Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!"

Átírás

1 Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk nincs egy lektorált, szerkesztett feladatgyűjtemény megjelentetésére, ezért a feladatok sorrendje önkényes. Több szak azonos témához tartozó feladatai is keverednek itt, így előfordulhat, hogy egy-egy témából van feladat, de a kedves Olvasó kurzusán az a téma nem kerül elő sem előadáson, sem vizsgán. Az azonban biztos, hogy ebben a formában is sokat könnyít a vizsgára való készülésben, mert a főiskolai szakokon a témakört szinte 100%-osan lefedi. A következő dolgokat figyelembe kell venni az olvasáskor: 1. Az elméleti és kidolgozott feladatok egy megoldását adjuk. Természetesen tartalmilag azonos, de más megfogalmazású, illetve a részeredményekhez más sorrendben eljutó megoldásokat is elfogadunk. 2. A kidolgozott feladatok megoldása csak a legfontosabb részleteket tartalmazza. Nincsenek pl. a részletszámítások, képletátrendezések lépései kiírva. (Elképesztően sok munka lenne begépelni.) A számonkérés során természetesen a részletszámításoknak rajt kell lenni a beadott papíron, azaz egy számolós feladat megoldása vizsgán vagy ZH-n az itt közölteknél bővebb kell legyen. 3. A számszerű végeredmények néha függenek a számítások során elkövetett kerekítési hibáktól. Kisebb-nagyobb eltérések ebből is adódhatnak. 4. A gyűjteményt időnként javítjuk és bővítjük. Érdemes néha utánanézni, van-e frissebb változat. A bővítéskor a feladatok sorszámozása átrendeződhet. Kérjük ezt figyelembe venni. Szigorúan tilos :-) bemagolni az itt közölt megoldásokat. Ez nem vezet a megértéshez, viszont több veszélye is van. Pl. a vizsgán szereplő kérdés lehet, hogy középtájon egyetlen szóban különbözik csak az itteni kidolgozott kérdéstől. Ekkor a bemagolt válasz teljesen rossz lehet. Másik veszély: a magolás nyomán leírt megoldás nem fogja tartalmazni a részletszámításokat. Ezek nélkül a megoldás értéke 0 pont, hisz a vizsgázó nem mutatja meg, hogy egyedül is képes megoldani a feladatot puskát készíteni ebből a gyűjteményből. Ezt nem kell bizonygatni :-). 1

2 3.... szidni a tanárt, miért nem csak innen válogat a vizsgán. Ez a feladatgyűjtemény elősegíti a tanulást. Aki ez alapján megérti az adott témát, az minden feladatot képes megoldani. Az azonban elfogadhatatlanul csökkentené a színvonalat, ha csak ebből a gyűjteményből adnánk feladatokat szidni a tanárt, miért nem dolgozott ki ilyen feladatgyűjteményt minden témához. Energiáink végesek. Ha látjuk a feladatgyűjtemény pozitív hatását a diákok tudására, akkor még jelen feltételek mellett (ingyenmunka) is folytatni fogjuk a munkát. Kérjük, jelezzék, ha hibát találnak a feladatgyűjteményben. Jó tanulást: Dr. Horváth András Elméleti kérdések E-1.: Egy test egyenes mentén mozoghat. Rajzoljon fel egy F (x) grafikont (azaz az erőt a hely függvényében) úgy, hogy pontosan három egyensúlyi helyzete legyen a testnek, melyek közül kettő körül (A és B) kialakulhasson rezgés, a harmadik körül (C) nem. (A, B és C szerepeljen az ábrán!) Válasz: F A C B x E-2.: Mondjon példát a gyakorlati életből olyan egyensúlyi helyzetre, mely körül nem alakulhat ki rezgés! Válasz: Egy lehetséges válasz: Kis domb tetejére helyezett labda ott egyensúlyban van, de bármelyik irányban kitérítve legurul onnan, azaz nem alakul ki rezgőmozgás. E-3.: Harmonikus rezgőmozgás periódusidejét kétszeresére szeretnénk növelni. Hogyan változtassuk a rezgő test tömegét? Válasz: Mivel m T = 2π D azaz a periódusidő a test tömegének négyzetgyökével arányos, ezért T kétszerezéséhez at m tömeget négyszerezni kell. 2

3 E-4.: Egy test először 1 cm, majd utána 2 cm amplitudóval végez harmonikus rezgőmozgást azonos felfüggesztés mellett. Melyik esetben nagyobb a frekvenciája? Válasz: A harmonikus rezgés frekvenciája független az amplitudótól, csak a test tömegétől és a felfüggesztés rugóállandójától függ. Ezért mindkét esetben azonos lesz a frekvencia. E-5.: Rugón rezgő test csillapodó rezgőmozgásánál mi történik a rezgő test kezdeti energiájával? Válasz: A közegellánálláson és a súrlódáson keresztül hővé alakul. E-6.: Egy rugóra akasztott testet kitérítünk egyensúlyi helyzetéből, majd elengedjük. A test ezután nem rezgőmozgást végez, hanem lassan visszatér az egyensúlyi helyzetbe. Milyen körülmények közt lehetséges ez? Válasz: Akkor, ha a testre nagyon erős csillapítőerő is hat. (Lineáris csillapítóerő esetén akkor, ha β > ω 0.) Ilyen eset pl. sűrű folyadékba merüléskor képzelhető el. E-7.: Egy függőleges rugó alsó végéhez egy test van rögzítve. A rugó felső végét függőleges irányban kis amplitúdóval mozgathatjuk. Milyen körülmények közt lehetséges, hogy a felső véget csak 1 mm amplitúdóval mozgatjuk, de a test 10 cm-es, állandó amplitudójú rezgéseket végez? Válasz: Ez akkor lehetséges, ha a gerjesztő erő frekvenciája, azaz a felső vég mozgatásának frekvenciája közel egyenlő a test rezonanciafrenvenciájával, valamint a közegellenállás csillapító szerepe viszonylag kicsi. E-8.: Rajzoljon fel egy rezonanciagörbét! Röviden magyarázza meg, milyen mennyiségek találhatók a tengelyeken! Válasz: A g ω g : a gerjesző erő frekvenciája A g : a gerjeszett rezgőmozgás hosszú távon megmaradó komponensének amplitudója ω 0 : a rendszer sajátfrekvenciája E-9.: Mikor lesz két egyirányú szinuszos rezgés eredője nem periódikus? ω 0 Válasz: Ha a két rezgés frekvenciájának aránya nem racionális. E-10.: Milyen rezgés lesz két azonos frekvenciájú, egyirányba eső harmonikus rezgés eredője? Válasz: Azonos frekvenciájú harmonikus rezgés. Az eredő amplitudó a két rezgés amplitúdójától és a fáziskülönbségtől függ, de mindig a két amplitudó összege és különbsége közt lesz. ω g 3

4 E-11.: Lehetséges-e, hogy két 5 cm amplitúdójú, egyirányú harmonikus rezgés eredője is 5 cm amplitúdójú lesz? Válaszát indokolja röviden. Válasz: Igen. A két rezgés fáziskülönbségétől függően az eredő rezgés amplitúdója a két amplitúdó összege (jelenleg 10 cm) és különbsége (jelenleg 0 cm) közt van, és ebben az intervallumban minden érték lehetséges. A kérdezett 5 cm eredő amplitúdó pedig ebben az intervallumban van, így lehetséges. E-12.: Két egyirányú harmonikus rezgés eredőjét vizsgáljuk. Lehet-e az eredő amplitudó a két amplitudó összegénél nagyobb? Miért? Lehet-e az eredő kisebb amplitudójú, mint a kisebbik amplitudó? Miért? Válasz: Az összegnél nagyobb amplitudó sohasem alakulhat ki, mert a legnagyobb erősítéskor (azonos fázis) esetén is csak az amplitudók összege alakul ki. Kisebb amplitudó lehetséges, hisz ellentétes fázis és azonos amplitudók esetén az eredő amplitudó 0 lesz. (Teljes kioltás.) E-13.: Mi lesz három, azonos frevkvenciájú, egy irányba eső szinuszos rezgés eredője? Válaszát indokolja! Válasz: Az összegzést részenként is megtehetjük, mivel az összeadás asszociatív művelet. Így az első kettő összegeként egy ugyanolyan frekvenciájú szinuszos rezgést kapunk, és ehhez a harmadikat adva ismét csak egy ugyanilyen frekvenciájú szinuszos rezgéshez jutunk. (Ennek amplitudója és fázisa a három rezgés adataitól függ bonyolult módon.) Tehát az eredő az eredeti reszgésekkel megegyező frekvenciájú, szinuszos rezgés lesz. E-14.: Két egyirányú szinuszos rezgés eredőjének amplitúdója lassan, periódikusan váltakozik. Mit mondhatunk a két rezgés frekvenciájáról? Hogyan nevezzük ezt a jelenséget? Válasz: A két rezgés frekvenciája közel egyenlő, de biztosan nem teljesen egyforma. A jelenség neve: lebegés. E-15.: Milyen mozgásfajták alakulhatnak ki két, azonos amplitúdójú és frekvenciájú, egymásra merőleges harmonikus rezgés eredőjeként? Mi határozza meg, melyik eset áll fenn? Válasz: Ebben az esetben az eredő lehet egyenes, ellipszis vagy kör. Azt, hogy melyik eset valósul meg, a rezgések fáziskülönbsége határozza meg. Kidolgozott feladatok K-1.: Egy 4 kg-os test egyenes mentén mozoghat, és SI-egységekben az alábbi erő hat rá: F (x) = 2x 3 4,5x. Hol vannak a test egyensúlyi helyzetei? Melyik(ek) körül alakulhat ki rezgés? Mennyi a kis rezgések periódusideje? Megoldás: A test egyensúlyi helyzeteiben F (x) = 0, azaz 2x 3 4,5x = 0 (1) Ennek legnyilvánvalóbb megoldása: x 1 = 0 4

5 Ez ettől különböző megoldások keresésekor a továbbiakban feltételezhetjük, hogy x 0, ezért (1) leosztható x-szel. Az így kapott 2x 2 4,5 = 0 másodfokú egyenlet gyökei nyilvánvalóan: x 2 = 1,5, és x 2 = +1,5 Rezgés olyan egynesúlyi helyzetek körül alakulhat ki, ahol F (x) monoton fogyó. Ezt a grafikon felrajzolásával vagy deriválással lehet eldönteni. /Mindegyik jó megoldás./ Eredmény: Csak x 1 = 0 körül fogyó F (x), tehát e körül alakulhat ki rezgés. A kis rezgések körfrekvenciája: ω = 1 m F (x 1 ) = 1 4 (6x2 1 4,5) = 4,5/4 = 1,06 1 s Ebből a kérdezett periódusidő: T = 2π ω = 5,93 s K-2.: Egy 3 kg tömegű test rugalmasan van rögzítve valahol. Kis kitérések esetén másodpercenként pontosan 2 rezgést végez, de a rezgések amplitúdója 3 s alatt megfeleződik. Mekkora a csillapítási tényező és a befogást jellemző rugóállandó? Megoldás: A másodpercenkénti 2 rezgés azt jelenti, hogy a csillapított rezgések frekvenciája: A 3 s alatti amplitúdófeleződés miatt: ω cs = 2π 0.5 s = 4π 1 s Innét a csillapítási tényező: A(3) = A 0 2 = A 0 e β 3 β = ln2 3 = s A csillapítatlan és a csillapított frekvencia közti összefüggés alapján: ω 0 = ω 2 cs + β 2 = s Tudjuk, hogy: Innét a kérdezett rugóállandó: ω 0 = D m D = mω 2 0 = 468 N m 5

6 K-3.: Egy rezgő test légüres térben (csillapítás nélkül) 32.5 Hz-es körfrekvenciával rezeg. Levegőben frekvenciája 31.9 Hz-re csökken. Mekkora a csillapítási tényező értéke itt? Mennyi idő alatt csökken a csillapított rezgés amplitúdója az eredeti 1/10 részére? Megoldás: A szokásos jelölésekkel: ω 0 = 32.5 ω cs = 31.9 Tudjuk, hogy ahonnét a csillapítási tényező: β = ω cs = ω 2 0 β 2 ω 2 0 ω 2 cs = s Az amplitúdó csökkenését megadó összefüggést alkalmazva az 1/10-részre csökkenő esetre: A 0 10 = A 0 e βt Innét: t = 1 ln 10 = 0.37 s β Tehát kb s alatt csökken a rezgések amplitúdója az eredeti 10-ed részére. K-4.: Egy csill. rezgőmozgás amplitúdója kezdetben 13 cm, 20 s múlva már csak 9 cm. Mekkora a csillapítási tényező? A kezdettől számítva mennyi idő múlva csökken az amplitúdó 5 mm alá? Megoldás: Tudjuk, hogy az amplitúdó időfüggése: A(t) = A 0 e βt ahol A 0 = 13 cm, a kezdeti amplitúdó, β pedig a csillapítási tényező. t 1 = 20 s-ra alkalmazva ezt: A 1 = A 0 e βt 1 Innét egyszerű átrendezésekkel: β = 1 t 1 ln A 1 A 0 = s A második kérdésre a válasz az alábbi módon határozható meg: Legyen az ismeretlen időpont t 2. Tudjuk, hogy t 2 -kor az amplitúdó A 2 = 0.5 cm. Azaz: A 2 = A 0 e βt 2 Innét: t 2 = 1 β ln A 2 A 0 = s Tehát s szükséges az amplitúdó 0.5 cm alá csökkenéséhez. 6

7 K-5.: Egy rezgés sajátfrekvenciája ω 0 = 12,4 1/s. A rezgés amplitudója 3,2 s alatt feleződik meg. Hányszor nagyobb amplitudójú gerjesztett rezgések jönnek létre a sajátfrekvencián, mint igen kis frekvenciákon? Megoldás: A feladat megoldásához a gerjeszett rezgések amplitudóját megadó alábbi összefüggésből kell kiindulni: a 0 A g (ω g ) = (ω 2 0 ω 2 g) 2 + 4β 2 ω 2 g A sajátfrekvencián kialakuló rezgések amplitudója ezért: A g (ω 0 ) = a 0 (ω 2 0 ω 2 0) 2 + 4β 2 ω 2 0 = a 0 2βω 0 Az igen kis frekvenciákon kialakulóké pedig: A g (0) = a 0 (ω ) 2 + 4β 2 0 = a 0 2 ω0 2 Ezek arányát kérdezi a feladat, azaz a következő mennyiséget: A g (ω 0 ) A g (0) = ω 0 2β Innen egyedül a β csillapítási tényező értéke nem ismert. Ez viszont könnyen megkapható abból a tényből, hogy a rezgés amplitudója t = 3,2 s alatt feleződik meg: ahonnét A kérdezett arány tehát: A 0 2 = A 0 e βt β = ln 2 t = 0,217 1 s A g (ω 0 ) A g (0) = ω 0 2β = 28,6 Tehát a rezonanciafrekvencián kialakuló rezgések amplitudója 28,6-szor nagyobb a kis frekvenciák mellett kialakuló amplitudónál. K-6.: Egy áramköri elemre két forrásból is érkezhetnek (azonos frekvenciájú) szinuszos jelek. Ha csak az egyik jelforrás működik, 10 V-os, ha csak a másik, akkor 6 V-os, ha mindegyik egyszerre, akkor 11 V-os amplitúdójú jeleket kapunk. Feltéve, hogy a jelek összeadódnak, határozza meg a két forrás fáziseltérését! Megoldás: A feladat szövege szerint azonos frekvenciájú harmonikus rezgések egyirányú eredőjével kell számolnunk. Azt tudjuk, hogy a két rezgés A 1 = 10 V és A 2 = 6 V-os amplitúdójú, az eredő pedig A = 11 V-os. Ismert, hogy ebben az esetben: A = A A A 1 A 2 cos ϕ Innét a kérdezett fáziseltérés koszinusza: cos ϕ = A2 A 2 1 A 2 2 2A 1 A 2 =

