázok -1 Gáznyoás - Egyszerű gáztörvények -3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet -4 tökéletes gáz egyenlet alkalazása -5 Gáz halazállapotú reakciók -6 Gázkeverékek

Részletesebben

2.1. Másodrendű homogén lineáris differenciálegyenletek. A megfelelő másodrendű homogén lineáris differenciálegyenlet általános alakja

2.1. Másodrendű homogén lineáris differenciálegyenletek. A megfelelő másodrendű homogén lineáris differenciálegyenlet általános alakja 2. Másodrendű skaláris differenciálegyenletek 19 2. Másodrendű skaláris differenciálegyenletek Legyen I R egy nyílt intervallum, p, q, f : I R. Az explicit másodrendű inhomogén lineáris skaláris differenciálegyenlet

Részletesebben

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

Kényszerrezgések, rezonancia

Kényszerrezgések, rezonancia TÓTH A: Rezgése/ (ibővített óavázlat 13 Kényszeezgése, ezonancia Gyaolatilag is igen fontos eset az, aio egy ezgése épes endsze ezgései valailyen ülső, peiodius hatás (énysze űödése özben zajlana le Az

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Géészeti alaiseretek közészint 5 ÉRETTSÉGI VIZSGA 05. ájus 9. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐORRÁSOK MINISZTÉRIUMA ontos tudnivalók

Részletesebben

Werner Miklós Antal május Harmonikusan rezgő tömegpont. 2. Anharmonikus rezgések harmonikus közelítése Elmélet...

Werner Miklós Antal május Harmonikusan rezgő tömegpont. 2. Anharmonikus rezgések harmonikus közelítése Elmélet... Rezgések, kiegészítés Werner Miklós Antal 014. május 8. Tartalomjegyzék 1. Harmonikusan rezgő tömegpont 1. Anharmonikus rezgések harmonikus közelítése 3.1. Elmélet..............................................

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 81 ÉRETTSÉGI VIZSGA 9. ájus 1. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útutató utasításai szerint,

Részletesebben

0.1. Lineáris rendszer definíciója

0.1. Lineáris rendszer definíciója Részlet Török János, Orosz László, Unger Tamás, Elméleti Fizika jegyzetéből.. Lineáris rendszer definíciója be linearis rendszer ki be bei ki i ki + ki be λki + be 2 2 λ. ábra. Lineáris rendszer. Mielőtt

Részletesebben

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 0803 ÉRETTSÉGI VIZSGA 008. noveber 3. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útutató utasításai

Részletesebben

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30

Részletesebben

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:... 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

3. Fékezett ingamozgás

3. Fékezett ingamozgás 3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,

Részletesebben

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 3. hét

Fizika 1 Mechanika órai feladatok megoldása 3. hét Fizika 1 Mechanika órai feladatok egoldása 3. hét 3/1. Egy traktor két pótkocsit vontat nyújthatatlan drótkötelekkel. Mekkora erő feszíti a köteleket, ha indításnál a traktor 1 perc alatt gyorsít fel 40

Részletesebben

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,

Részletesebben

A földrengéshullámok műszeres megfigyelése

A földrengéshullámok műszeres megfigyelése A földrengéshullámok műszeres megfigyelése A földrengések megfigyelésére szolgáló műszerek, a szeizmográfok (vagy szeizmométerek) feladata, hogy a szeizmológiai obszervatóriumokban rögzítsék a beérkező

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató Oktatási Hivatal A 13/14. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató 1.) Hőszigetelt tartályban légüres tér (vákuu) van, a tartályon kívüli

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

L 4πd 2 1 L 4πd 2 2. km 3,5. P max = P min = Az 5 naptömegű bolygó esetén ez alapján a zóna belső és külső határai (d 1 és d 2): 2.

L 4πd 2 1 L 4πd 2 2. km 3,5. P max = P min = Az 5 naptömegű bolygó esetén ez alapján a zóna belső és külső határai (d 1 és d 2): 2. 1. feladat (a) A feladat megadta a Naprendszer esetében a lakhatósági zóna határait, jelölje ezeket d 1 és d. A továbbiakban feltételezzük, hogy a csillag által kibocsátott sugárzás a tér minden irányában

Részletesebben

Az egyenes vonalú egyenletes mozgás

Az egyenes vonalú egyenletes mozgás Az egyenes vonalú egyenletes ozgás Az egyenes vonalú ozgások egy egyenes entén ennek végbe. (Ki hitte volna?) Ha a ozgás egyenesét választjuk az egyik koordináta- tengelynek, akkor a hely egadásához elég

Részletesebben

A hang mint mechanikai hullám

A hang mint mechanikai hullám A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben