Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!"

Átírás

1 Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk nincs egy lektorált, szerkesztett feladatgyűjtemény megjelentetésére, ezért a feladatok sorrendje önkényes. Több szak azonos témához tartozó feladatai is keverednek itt, így előfordulhat, hogy egy-egy témából van feladat, de a kedves Olvasó kurzusán az a téma nem kerül elő sem előadáson, sem vizsgán. Az azonban biztos, hogy ebben a formában is sokat könnyít a vizsgára való készülésben, mert a főiskolai szakokon a témakört szinte 100%-osan lefedi. A következő dolgokat figyelembe kell venni az olvasáskor: 1. Az elméleti és kidolgozott feladatok egy megoldását adjuk. Természetesen tartalmilag azonos, de más megfogalmazású, illetve a részeredményekhez más sorrendben eljutó megoldásokat is elfogadunk. 2. A kidolgozott feladatok megoldása csak a legfontosabb részleteket tartalmazza. Nincsenek pl. a részletszámítások, képletátrendezések lépései kiírva. (Elképesztően sok munka lenne begépelni.) A számonkérés során természetesen a részletszámításoknak rajt kell lenni a beadott papíron, azaz egy számolós feladat megoldása vizsgán vagy ZH-n az itt közölteknél bővebb kell legyen. 3. A számszerű végeredmények néha függenek a számítások során elkövetett kerekítési hibáktól. Kisebb-nagyobb eltérések ebből is adódhatnak. 4. A gyűjteményt időnként javítjuk és bővítjük. Érdemes néha utánanézni, van-e frissebb változat. A bővítéskor a feladatok sorszámozása átrendeződhet. Kérjük ezt figyelembe venni. Szigorúan tilos :-) bemagolni az itt közölt megoldásokat. Ez nem vezet a megértéshez, viszont több veszélye is van. Pl. a vizsgán szereplő kérdés lehet, hogy középtájon egyetlen szóban különbözik csak az itteni kidolgozott kérdéstől. Ekkor a bemagolt válasz teljesen rossz lehet. Másik veszély: a magolás nyomán leírt megoldás nem fogja tartalmazni a részletszámításokat. Ezek nélkül a megoldás értéke 0 pont, hisz a vizsgázó nem mutatja meg, hogy egyedül is képes megoldani a feladatot puskát készíteni ebből a gyűjteményből. Ezt nem kell bizonygatni :-). 1

2 3.... szidni a tanárt, miért nem csak innen válogat a vizsgán. Ez a feladatgyűjtemény elősegíti a tanulást. Aki ez alapján megérti az adott témát, az minden feladatot képes megoldani. Az azonban elfogadhatatlanul csökkentené a színvonalat, ha csak ebből a gyűjteményből adnánk feladatokat szidni a tanárt, miért nem dolgozott ki ilyen feladatgyűjteményt minden témához. Energiáink végesek. Ha látjuk a feladatgyűjtemény pozitív hatását a diákok tudására, akkor még jelen feltételek mellett (ingyenmunka) is folytatni fogjuk a munkát. Kérjük, jelezzék, ha hibát találnak a feladatgyűjteményben. Jó tanulást: Dr. Horváth András Elméleti kérdések E-1.: Egy test egyenes mentén mozoghat. Rajzoljon fel egy F (x) grafikont (azaz az erőt a hely függvényében) úgy, hogy pontosan három egyensúlyi helyzete legyen a testnek, melyek közül kettő körül (A és B) kialakulhasson rezgés, a harmadik körül (C) nem. (A, B és C szerepeljen az ábrán!) Válasz: F A C B x E-2.: Mondjon példát a gyakorlati életből olyan egyensúlyi helyzetre, mely körül nem alakulhat ki rezgés! Válasz: Egy lehetséges válasz: Kis domb tetejére helyezett labda ott egyensúlyban van, de bármelyik irányban kitérítve legurul onnan, azaz nem alakul ki rezgőmozgás. E-3.: Harmonikus rezgőmozgás periódusidejét kétszeresére szeretnénk növelni. Hogyan változtassuk a rezgő test tömegét? Válasz: Mivel m T = 2π D azaz a periódusidő a test tömegének négyzetgyökével arányos, ezért T kétszerezéséhez at m tömeget négyszerezni kell. 2

3 E-4.: Egy test először 1 cm, majd utána 2 cm amplitudóval végez harmonikus rezgőmozgást azonos felfüggesztés mellett. Melyik esetben nagyobb a frekvenciája? Válasz: A harmonikus rezgés frekvenciája független az amplitudótól, csak a test tömegétől és a felfüggesztés rugóállandójától függ. Ezért mindkét esetben azonos lesz a frekvencia. E-5.: Rugón rezgő test csillapodó rezgőmozgásánál mi történik a rezgő test kezdeti energiájával? Válasz: A közegellánálláson és a súrlódáson keresztül hővé alakul. E-6.: Egy rugóra akasztott testet kitérítünk egyensúlyi helyzetéből, majd elengedjük. A test ezután nem rezgőmozgást végez, hanem lassan visszatér az egyensúlyi helyzetbe. Milyen körülmények közt lehetséges ez? Válasz: Akkor, ha a testre nagyon erős csillapítőerő is hat. (Lineáris csillapítóerő esetén akkor, ha β > ω 0.) Ilyen eset pl. sűrű folyadékba merüléskor képzelhető el. E-7.: Egy függőleges rugó alsó végéhez egy test van rögzítve. A rugó felső végét függőleges irányban kis amplitúdóval mozgathatjuk. Milyen körülmények közt lehetséges, hogy a felső véget csak 1 mm amplitúdóval mozgatjuk, de a test 10 cm-es, állandó amplitudójú rezgéseket végez? Válasz: Ez akkor lehetséges, ha a gerjesztő erő frekvenciája, azaz a felső vég mozgatásának frekvenciája közel egyenlő a test rezonanciafrenvenciájával, valamint a közegellenállás csillapító szerepe viszonylag kicsi. E-8.: Rajzoljon fel egy rezonanciagörbét! Röviden magyarázza meg, milyen mennyiségek találhatók a tengelyeken! Válasz: A g ω g : a gerjesző erő frekvenciája A g : a gerjeszett rezgőmozgás hosszú távon megmaradó komponensének amplitudója ω 0 : a rendszer sajátfrekvenciája E-9.: Mikor lesz két egyirányú szinuszos rezgés eredője nem periódikus? ω 0 Válasz: Ha a két rezgés frekvenciájának aránya nem racionális. E-10.: Milyen rezgés lesz két azonos frekvenciájú, egyirányba eső harmonikus rezgés eredője? Válasz: Azonos frekvenciájú harmonikus rezgés. Az eredő amplitudó a két rezgés amplitúdójától és a fáziskülönbségtől függ, de mindig a két amplitudó összege és különbsége közt lesz. ω g 3

4 E-11.: Lehetséges-e, hogy két 5 cm amplitúdójú, egyirányú harmonikus rezgés eredője is 5 cm amplitúdójú lesz? Válaszát indokolja röviden. Válasz: Igen. A két rezgés fáziskülönbségétől függően az eredő rezgés amplitúdója a két amplitúdó összege (jelenleg 10 cm) és különbsége (jelenleg 0 cm) közt van, és ebben az intervallumban minden érték lehetséges. A kérdezett 5 cm eredő amplitúdó pedig ebben az intervallumban van, így lehetséges. E-12.: Két egyirányú harmonikus rezgés eredőjét vizsgáljuk. Lehet-e az eredő amplitudó a két amplitudó összegénél nagyobb? Miért? Lehet-e az eredő kisebb amplitudójú, mint a kisebbik amplitudó? Miért? Válasz: Az összegnél nagyobb amplitudó sohasem alakulhat ki, mert a legnagyobb erősítéskor (azonos fázis) esetén is csak az amplitudók összege alakul ki. Kisebb amplitudó lehetséges, hisz ellentétes fázis és azonos amplitudók esetén az eredő amplitudó 0 lesz. (Teljes kioltás.) E-13.: Mi lesz három, azonos frevkvenciájú, egy irányba eső szinuszos rezgés eredője? Válaszát indokolja! Válasz: Az összegzést részenként is megtehetjük, mivel az összeadás asszociatív művelet. Így az első kettő összegeként egy ugyanolyan frekvenciájú szinuszos rezgést kapunk, és ehhez a harmadikat adva ismét csak egy ugyanilyen frekvenciájú szinuszos rezgéshez jutunk. (Ennek amplitudója és fázisa a három rezgés adataitól függ bonyolult módon.) Tehát az eredő az eredeti reszgésekkel megegyező frekvenciájú, szinuszos rezgés lesz. E-14.: Két egyirányú szinuszos rezgés eredőjének amplitúdója lassan, periódikusan váltakozik. Mit mondhatunk a két rezgés frekvenciájáról? Hogyan nevezzük ezt a jelenséget? Válasz: A két rezgés frekvenciája közel egyenlő, de biztosan nem teljesen egyforma. A jelenség neve: lebegés. E-15.: Milyen mozgásfajták alakulhatnak ki két, azonos amplitúdójú és frekvenciájú, egymásra merőleges harmonikus rezgés eredőjeként? Mi határozza meg, melyik eset áll fenn? Válasz: Ebben az esetben az eredő lehet egyenes, ellipszis vagy kör. Azt, hogy melyik eset valósul meg, a rezgések fáziskülönbsége határozza meg. Kidolgozott feladatok K-1.: Egy 4 kg-os test egyenes mentén mozoghat, és SI-egységekben az alábbi erő hat rá: F (x) = 2x 3 4,5x. Hol vannak a test egyensúlyi helyzetei? Melyik(ek) körül alakulhat ki rezgés? Mennyi a kis rezgések periódusideje? Megoldás: A test egyensúlyi helyzeteiben F (x) = 0, azaz 2x 3 4,5x = 0 (1) Ennek legnyilvánvalóbb megoldása: x 1 = 0 4

5 Ez ettől különböző megoldások keresésekor a továbbiakban feltételezhetjük, hogy x 0, ezért (1) leosztható x-szel. Az így kapott 2x 2 4,5 = 0 másodfokú egyenlet gyökei nyilvánvalóan: x 2 = 1,5, és x 2 = +1,5 Rezgés olyan egynesúlyi helyzetek körül alakulhat ki, ahol F (x) monoton fogyó. Ezt a grafikon felrajzolásával vagy deriválással lehet eldönteni. /Mindegyik jó megoldás./ Eredmény: Csak x 1 = 0 körül fogyó F (x), tehát e körül alakulhat ki rezgés. A kis rezgések körfrekvenciája: ω = 1 m F (x 1 ) = 1 4 (6x2 1 4,5) = 4,5/4 = 1,06 1 s Ebből a kérdezett periódusidő: T = 2π ω = 5,93 s K-2.: Egy 3 kg tömegű test rugalmasan van rögzítve valahol. Kis kitérések esetén másodpercenként pontosan 2 rezgést végez, de a rezgések amplitúdója 3 s alatt megfeleződik. Mekkora a csillapítási tényező és a befogást jellemző rugóállandó? Megoldás: A másodpercenkénti 2 rezgés azt jelenti, hogy a csillapított rezgések frekvenciája: A 3 s alatti amplitúdófeleződés miatt: ω cs = 2π 0.5 s = 4π 1 s Innét a csillapítási tényező: A(3) = A 0 2 = A 0 e β 3 β = ln2 3 = s A csillapítatlan és a csillapított frekvencia közti összefüggés alapján: ω 0 = ω 2 cs + β 2 = s Tudjuk, hogy: Innét a kérdezett rugóállandó: ω 0 = D m D = mω 2 0 = 468 N m 5

6 K-3.: Egy rezgő test légüres térben (csillapítás nélkül) 32.5 Hz-es körfrekvenciával rezeg. Levegőben frekvenciája 31.9 Hz-re csökken. Mekkora a csillapítási tényező értéke itt? Mennyi idő alatt csökken a csillapított rezgés amplitúdója az eredeti 1/10 részére? Megoldás: A szokásos jelölésekkel: ω 0 = 32.5 ω cs = 31.9 Tudjuk, hogy ahonnét a csillapítási tényező: β = ω cs = ω 2 0 β 2 ω 2 0 ω 2 cs = s Az amplitúdó csökkenését megadó összefüggést alkalmazva az 1/10-részre csökkenő esetre: A 0 10 = A 0 e βt Innét: t = 1 ln 10 = 0.37 s β Tehát kb s alatt csökken a rezgések amplitúdója az eredeti 10-ed részére. K-4.: Egy csill. rezgőmozgás amplitúdója kezdetben 13 cm, 20 s múlva már csak 9 cm. Mekkora a csillapítási tényező? A kezdettől számítva mennyi idő múlva csökken az amplitúdó 5 mm alá? Megoldás: Tudjuk, hogy az amplitúdó időfüggése: A(t) = A 0 e βt ahol A 0 = 13 cm, a kezdeti amplitúdó, β pedig a csillapítási tényező. t 1 = 20 s-ra alkalmazva ezt: A 1 = A 0 e βt 1 Innét egyszerű átrendezésekkel: β = 1 t 1 ln A 1 A 0 = s A második kérdésre a válasz az alábbi módon határozható meg: Legyen az ismeretlen időpont t 2. Tudjuk, hogy t 2 -kor az amplitúdó A 2 = 0.5 cm. Azaz: A 2 = A 0 e βt 2 Innét: t 2 = 1 β ln A 2 A 0 = s Tehát s szükséges az amplitúdó 0.5 cm alá csökkenéséhez. 6

7 K-5.: Egy rezgés sajátfrekvenciája ω 0 = 12,4 1/s. A rezgés amplitudója 3,2 s alatt feleződik meg. Hányszor nagyobb amplitudójú gerjesztett rezgések jönnek létre a sajátfrekvencián, mint igen kis frekvenciákon? Megoldás: A feladat megoldásához a gerjeszett rezgések amplitudóját megadó alábbi összefüggésből kell kiindulni: a 0 A g (ω g ) = (ω 2 0 ω 2 g) 2 + 4β 2 ω 2 g A sajátfrekvencián kialakuló rezgések amplitudója ezért: A g (ω 0 ) = a 0 (ω 2 0 ω 2 0) 2 + 4β 2 ω 2 0 = a 0 2βω 0 Az igen kis frekvenciákon kialakulóké pedig: A g (0) = a 0 (ω ) 2 + 4β 2 0 = a 0 2 ω0 2 Ezek arányát kérdezi a feladat, azaz a következő mennyiséget: A g (ω 0 ) A g (0) = ω 0 2β Innen egyedül a β csillapítási tényező értéke nem ismert. Ez viszont könnyen megkapható abból a tényből, hogy a rezgés amplitudója t = 3,2 s alatt feleződik meg: ahonnét A kérdezett arány tehát: A 0 2 = A 0 e βt β = ln 2 t = 0,217 1 s A g (ω 0 ) A g (0) = ω 0 2β = 28,6 Tehát a rezonanciafrekvencián kialakuló rezgések amplitudója 28,6-szor nagyobb a kis frekvenciák mellett kialakuló amplitudónál. K-6.: Egy áramköri elemre két forrásból is érkezhetnek (azonos frekvenciájú) szinuszos jelek. Ha csak az egyik jelforrás működik, 10 V-os, ha csak a másik, akkor 6 V-os, ha mindegyik egyszerre, akkor 11 V-os amplitúdójú jeleket kapunk. Feltéve, hogy a jelek összeadódnak, határozza meg a két forrás fáziseltérését! Megoldás: A feladat szövege szerint azonos frekvenciájú harmonikus rezgések egyirányú eredőjével kell számolnunk. Azt tudjuk, hogy a két rezgés A 1 = 10 V és A 2 = 6 V-os amplitúdójú, az eredő pedig A = 11 V-os. Ismert, hogy ebben az esetben: A = A A A 1 A 2 cos ϕ Innét a kérdezett fáziseltérés koszinusza: cos ϕ = A2 A 2 1 A 2 2 2A 1 A 2 =

8 Azaz a fáziseltérés: ϕ = ±1.696 = ±97.2 o (A fáziseltérés előjele a feladat adataiból nem határozható meg.) Gyakorló feladatok Gy-1.: Egy 4 kg-os test egyenes mentén mozoghat, és SI-egységekben az alábbi erő hat rá: F (x) = 10 2/x 2. Hol vannak a test egyensúlyi helyzetei? Melyik(ek) körül alakulhat ki rezgés? Mennyi a kis rezgések periódusideje? Gy-2.: Egy csillapított rezgőmozgás amplitúdója kezdetben 17 cm. 20 s múlva már csak 4 cm. Mekkora a csillapítási tényező? A kezdettől számítva mennyi idő múlva lesz az amplitúdó 5 mm? Gy-3.: Egy áramköri elemre két forrásból is érkezhetnek (azonos frekvenciájú) szinuszos jelek. Ha csak az egyik jelforrás működik, 10 V-os, ha csak a másik, akkor 6 V-os, ha mindegyik egyszerre, akkor 5 V-os amplitúdójú jeleket kapunk. Feltéve, hogy a jelek összeadódnak, határozza meg a két forrás fáziseltérését! 8

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ Oktatási Hivatal A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ 1./ Bevezetés Ha egy rezgésre képes rugalmas testet például ütéssel rezgésbe

Részletesebben

Mechanikai rezgések = 1 (1)

Mechanikai rezgések = 1 (1) 1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2 Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Gyakorló feladatok Feladatok, merev test dinamikája

Gyakorló feladatok Feladatok, merev test dinamikája Gyakorló feladatok Feladatok, merev test dinamikája 4.5.1. Feladat Határozza meg egy súlytalannak tekinthető súlypontját. 2 m hosszú rúd két végén lévő 2 kg és 3 kg tömegek Feltéve, hogy a súlypont a 2

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Ha vasalják a szinusz-görbét

Ha vasalják a szinusz-görbét A dolgozat szerzőjének neve: Szabó Szilárd, Lorenzovici Zsombor Intézmény megnevezése: Bolyai Farkas Elméleti Líceum Témavezető tanár neve: Szász Ágota Beosztása: Fizika Ha vasalják a szinusz-görbét Tartalomjegyzék

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1413 ÉRETTSÉGI VIZSGA 014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

A hang mint mechanikai hullám

A hang mint mechanikai hullám A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Rezgő testek. 48 C A biciklitől a világűrig

Rezgő testek. 48 C A biciklitől a világűrig 48 C A biciklitől a világűrig Anjuli Ahooja Corina Toma Damjan Štrus Dionysis Konstantinou Maria Dobkowska Miroslaw Los Učenca: Nandor Licker és Jagoda Bednarek C Rezgő testek A biciklitől a Length világűrig

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA É RETTSÉGI VIZSGA 2015. október 22. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata Oktatási Hivatal A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Különösen viselkedő oszcillátor vizsgálata Elméleti bevezető: A mérési feladat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51.

Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51. Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51. évfolyam Az BB kategória 01. fordulójának feladatai (Archimédiász) (A

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0622 ÉRETTSÉGI VIZSGA 2007. november 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

1. A hang, mint akusztikus jel

1. A hang, mint akusztikus jel 1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0912 ÉRETTSÉGI VIZSGA 2010. május 18. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

3. Hangfrekvenciás mechanikai rezgések vizsgálata

3. Hangfrekvenciás mechanikai rezgések vizsgálata 3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait

Részletesebben

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1011 É RETTSÉGI VIZSGA 010. október 8. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Intézet TÁMOP-3..-/-0-000 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz FIZIKA 3. MINTAFELADATSOR KÖZÉPSZINT 05 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt szint 0711 ÉRETTSÉGI VIZSGA 007. május 14. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 17. FIZIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 10 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM írásbeli vizsga 0513

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 11 ÉRETTSÉGI VIZSGA 01. október 9. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I. 1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x

Részletesebben

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA. ÉRETTSÉGI VIZSGA május 14. JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA. ÉRETTSÉGI VIZSGA május 14. JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fizika középszint 0801 ÉRETTSÉGI VIZSGA 008. május 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

NEM A MEGADOTT FORMÁBAN ELKÉSZÍTETT DOLGOZATRA 0 PONTOT ADUNK!

NEM A MEGADOTT FORMÁBAN ELKÉSZÍTETT DOLGOZATRA 0 PONTOT ADUNK! Villamosmérnök alapszak Fizika 1 NÉV: Csintalan Jakab 2011 tavasz Dátum: Neptuntalan kód: ROSSZ1 NagyZH Jelölje a helyes választ a táblázat megfelelő helyére írt X-el. Kérdésenként csak egy válasz helyes.

Részletesebben

Atommagok mágneses momentumának mérése

Atommagok mágneses momentumának mérése Korszerű mérési módszerek laboratórium Atommagok mágneses momentumának mérése Mérési jegyzőkönyv Rudolf Ádám Fizika BSc., Fizikus szakirány Mérőtársak: Kozics György, Laschober Dóra, Májer Imre Mérésvezető:

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

E27 laboratóriumi mérés Fizikai Tanszék

E27 laboratóriumi mérés Fizikai Tanszék E27 laboratóriumi mérés Fizikai Tanszék Soros rezgőkör rezonancia-görbéjének felvétele 1. A mérés célja, elve Váltóáramú áramkörök esetén kondenzátort, illetve tekercset iktatva a körbe az abban folyó

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Minta 2. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

Minta 2. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 2. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)... 2. 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú...

Fizika 11. osztály. 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)... 2. 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú... Fizika 11. osztály 1 Fizika 11. osztály Tartalom 1. Mágneses mező szemléltetése és mérése, mágneses pörgettyű (levitron)............. 2 2. Lenz törvénye: Waltenhofen-inga, Lenz-ágyú......................................

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2008. május 6. 2008. május 6. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2008. május 6. 2008. május 6. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc I. rész II. rész a feladat sorszáma maximális pontszám 1. 13 2. 10 3. 14 4. 14 16 16 16 16 elért pontszám maximális pontszám 51 64 8 nem választott feladat MINDÖSSZESEN 115 elért pontszám dátum javító

Részletesebben

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések K1A labor 1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk

Részletesebben