8 Azaz a fáziseltérés: ϕ = ±1.696 = ±97.2 o (A fáziseltérés előjele a feladat adataiból nem határozható meg.) Gyakorló feladatok Gy-1.: Egy 4 kg-os test egyenes mentén mozoghat, és SI-egységekben az alábbi erő hat rá: F (x) = 10 2/x 2. Hol vannak a test egyensúlyi helyzetei? Melyik(ek) körül alakulhat ki rezgés? Mennyi a kis rezgések periódusideje? Gy-2.: Egy csillapított rezgőmozgás amplitúdója kezdetben 17 cm. 20 s múlva már csak 4 cm. Mekkora a csillapítási tényező? A kezdettől számítva mennyi idő múlva lesz az amplitúdó 5 mm? Gy-3.: Egy áramköri elemre két forrásból is érkezhetnek (azonos frekvenciájú) szinuszos jelek. Ha csak az egyik jelforrás működik, 10 V-os, ha csak a másik, akkor 6 V-os, ha mindegyik egyszerre, akkor 5 V-os amplitúdójú jeleket kapunk. Feltéve, hogy a jelek összeadódnak, határozza meg a két forrás fáziseltérését! 8

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0622 ÉRETTSÉGI VIZSGA 2007. november 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Wien-hidas oszcillátor mérése (I. szint)

Wien-hidas oszcillátor mérése (I. szint) Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P05C10113M* ŐSZI IDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 005. augusztus 9., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 005 P05-C101-1-3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Mechanikai rezgések, rezonancia

Mechanikai rezgések, rezonancia Mechanikai rezgések, rezonancia előadás I. éves orvostanhallgatóknak Maróti Péter 0. szept. 4. Felkészülés Előadás anyaga (lásd az intézet honlapjára felkerülő segédanyagokat) Minden tudás annyit ér, amennyit

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. november 3. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. november 3. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:

19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges: 9.B Alapáramkörök alkalmazásai Oszcillátorok Ismertesse a szinuszos rezgések elıállítására szolgáló módszereket! Értelmezze az oszcillátoroknál alkalmazott pozitív visszacsatolást! Ismertesse a berezgés

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Tudnivalók. Dr. Horváth András, Berta Miklós. 0.2-es változat. Kedves Hallgató!

Tudnivalók. Dr. Horváth András, Berta Miklós. 0.2-es változat. Kedves Hallgató! Kérdések és feladatok atom- és magfizikából Dr. Horváth András, Berta Miklós 0.2-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból.

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2005. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Fizika középszint írásbeli vizsga

Részletesebben

ÖSSZEMÉRHETŐ TÖMEGEK GRAVITÁCIÓJA

ÖSSZEMÉRHETŐ TÖMEGEK GRAVITÁCIÓJA ÖSSZEMÉRHETŐ TÖMEGEK GRAVITÁCIÓJA Szerzők: Bodonyi László, Sarkadi Dezső Research Centre of Fundamental Physics, H-7030 Paks, Kishegyi 16. HUNGARY e-mail: dsarkadi@freemail.hu Abstract A G gravitációs

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1414 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Gyakorlati tudnivalók a jelzőlámpás forgalomirányítás tervezésével kapcsolatban. 2013. szeptember. Dr. Kálmán László

Gyakorlati tudnivalók a jelzőlámpás forgalomirányítás tervezésével kapcsolatban. 2013. szeptember. Dr. Kálmán László Gyakorlati tudnivalók a jelzőlámpás forgalomirányítás tervezésével kapcsolatban 2013. szeptember Dr. Kálmán László 4. A fázisidő terv készítésének lépései A fázissorrendek felvétele valamint a jármű

Részletesebben

Zaj és rezgésvédelem Rezgéstan és hangtan

Zaj és rezgésvédelem Rezgéstan és hangtan Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar felsőfokú munkavédelmi szakirányú továbbképzés Zaj és rezgésvédelem Rezgéstan és hangtan Márkus Miklós zaj és rezgésvédelmi

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Fizika összefoglaló kérdések (11. évfolyam)

Fizika összefoglaló kérdések (11. évfolyam) I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

2. ábra Változó egyenfeszültségek

2. ábra Változó egyenfeszültségek 3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt szint 0804 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1313 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

159. Egy pontszerű test egyensúlyban van. Két erő hat rá. Az egyik a 200 N nagyságú kelet felé. Mekkora és milyen irányú a másik? Mozoghat-e a test?

