Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!"

Átírás

1 Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk nincs egy lektorált, szerkesztett feladatgyűjtemény megjelentetésére, ezért a feladatok sorrendje önkényes. Több szak azonos témához tartozó feladatai is keverednek itt, így előfordulhat, hogy egy-egy témából van feladat, de a kedves Olvasó kurzusán az a téma nem kerül elő sem előadáson, sem vizsgán. Az azonban biztos, hogy ebben a formában is sokat könnyít a vizsgára való készülésben, mert a főiskolai szakokon a témakört szinte 100%-osan lefedi. A következő dolgokat figyelembe kell venni az olvasáskor: 1. Az elméleti és kidolgozott feladatok egy megoldását adjuk. Természetesen tartalmilag azonos, de más megfogalmazású, illetve a részeredményekhez más sorrendben eljutó megoldásokat is elfogadunk. 2. A kidolgozott feladatok megoldása csak a legfontosabb részleteket tartalmazza. Nincsenek pl. a részletszámítások, képletátrendezések lépései kiírva. (Elképesztően sok munka lenne begépelni.) A számonkérés során természetesen a részletszámításoknak rajt kell lenni a beadott papíron, azaz egy számolós feladat megoldása vizsgán vagy ZH-n az itt közölteknél bővebb kell legyen. 3. A számszerű végeredmények néha függenek a számítások során elkövetett kerekítési hibáktól. Kisebb-nagyobb eltérések ebből is adódhatnak. 4. A gyűjteményt időnként javítjuk és bővítjük. Érdemes néha utánanézni, van-e frissebb változat. A bővítéskor a feladatok sorszámozása átrendeződhet. Kérjük ezt figyelembe venni. Szigorúan tilos :-) bemagolni az itt közölt megoldásokat. Ez nem vezet a megértéshez, viszont több veszélye is van. Pl. a vizsgán szereplő kérdés lehet, hogy középtájon egyetlen szóban különbözik csak az itteni kidolgozott kérdéstől. Ekkor a bemagolt válasz teljesen rossz lehet. Másik veszély: a magolás nyomán leírt megoldás nem fogja tartalmazni a részletszámításokat. Ezek nélkül a megoldás értéke 0 pont, hisz a vizsgázó nem mutatja meg, hogy egyedül is képes megoldani a feladatot puskát készíteni ebből a gyűjteményből. Ezt nem kell bizonygatni :-). 1

2 3.... szidni a tanárt, miért nem csak innen válogat a vizsgán. Ez a feladatgyűjtemény elősegíti a tanulást. Aki ez alapján megérti az adott témát, az minden feladatot képes megoldani. Az azonban elfogadhatatlanul csökkentené a színvonalat, ha csak ebből a gyűjteményből adnánk feladatokat szidni a tanárt, miért nem dolgozott ki ilyen feladatgyűjteményt minden témához. Energiáink végesek. Ha látjuk a feladatgyűjtemény pozitív hatását a diákok tudására, akkor még jelen feltételek mellett (ingyenmunka) is folytatni fogjuk a munkát. Kérjük, jelezzék, ha hibát találnak a feladatgyűjteményben. Jó tanulást: Dr. Horváth András Elméleti kérdések E-1.: Egy test egyenes mentén mozoghat. Rajzoljon fel egy F (x) grafikont (azaz az erőt a hely függvényében) úgy, hogy pontosan három egyensúlyi helyzete legyen a testnek, melyek közül kettő körül (A és B) kialakulhasson rezgés, a harmadik körül (C) nem. (A, B és C szerepeljen az ábrán!) Válasz: F A C B x E-2.: Mondjon példát a gyakorlati életből olyan egyensúlyi helyzetre, mely körül nem alakulhat ki rezgés! Válasz: Egy lehetséges válasz: Kis domb tetejére helyezett labda ott egyensúlyban van, de bármelyik irányban kitérítve legurul onnan, azaz nem alakul ki rezgőmozgás. E-3.: Harmonikus rezgőmozgás periódusidejét kétszeresére szeretnénk növelni. Hogyan változtassuk a rezgő test tömegét? Válasz: Mivel m T = 2π D azaz a periódusidő a test tömegének négyzetgyökével arányos, ezért T kétszerezéséhez at m tömeget négyszerezni kell. 2

3 E-4.: Egy test először 1 cm, majd utána 2 cm amplitudóval végez harmonikus rezgőmozgást azonos felfüggesztés mellett. Melyik esetben nagyobb a frekvenciája? Válasz: A harmonikus rezgés frekvenciája független az amplitudótól, csak a test tömegétől és a felfüggesztés rugóállandójától függ. Ezért mindkét esetben azonos lesz a frekvencia. E-5.: Rugón rezgő test csillapodó rezgőmozgásánál mi történik a rezgő test kezdeti energiájával? Válasz: A közegellánálláson és a súrlódáson keresztül hővé alakul. E-6.: Egy rugóra akasztott testet kitérítünk egyensúlyi helyzetéből, majd elengedjük. A test ezután nem rezgőmozgást végez, hanem lassan visszatér az egyensúlyi helyzetbe. Milyen körülmények közt lehetséges ez? Válasz: Akkor, ha a testre nagyon erős csillapítőerő is hat. (Lineáris csillapítóerő esetén akkor, ha β > ω 0.) Ilyen eset pl. sűrű folyadékba merüléskor képzelhető el. E-7.: Egy függőleges rugó alsó végéhez egy test van rögzítve. A rugó felső végét függőleges irányban kis amplitúdóval mozgathatjuk. Milyen körülmények közt lehetséges, hogy a felső véget csak 1 mm amplitúdóval mozgatjuk, de a test 10 cm-es, állandó amplitudójú rezgéseket végez? Válasz: Ez akkor lehetséges, ha a gerjesztő erő frekvenciája, azaz a felső vég mozgatásának frekvenciája közel egyenlő a test rezonanciafrenvenciájával, valamint a közegellenállás csillapító szerepe viszonylag kicsi. E-8.: Rajzoljon fel egy rezonanciagörbét! Röviden magyarázza meg, milyen mennyiségek találhatók a tengelyeken! Válasz: A g ω g : a gerjesző erő frekvenciája A g : a gerjeszett rezgőmozgás hosszú távon megmaradó komponensének amplitudója ω 0 : a rendszer sajátfrekvenciája E-9.: Mikor lesz két egyirányú szinuszos rezgés eredője nem periódikus? ω 0 Válasz: Ha a két rezgés frekvenciájának aránya nem racionális. E-10.: Milyen rezgés lesz két azonos frekvenciájú, egyirányba eső harmonikus rezgés eredője? Válasz: Azonos frekvenciájú harmonikus rezgés. Az eredő amplitudó a két rezgés amplitúdójától és a fáziskülönbségtől függ, de mindig a két amplitudó összege és különbsége közt lesz. ω g 3

4 E-11.: Lehetséges-e, hogy két 5 cm amplitúdójú, egyirányú harmonikus rezgés eredője is 5 cm amplitúdójú lesz? Válaszát indokolja röviden. Válasz: Igen. A két rezgés fáziskülönbségétől függően az eredő rezgés amplitúdója a két amplitúdó összege (jelenleg 10 cm) és különbsége (jelenleg 0 cm) közt van, és ebben az intervallumban minden érték lehetséges. A kérdezett 5 cm eredő amplitúdó pedig ebben az intervallumban van, így lehetséges. E-12.: Két egyirányú harmonikus rezgés eredőjét vizsgáljuk. Lehet-e az eredő amplitudó a két amplitudó összegénél nagyobb? Miért? Lehet-e az eredő kisebb amplitudójú, mint a kisebbik amplitudó? Miért? Válasz: Az összegnél nagyobb amplitudó sohasem alakulhat ki, mert a legnagyobb erősítéskor (azonos fázis) esetén is csak az amplitudók összege alakul ki. Kisebb amplitudó lehetséges, hisz ellentétes fázis és azonos amplitudók esetén az eredő amplitudó 0 lesz. (Teljes kioltás.) E-13.: Mi lesz három, azonos frevkvenciájú, egy irányba eső szinuszos rezgés eredője? Válaszát indokolja! Válasz: Az összegzést részenként is megtehetjük, mivel az összeadás asszociatív művelet. Így az első kettő összegeként egy ugyanolyan frekvenciájú szinuszos rezgést kapunk, és ehhez a harmadikat adva ismét csak egy ugyanilyen frekvenciájú szinuszos rezgéshez jutunk. (Ennek amplitudója és fázisa a három rezgés adataitól függ bonyolult módon.) Tehát az eredő az eredeti reszgésekkel megegyező frekvenciájú, szinuszos rezgés lesz. E-14.: Két egyirányú szinuszos rezgés eredőjének amplitúdója lassan, periódikusan váltakozik. Mit mondhatunk a két rezgés frekvenciájáról? Hogyan nevezzük ezt a jelenséget? Válasz: A két rezgés frekvenciája közel egyenlő, de biztosan nem teljesen egyforma. A jelenség neve: lebegés. E-15.: Milyen mozgásfajták alakulhatnak ki két, azonos amplitúdójú és frekvenciájú, egymásra merőleges harmonikus rezgés eredőjeként? Mi határozza meg, melyik eset áll fenn? Válasz: Ebben az esetben az eredő lehet egyenes, ellipszis vagy kör. Azt, hogy melyik eset valósul meg, a rezgések fáziskülönbsége határozza meg. Kidolgozott feladatok K-1.: Egy 4 kg-os test egyenes mentén mozoghat, és SI-egységekben az alábbi erő hat rá: F (x) = 2x 3 4,5x. Hol vannak a test egyensúlyi helyzetei? Melyik(ek) körül alakulhat ki rezgés? Mennyi a kis rezgések periódusideje? Megoldás: A test egyensúlyi helyzeteiben F (x) = 0, azaz 2x 3 4,5x = 0 (1) Ennek legnyilvánvalóbb megoldása: x 1 = 0 4

5 Ez ettől különböző megoldások keresésekor a továbbiakban feltételezhetjük, hogy x 0, ezért (1) leosztható x-szel. Az így kapott 2x 2 4,5 = 0 másodfokú egyenlet gyökei nyilvánvalóan: x 2 = 1,5, és x 2 = +1,5 Rezgés olyan egynesúlyi helyzetek körül alakulhat ki, ahol F (x) monoton fogyó. Ezt a grafikon felrajzolásával vagy deriválással lehet eldönteni. /Mindegyik jó megoldás./ Eredmény: Csak x 1 = 0 körül fogyó F (x), tehát e körül alakulhat ki rezgés. A kis rezgések körfrekvenciája: ω = 1 m F (x 1 ) = 1 4 (6x2 1 4,5) = 4,5/4 = 1,06 1 s Ebből a kérdezett periódusidő: T = 2π ω = 5,93 s K-2.: Egy 3 kg tömegű test rugalmasan van rögzítve valahol. Kis kitérések esetén másodpercenként pontosan 2 rezgést végez, de a rezgések amplitúdója 3 s alatt megfeleződik. Mekkora a csillapítási tényező és a befogást jellemző rugóállandó? Megoldás: A másodpercenkénti 2 rezgés azt jelenti, hogy a csillapított rezgések frekvenciája: A 3 s alatti amplitúdófeleződés miatt: ω cs = 2π 0.5 s = 4π 1 s Innét a csillapítási tényező: A(3) = A 0 2 = A 0 e β 3 β = ln2 3 = s A csillapítatlan és a csillapított frekvencia közti összefüggés alapján: ω 0 = ω 2 cs + β 2 = s Tudjuk, hogy: Innét a kérdezett rugóállandó: ω 0 = D m D = mω 2 0 = 468 N m 5

6 K-3.: Egy rezgő test légüres térben (csillapítás nélkül) 32.5 Hz-es körfrekvenciával rezeg. Levegőben frekvenciája 31.9 Hz-re csökken. Mekkora a csillapítási tényező értéke itt? Mennyi idő alatt csökken a csillapított rezgés amplitúdója az eredeti 1/10 részére? Megoldás: A szokásos jelölésekkel: ω 0 = 32.5 ω cs = 31.9 Tudjuk, hogy ahonnét a csillapítási tényező: β = ω cs = ω 2 0 β 2 ω 2 0 ω 2 cs = s Az amplitúdó csökkenését megadó összefüggést alkalmazva az 1/10-részre csökkenő esetre: A 0 10 = A 0 e βt Innét: t = 1 ln 10 = 0.37 s β Tehát kb s alatt csökken a rezgések amplitúdója az eredeti 10-ed részére. K-4.: Egy csill. rezgőmozgás amplitúdója kezdetben 13 cm, 20 s múlva már csak 9 cm. Mekkora a csillapítási tényező? A kezdettől számítva mennyi idő múlva csökken az amplitúdó 5 mm alá? Megoldás: Tudjuk, hogy az amplitúdó időfüggése: A(t) = A 0 e βt ahol A 0 = 13 cm, a kezdeti amplitúdó, β pedig a csillapítási tényező. t 1 = 20 s-ra alkalmazva ezt: A 1 = A 0 e βt 1 Innét egyszerű átrendezésekkel: β = 1 t 1 ln A 1 A 0 = s A második kérdésre a válasz az alábbi módon határozható meg: Legyen az ismeretlen időpont t 2. Tudjuk, hogy t 2 -kor az amplitúdó A 2 = 0.5 cm. Azaz: A 2 = A 0 e βt 2 Innét: t 2 = 1 β ln A 2 A 0 = s Tehát s szükséges az amplitúdó 0.5 cm alá csökkenéséhez. 6

7 K-5.: Egy rezgés sajátfrekvenciája ω 0 = 12,4 1/s. A rezgés amplitudója 3,2 s alatt feleződik meg. Hányszor nagyobb amplitudójú gerjesztett rezgések jönnek létre a sajátfrekvencián, mint igen kis frekvenciákon? Megoldás: A feladat megoldásához a gerjeszett rezgések amplitudóját megadó alábbi összefüggésből kell kiindulni: a 0 A g (ω g ) = (ω 2 0 ω 2 g) 2 + 4β 2 ω 2 g A sajátfrekvencián kialakuló rezgések amplitudója ezért: A g (ω 0 ) = a 0 (ω 2 0 ω 2 0) 2 + 4β 2 ω 2 0 = a 0 2βω 0 Az igen kis frekvenciákon kialakulóké pedig: A g (0) = a 0 (ω ) 2 + 4β 2 0 = a 0 2 ω0 2 Ezek arányát kérdezi a feladat, azaz a következő mennyiséget: A g (ω 0 ) A g (0) = ω 0 2β Innen egyedül a β csillapítási tényező értéke nem ismert. Ez viszont könnyen megkapható abból a tényből, hogy a rezgés amplitudója t = 3,2 s alatt feleződik meg: ahonnét A kérdezett arány tehát: A 0 2 = A 0 e βt β = ln 2 t = 0,217 1 s A g (ω 0 ) A g (0) = ω 0 2β = 28,6 Tehát a rezonanciafrekvencián kialakuló rezgések amplitudója 28,6-szor nagyobb a kis frekvenciák mellett kialakuló amplitudónál. K-6.: Egy áramköri elemre két forrásból is érkezhetnek (azonos frekvenciájú) szinuszos jelek. Ha csak az egyik jelforrás működik, 10 V-os, ha csak a másik, akkor 6 V-os, ha mindegyik egyszerre, akkor 11 V-os amplitúdójú jeleket kapunk. Feltéve, hogy a jelek összeadódnak, határozza meg a két forrás fáziseltérését! Megoldás: A feladat szövege szerint azonos frekvenciájú harmonikus rezgések egyirányú eredőjével kell számolnunk. Azt tudjuk, hogy a két rezgés A 1 = 10 V és A 2 = 6 V-os amplitúdójú, az eredő pedig A = 11 V-os. Ismert, hogy ebben az esetben: A = A A A 1 A 2 cos ϕ Innét a kérdezett fáziseltérés koszinusza: cos ϕ = A2 A 2 1 A 2 2 2A 1 A 2 =

8 Azaz a fáziseltérés: ϕ = ±1.696 = ±97.2 o (A fáziseltérés előjele a feladat adataiból nem határozható meg.) Gyakorló feladatok Gy-1.: Egy 4 kg-os test egyenes mentén mozoghat, és SI-egységekben az alábbi erő hat rá: F (x) = 10 2/x 2. Hol vannak a test egyensúlyi helyzetei? Melyik(ek) körül alakulhat ki rezgés? Mennyi a kis rezgések periódusideje? Gy-2.: Egy csillapított rezgőmozgás amplitúdója kezdetben 17 cm. 20 s múlva már csak 4 cm. Mekkora a csillapítási tényező? A kezdettől számítva mennyi idő múlva lesz az amplitúdó 5 mm? Gy-3.: Egy áramköri elemre két forrásból is érkezhetnek (azonos frekvenciájú) szinuszos jelek. Ha csak az egyik jelforrás működik, 10 V-os, ha csak a másik, akkor 6 V-os, ha mindegyik egyszerre, akkor 5 V-os amplitúdójú jeleket kapunk. Feltéve, hogy a jelek összeadódnak, határozza meg a két forrás fáziseltérését! 8

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Gyakorló feladatok Feladatok, merev test dinamikája

Gyakorló feladatok Feladatok, merev test dinamikája Gyakorló feladatok Feladatok, merev test dinamikája 4.5.1. Feladat Határozza meg egy súlytalannak tekinthető súlypontját. 2 m hosszú rúd két végén lévő 2 kg és 3 kg tömegek Feltéve, hogy a súlypont a 2

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

Ha vasalják a szinusz-görbét

Ha vasalják a szinusz-görbét A dolgozat szerzőjének neve: Szabó Szilárd, Lorenzovici Zsombor Intézmény megnevezése: Bolyai Farkas Elméleti Líceum Témavezető tanár neve: Szász Ágota Beosztása: Fizika Ha vasalják a szinusz-görbét Tartalomjegyzék

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA É RETTSÉGI VIZSGA 2015. október 22. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51.

Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51. Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51. évfolyam Az BB kategória 01. fordulójának feladatai (Archimédiász) (A

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0622 ÉRETTSÉGI VIZSGA 2007. november 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1011 É RETTSÉGI VIZSGA 010. október 8. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 17. FIZIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 10 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM írásbeli vizsga 0513

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt szint 0711 ÉRETTSÉGI VIZSGA 007. május 14. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I. 1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

NEM A MEGADOTT FORMÁBAN ELKÉSZÍTETT DOLGOZATRA 0 PONTOT ADUNK!

NEM A MEGADOTT FORMÁBAN ELKÉSZÍTETT DOLGOZATRA 0 PONTOT ADUNK! Villamosmérnök alapszak Fizika 1 NÉV: Csintalan Jakab 2011 tavasz Dátum: Neptuntalan kód: ROSSZ1 NagyZH Jelölje a helyes választ a táblázat megfelelő helyére írt X-el. Kérdésenként csak egy válasz helyes.

Részletesebben

Atommagok mágneses momentumának mérése

Atommagok mágneses momentumának mérése Korszerű mérési módszerek laboratórium Atommagok mágneses momentumának mérése Mérési jegyzőkönyv Rudolf Ádám Fizika BSc., Fizikus szakirány Mérőtársak: Kozics György, Laschober Dóra, Májer Imre Mérésvezető:

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 11 ÉRETTSÉGI VIZSGA 01. október 9. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Minta 2. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

Minta 2. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 2. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) (III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás 25. Képalkotás 1. Ha egy gyujtolencse fókusztávolsága f és a tárgy távolsága a lencsétol t, akkor t és f viszonyától függ, hogy milyen kép keletkezik. Jellemezd a keletkezo képet a) t > 2 f, b) f < t

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 18. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

1. A gyorsulás Kísérlet: Eszközök Számítsa ki

1. A gyorsulás Kísérlet: Eszközök Számítsa ki 1. A gyorsulás Gyakorlati példákra alapozva ismertesse a változó és az egyenletesen változó mozgást! Általánosítsa a sebesség fogalmát úgy, hogy azzal a változó mozgásokat is jellemezni lehessen! Ismertesse

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2008. május 6. 2008. május 6. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2008. május 6. 2008. május 6. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc I. rész II. rész a feladat sorszáma maximális pontszám 1. 13 2. 10 3. 14 4. 14 16 16 16 16 elért pontszám maximális pontszám 51 64 8 nem választott feladat MINDÖSSZESEN 115 elért pontszám dátum javító

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 1221 ÉRETTSÉGI VIZSGA 2013. május 23. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Wien-hidas oszcillátor mérése (I. szint)

Wien-hidas oszcillátor mérése (I. szint) Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

A lengőfűrészelésről

A lengőfűrészelésről A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)... 2. 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú...

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)... 2. 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú... Fizika 11. osztály 1 Fizika 11. osztály Tartalom 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)............. 2 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú......................................

Részletesebben

REZGÉSDIAGNOSZTIKA ALAPJAI

REZGÉSDIAGNOSZTIKA ALAPJAI TÁMOP-4.1.1.F-14/1/KONV-2015-0006 SZTE Mérnöki Kar Műszaki Intézet, Duális és moduláris képzésfejlesztés alprogram (1a) A rezgésdiagnosztika gyakorlati alkalmazása REZGÉSDIAGNOSZTIKA ALAPJAI Forgács Endre

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók

Részletesebben

1. ábra A Wien-hidas mérőpanel kapcsolási rajza

1. ábra A Wien-hidas mérőpanel kapcsolási rajza Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!

Részletesebben

DÖNTŐ 2013. április 20. 7. évfolyam

DÖNTŐ 2013. április 20. 7. évfolyam Bor Pál Fizikaverseny 2012/2013-as tanév DÖNTŐ 2013. április 20. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Összetett hálózat számítása_1

Összetett hálózat számítása_1 Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint a körben folyó áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás felhasználásával

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 131 ÉRTTSÉGI VIZSGA 013. május 16. FIZIKA KÖZÉPSZINTŰ ÍRÁSBLI ÉRTTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKLÉSI ÚTMUTATÓ MBRI RŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0911 ÉRETTSÉGI VIZSGA 2009. któber 30. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dlgzatkat az útmutató utasításai

Részletesebben

Definíció (hullám, hullámmozgás):

Definíció (hullám, hullámmozgás): Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

FIZIKA FELVÉTELI MINTA

FIZIKA FELVÉTELI MINTA Idő: 90 perc Maximális pon: 100 Használhaó: függvényábláza, kalkuláor FIZIKA FELVÉTELI MINTA Az alábbi kérdésekre ado válaszok közül minden eseben ponosan egy jó. Írja be a helyesnek aro válasz beűjelé

Részletesebben

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Gépjármű Diagnosztika. Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet

Gépjármű Diagnosztika. Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet Gépjármű Diagnosztika Szabó József Zoltán Főiskolai adjunktus BMF Mechatronika és Autótechnika Intézet 7. Előadás Lengéscsillapító diagnosztika Lengéscsillapítók feladata A gépjármű lengéscsillapítók hármas

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2010. május 18. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. május 18. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 11. évfolyam emelt szintű tananyag 2015. egyetemi docens Tanulói munkafüzet FIZIKA 11. évfolyam emelt szintű tananyag 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Egyenes vonalú mozgások..... 3 2. Periodikus

Részletesebben