159. Egy pontszerű test egyensúlyban van. Két erő hat rá. Az egyik a 200 N nagyságú kelet felé. Mekkora és milyen irányú a másik? Mozoghat-e a test? 157. Az ábra egy 2 kg tömegű test felemelése során befektetett teljesítményünket mutatja az idő függvényében. A testet a mozgás első szakaszában egyenletesen gyorsítottuk, majd az elért sebességgel mozgattuk

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

ELTE TTK Hallgatói Alapítvány FELVÉTELIZŐK NAPJA 2006. április 22.

ELTE TTK Hallgatói Alapítvány FELVÉTELIZŐK NAPJA 2006. április 22. ELTE TTK Hallgatói lapítvány FELVÉTELIZŐK NPJ 2006. április 22. Székhely: 1117 udapest, Pázmány Péter sétány 1/; Telefon: 381-2101; Fax: 381-2102; E-mail: alapitvany@alapitvany.elte.hu FIZIK FELTSOR NÉV:.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához Ismétlés Erőhatás a testek mechanikai kölcsönhatásának mértékét és irányát megadó vektormennyiség. jele: mértékegysége: 1 newton: erőhatás következménye: 1N 1kg

Részletesebben

Szöveges feladatok és Egyenletek

Szöveges feladatok és Egyenletek Szöveges feladatok és Egyenletek Sok feladatot meg tudunk oldani következtetéssel, rajz segítségével és egyenlettel is. Vajon mikor érdemes egyenletet felírni? Van-e olyan eset, amikor nem tanácsos, vagy

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Első sajátfrekvencia meghatározása vasúti fékpaneleknél XIV. ANSYS Konferencia Budaörs, 2015.04.23

Első sajátfrekvencia meghatározása vasúti fékpaneleknél XIV. ANSYS Konferencia Budaörs, 2015.04.23 Első sajátfrekvencia meghatározása vasúti fékpaneleknél XIV. ANSYS Konferencia Budaörs, 2015.04.23 Knorr-Bremse Group Tartalom 1. Vasúti fékpanel 2. Rezonancia mérés 2.1 Impulzuskalapács mérés 3. Végeselemes

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Feladatgyűjtemény matematikából

Feladatgyűjtemény matematikából Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap 2001. február 7. 1. A jéghegyeknek csak 1/9 része van a vízfelszín felett. Hány tonnás az a jéghegy, amelynek víz alatti része 96 tonna tömegű? A válasz:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

KÖZLEKEDÉSI ALAPISMERETEK

KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. május 13. KÖZLEKEDÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 13. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

Elektronikus műszerek Analóg oszcilloszkóp működés

Elektronikus műszerek Analóg oszcilloszkóp működés 1 1. Az analóg oszcilloszkópok általános jellemzői Az oszcilloszkóp egy speciális feszültségmérő. Nagy a bemeneti impedanciája, ezért a voltmérőhöz hasonlóan a mérendővel mindig párhuzamosan kell kötni.

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

ÖVEGES JÓZSEF FIZIKAVERSENY

ÖVEGES JÓZSEF FIZIKAVERSENY ÖVEGES JÓZSEF FZKAVERSENY skolai forduló Számításos feladatok Oldd meg az alábbi számításos feladatokat! ibátlan megoldás esetén a szöveg után látható kis táblázat jobb felső sarkában feltüntetett pontszámot

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra. A verseny hivatalos támogatói

34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra. A verseny hivatalos támogatói 34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra A verseny hivatalos támogatói Gimnázium 9. évfolyam 1.) Egy test vízszintes talajon csúszik. A test és a

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Mozgással kapcsolatos feladatok

Mozgással kapcsolatos feladatok Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben