Mechanikai munka, energia, teljesítmény (Vázlat)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mechanikai munka, energia, teljesítmény (Vázlat)"

Átírás

1 Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai energia és fajái a) Helyzei energia b) Mozgási energia, unkaéel c) Rugalas energia d) Forgási energia 4. A echanikai energia egaradásának örvénye 5. Haásfok 6. Teljesíény a) Álageljesíény b) Pillananyi eljesíény 7. Fizikaörénei vonakozások

2 Mechanikai unka, energia, eljesíény Mechanikai unka fogala Fizikai éreleben akkor örénik unkavégzés, ha egy esre erő ha, és ennek kövekezében a es az erő irányába elozdul. Pl.: egy ese függőleges irányban állandó sebességgel feleelünk. Ha az erő és az elozdulás egyásra erőleges, akkor fizikai éreleben ne örénik unkavégzés. Pl.: ha egy áská függőlegesen arunk, és úgy séálunk, akkor se a aróerő, se a nehézségi erő ne végez unká. Ha az erő és az elozdulás egyással α szöge zár be, akkor az erőnek az elozdulás irányába eső koponense végez unká. A unka jele: W W F s cosα A unka érékegysége: [W]NJ A unka skalárennyiség, aelye száal jellezünk. F (N) F WF. s s s() Ha az erő ábrázoljuk az elozdulás függvényében akkor a grafikon alai erüle érőszáa egegyezik a unkavégzés érőszáával. Ez állandó erő álal végze unka eseén könnyen beláhajuk.

3 A echanikai unkavégzés fajái a) Eelési unka Fáll váll h F neh Eelési unkáról akkor beszélünk, ha egy öegű ese függőleges irányba állandó sebességgel feleelünk. Ennek feléele, hogy az eelőerő ugyanolyan nagyságú legyen, in a nehézségi erő. F F neh Az eelőerő unkája ehá: W F h cos F h g h Ha állandó öegű ese eelünk, akkor az eelőerő unkája egyenesen arányos a h agassággal. Tehá inél agasabbra eeljük a ese, annál öbb unká kell végeznünk. b) Nehézségi erő unkája Miközben állandó sebességgel eeljük a ese, a nehézségi erő is végez unká. Mivel ez az erő lefelé, az elozdulás iránya függőlegesen felfelé ua, azaz ellenées, ezér eeléskor a nehézségi erő unkája: W neh g h Ha állandó sebességgel süllyeszjük a ese, akkor a nehézségi erő unkája: W neh + g h az eelő erő unkája: W g h c) Gyorsíási unka F s Ha egy öegű esre állandó erő ha s úon, akkor az erő irányába gyorsul a es. Mivel az erő és az elozdulás azonos irányú, ezér cos α 3

4 a W F s a (a ) v A nulla kezdősebességgel induló esen az állandó erő haására az elozdulás irányában végze gyorsíási unka egyenesen arányos a sebesség négyzeével, az arányossági ényező a öeg fele. W v d) Súrlódási erő unkája F s F váll s Ha vízszines felüleen állandó sebességgel ozgaunk egy ese, akkor az álalunk kifeje erő egegyezik a felüle álal a esre kifeje súrlódási erő nagyságával. Ilyenkor a húzóerő unkája: W F s cos F s a súrlódási erő unkája: Ws Fs s cos8 Fs s F F s W s μ F ny s μ g s e) Rugóerő unkája A rugó egnyújásakor és összenyoásakor a rugóban erő ébred. A rugóban fellépő erő egyenesen arányos a hosszválozásával, az arányossági ényező a rugóállandó. F r D x Ha a rugóban fellépő erő ábrázoljuk a egnyúlás függvényében, akkor az origóból kiinduló félegyenes kapunk. A grafikon alai erüle érőszáa a rugóerő unkájával lesz egyenlő. 4

5 W r F x r D x A rugóerő unkája egyenesen arányos a egnyúlás négyzeével, az arányossági ényező a rugóállandó fele. 5

6 Mechanikai energia és fajái Az energia bárely zár rendszer kölcsönhaó képességé jellező skalárennyiség. Jele: E Mérékegysége: [ E ] J Az energia legfonosabb jellezői: A esek, ezők elidegeníheelen ulajdonsága, aely a kölcsönhaó képességüke jellezi. Az energia viszonylagos ennyiség. Pl.: a helyzei energia éréke az álalunk egválaszo nulla szinől függ, vagy a ozgási energia éréke a vonakozaási rendszeről. Van olyan energiafaja (ne echanikai energia), aely csak eghaározo érékeke vehe fel, kvanuos. Ilyen pl. az elekroágneses sugárzás energiája. a) Helyzei energia A nulla szinhez képes h agasságba feleel es a helyzeéből adódóan energiával rendelkezik. Egy öegű es helyzeéből adódó energiájának a éréke egegyezik azzal a unkával, aelye akkor végzünk, ha a ese a nulla szinről h agasságba eeljük állandó sebességgel, vagy aelye a es végez, ha h agasságból a nulla szinre esik. g h E h b) Mozgási energia, unkaéel Egy es ozgása során is lehe kölcsönhaó képessége, aelye a ozgási energiával jellezünk. A ozgási energia éréke egegyezik azzal a unkával, aelye akkor végzünk, ha egy öegű es sebességé nulláról v-re növeljük, vagy aelye a es akkor végez, ha sebessége v-ről nullára csökken. E v 6

7 A unkaéel kiondja, hogy egy ponszerű es ozgási energiájának a egválozása egegyezik a esre haó eredőerő unkájával. ) v (v ) v (v v v ) v (v a s F W e + + s F ΔE e c) Rugalas energia A rugalas eseknek alakválozásuk ia van kölcsönhaó képességük. A rugalas energia arányos a hosszválozás négyzeével, az arányossági ényező a rugóállandó fele. r x D E d) Forgási energia A eseknek forgásuk ia is lehe kölcsönhaó képessége, aelye a forgási energiával jellezünk. A forgási energia egyenesen arányos a szögsebesség négyzeével, az arányossági ényező a eheelenségi nyoaék fele. f ω Θ E 7

8 Mechanikai energia egaradásának örvénye Zár echanikai rendszerben a echanikai energiák összege állandó. Zár echanikai rendszer az olyan rendszer, aelyre ne hanak külső erők, vagy azok eredője nulla. A echanikai energia egaradásának örvényé ásképp is egfogalazhajuk: Ha egy esre haó erők eredője konzervaív erő, akkor a echanikai energiák összege állandó. Ez könnyen bebizonyíhaó egy szabadon eső es eseén a pálya háro ponjában. Az. pon a nulla szinhez képes h agasságban van. Innen ejjük el a ese. A. pon a nulla szinhez képes ár csak x agaságban van. I a es sebessége v. Az indulásól száíva idő ala ér ide a es. A 3. pon a nulla szin. I a es sbessége v 3. Az indulásól száíva 3 idő ala ér ide a es. h.pon.pon: E h g h E E ö g h.pon.pon: E h g (h - x) g h - g x E v g x g x v g v g x x g g E ö g h E 3 3.pon v 3 3.pon: g 3 g h g g h E ö g h E h3 8

9 Haásfok A száunkra hasznos energiaválozások indig együ járnak a cél szeponjából felesleges energiaválozásokkal. Egy energiaválozással járó folyaa akkor gazdaságos, ha az összes energiaválozás inél nagyobb hányada fordíódik a hasznos energiaválozásra. A folyaao gazdaságosság szeponjából a haásfokkal jelleezük. A haásfok az a viszonyszá, aely eguaja, hogy az összes energiaválozás hányad része a hasznos energiaválozás. Jele: η η ΔE ΔE h < ö 9

10 Teljesíény A unkavégzés közben a unka nagysága elle az is fonos kérdés, hogy ennyi idő ala zajlo le a folyaa. A unkavégzés haékonyságá a eljesíény fejezi ki. a) Álageljesíény Az a fizikai ennyisége, aely egadja a unkavégzés sebességé, ehá, hogy egységnyi idő ala ennyi a végze unka, álageljesíénynek nevezzük. A eljesíény jele: P W J P [ P ] W s b) Pillananyi eljesíény A pillananyi eljesíény nagyon rövid időközhöz arozó unkavégzés és az idő hányadosa. Jele: P ΔW F Δs P F v Δ Δ P F v Ha egy es állandó sebességgel halad, akkor az álageljesíény egegyezik a pillananyi eljesíénnyel.

11 Fizikaörénei vonakozások Az energia fogala súlyos évedések során alakul ki, és csupán a 9. század végéől vál elfogadoá. Leibniz ár a 7. században elíee a ozgási energiá, ai akkor eleven erőnek neveze. Jaes Black a 8. században élő skó orvos a hő súlyalan folyadéknak (fluidunak) ekinee. Úgy gondola, ha ké különböző hőérsékleű anyag érinkezik, akkor a elegebb fluiduo ad á a hidegebbnek, aíg a hőérsékleük ki ne egyenlíődik. A fluidu elélee dönöe eg Ruford a 8. század végén, aikor arra figyel fel, hogy ágyúcső fúrása közben a hűővíz indig felelegszik. Kezdeben indkeőnek azonos a hőérséklee, ehá az egyik ne adha á a ásiknak fluiduo. Davy 799-ben felfigyel arra, hogy, ha ké jég darabo összedörzsöl, akkor azok egy része egolvad. Ebből arra kövekezee, hogy az energia ne anyag, fluidu, hane a esek állapoára jellező ennyiség. Jaes Presco Joule 843-ban felisere a echanikai és a hőenergia közöi kapcsolao. JOULE, JAMES PRESCOTT(88-889) Angol fizikus Megállapíoa, hogy az energia különféle forái, a echanikai, az elekroos és a hőenergia lényegében azonosak, egyik a ásikba áalakíhaó. Ilyenforán egalkoa az energia-egaradás örvényének, a erodinaika első főéelének az alapjai. A Joule-effekus kiondja, hogy egy huzalban az elekroos ára álal kele hő arányos a huzal ellenállásának és az áraerősség négyzeének a szorzaával. Különböző anyagokkal kísérleezve az is egállapíoa, hogy a hő, az energia egyik forája, függelenül aól, ilyen anyago hevíenek. A unka és az energia egyik egysége a joule neve viseli.

12 JAMES WATT (736-89) Angol udós és felaláló Felalála a gőzsűríő. 775-ben sikerül elkészíenie a gőzhenger, aely jól űködö, így elkezdődhee a gyárása. 78-ben felalála a lendkereke és ovábbi ké év úlva a fordulaszáo állandósíó echanizus, a cenrifugális-szabályzó. A Francia Tudoányos Akadéia és a londoni Királyi Társaság agjává válaszoa.

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul.

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul. MUNKA, NRGIA izikai érteleben unkavégzéről akkor bezélünk, ha egy tet erő hatáára elozdul. Munkavégzé történik ha: feleelek egy könyvet kihúzo az expandert gyorítok egy otort húzok egy zánkót özenyoo az

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

7. osztály, minimum követelmények fizikából

7. osztály, minimum követelmények fizikából 7. ozály, iniu köeelények fizikából izikai ennyiégek Sebeég Jele: Definíciója: az a fizikai ennyiég, aely eguaja, ogy a e egyégnyi idő ala ekkora ua ez eg. Kizáíái ódja, (képlee):. Szaakkal: ú oza a egéeléez

Részletesebben

1. Kinematika feladatok

1. Kinematika feladatok 1. Kineatika feladatok 1.1. Egyenes vonalú, egyenletes ozgások 1. A kézilabdacsapat átlövője 60 k/h sebességgel lövi kapura a labdát a hatéteresvonal előtt állva. Mennyi ideje van a kapusnak a labda elkapására?

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA 1. A kinematika és a dinamika tárgya. Egyenes onalú egyenletes mozgás a) Kísérlet és a belőle leont köetkeztetés b) A mozgás jellemző grafikonjai

Részletesebben

1 ZH kérdések és válaszok

1 ZH kérdések és válaszok 1. A hőérzee befolyásoló ényezők 1 ZH kérdések és válaok Hőérzee befolyásoló ényezők: - a levegő hőmérséklee, annak érbeli, időbeli elolása, válozása - a környező felüleek közepes sugárzási hőmérséklee

Részletesebben

A hőérzetről. A szubjektív érzés kialakulását döntően a következő hat paraméter befolyásolja:

A hőérzetről. A szubjektív érzés kialakulását döntően a következő hat paraméter befolyásolja: A hőérzeről A szubjekív érzés kialakulásá dönően a kövekező ha paraméer befolyásolja: a levegő hőmérséklee, annak érbeli, időbeli eloszlása, válozása, a környező felüleek közepes sugárzási hőmérséklee,

Részletesebben

Budapesti Közgazdaságtudományi és Államigazgatási Egyetem. Közgazdaságtani PhD. program

Budapesti Közgazdaságtudományi és Államigazgatási Egyetem. Közgazdaságtani PhD. program Budapesi Közgazdaságudoányi és Állaigazgaási Egyee Közgazdaságani PhD. progra JÖVEDELEMARÁNYOS VISSZAFIZETÉSEN ALAPULÓ HALLGATÓI HITELRENDSZEREK PhD. érekezés Berlinger Edina Budapes 2003 Berlinger Edina

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Munka, energia, teljesítmény

Munka, energia, teljesítmény Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és

Részletesebben

A KÖZÖSSÉGI DÖNTÉSEK ELMÉLETE ÉS A TÉRBELI ÁLTALÁNOS EGYENSÚLYI MODELL EGY LEHETSÉGES ADAPTÁCIÓJA MAGYARORSZÁGRA

A KÖZÖSSÉGI DÖNTÉSEK ELMÉLETE ÉS A TÉRBELI ÁLTALÁNOS EGYENSÚLYI MODELL EGY LEHETSÉGES ADAPTÁCIÓJA MAGYARORSZÁGRA JÁROSI PÉTER * A KÖZÖSSÉGI DÖNTÉSEK ELMÉLETE ÉS A TÉRBELI ÁLTALÁNOS EGYENSÚLYI MODELL EGY LEHETSÉGES ADAPTÁCIÓJA MAGYARORSZÁGRA Magyarországon a gazdaság érbeli folyaaainak száíógépes odellezésére ég kevés

Részletesebben

á ű ű í ő ő ő á ő Ú Ü ő á ő í ő á ú á ő ő ú É ő ő ő á á ő ő ő ő á ű ű í ú ő á ú á í ú Á á í á í ő í ő ú á ű ő í á á ű í á ő á ű í á ű á í ú í ő í í á í ő á íű í á í á ű í í í á í á ű íí á í ő ő í á ű í

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. november 3. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. november 3. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

ó ö ó Í Í Ó Í Á Í Í Í Ó Ú ó Í Ó ó Ó ó Í Ó Ó Ó Ó Ó Ó Ó ó Á Ó Ó ó ö ó Ú Í Í Ó Ó Ó Í Ó Ú É Í Í Í Ú Ó ő Í Í Ó Ó Ú Ó Ó ó Í ó Á Ó Ó Ó ó ó Í Ó Ó Ó Ó Ó Í Ú Í Í É ö Ó Ó Í Ó Ú Ó Ú Ó Ö Í Í Ú Ó Ó ó Ű Ó Ó Ó Ó Ó Ó Ó

Részletesebben

ö ö ü ü ű ö Í ö ö ö ű Í ü ű ö ö ö ü ű ö ö ö ö ö Í ű ű ü ü Ó ű ö ö É ü ö ö ö ü ü É ö ü ö Á ü Á ű ü ű ű ű ű Í ÍÁ ü ö ö ö ü ü ü É ü ü Á ö ü ü ö ö ű ü ö ü ü ü ö ü ü ü ö ü ü ü ö ö ü ű ö ű ü ö ü ü ö ű ü Í ü

Részletesebben

Í ű Á Á ű ü ü ü ű Í ü ü ü ü Í ű ű ü ü ű ü ü ű ü Í Í É Á Á Á É Á Ö Á Á Á ü É Ó Á Á Á Á É É Á ű É É Á ű ű Á Í Á Í É Á Á Á Á Á Á Ó Á ű ű ü ű ű ű ű ű ü ű Ó ü ű ü ü ű ü ű Í Í ü ű ü ü ü ü ü ű ü ű ü ü ü ü ü ű

Részletesebben

Portfóliókezelési keretszerződés

Portfóliókezelési keretszerződés Széchenyi Kereskedeli Bank Zr. Befekeési Szolgálaási Üzleág Porfóliókezelési kereszerződés A Befekeési Szolgálaási Üzleág Üzleszabályzaának 18.sz. elléklee Porfóliókezelési kereszerződés Jelen szerződés

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Egyfázisú aszinkron motor

Egyfázisú aszinkron motor AGISYS Ipari Keverés- és Hajtástecnika Kft. Egyfázisú aszinkron otor 1 Egy- és árofázisú otorok főbb jellegzetességei 1.1 Forgórész A kalickás aszinkron otorok a forgórész orony alakjának kialakításától

Részletesebben

ÚJPALOTA HELYSZÍNRAJZ, TÉRKIALAKÍTÁS FŐ TÉR ÖTLETPÁLYÁZAT. köz. Zsó kav. í rp. író

ÚJPALOTA HELYSZÍNRAJZ, TÉRKIALAKÍTÁS FŐ TÉR ÖTLETPÁLYÁZAT. köz. Zsó kav. í rp. író N Kƅ rk ás p rk Nyírplo H r yán köz A főere körülvevő fás-ligees prk nyon is kellees klíá bizí, ind érnek, ind pedig nk. Zs kv A Fő ere egységesen sbilizál kvics, íg keskenyebb fák közöi uk, ööríe kvics

Részletesebben

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb

Részletesebben

ó ű ó ü ó ó ü ó ü Í Ö Ő ű Á ó Á Á Á ó ü ó Ö Ö ÚÁ Ö Ó Ó Ó ó Á Ö Ö Á Ó Á Á ó Á Ö Ú Á Ú Ö Ö Á Ö ú Ú Ö ü ú ú ó ü ú ű ó ú ü ú ó ó ü ó ú ü ú Ű ó ü ó ú ó ű ó ú ú ú ó ó ú ú ü ó ü ó ú ó ó ü Ö ó ó ű ó ú ü Ö ű ó

Részletesebben

ü Ö ü í ü ü ü ü í Ö ö ü ú ü ü ö ü ü ű ö í í ö í űá ú ü ö ö ö í ü ü ü ü ü ű ö í í ö í ű ú ü ü í ü ü ű ö í í ö í űá ú ü íí ü Á í í í Á ű ú í ö ö í ü ö ö ö í ö í ú ö ü ü ű ö ö í ű ö í ű ü ű ö í ű ö í ö í

Részletesebben

Gépészeti automatika

Gépészeti automatika Gépészei auomaika evezeés. oole-algebra alapelemei, aiómarendszere, alapfüggvényei Irányíás: az anyag-és energiaáalakíó ermelési folyamaokba való beavakozás azok elindíása, leállíása, vagy bizonyos jellemzoiknek

Részletesebben

1.0. BEVEZETÉS, ALAPFOGALMAK

1.0. BEVEZETÉS, ALAPFOGALMAK .0. BEVEZEÉS, ALAPFOGALAK A agyéreű (aroszous) ese helyzeálozásáa, azaz echaa ozgásáa öréye ár a 7. századba felseré. A Newo-axóába összegze öréye a ozgásjeleségee agyo oosa írjá le. Segíségüel a esre

Részletesebben

Magdi meg tudja vásárolni a jegyet, mert t Kati - t Magdi = 3 perc > 2 perc. 1 6

Magdi meg tudja vásárolni a jegyet, mert t Kati - t Magdi = 3 perc > 2 perc. 1 6 JEDLIK korcoport Azonoító kód: Jedlik Ányo Fizikavereny. (orzágo) forduló 7. o. 0. A feladatlap. feladat Kati é Magdi egyzerre indulnak otthonról, a vaútálloára ietnek. Úgy tervezik, hogy Magdi váárolja

Részletesebben

ÜZEMELTETÉSI FOLYAMAT GRÁFMODELLEZÉSE 2 1. BEVEZETÉS

ÜZEMELTETÉSI FOLYAMAT GRÁFMODELLEZÉSE 2 1. BEVEZETÉS okorádi László ÜZEMELTETÉSI FOLYAMAT GRÁFMODELLEZÉSE 2 Technikai eszközök üzeeltetési rendszerei, folyaatai ateatikai szepontból irányított gráfokkal írhatóak le. A űszaki tudoányokban a hálózatokat, gráfokat

Részletesebben

MNB-tanulmányok 50. A magyar államadósság dinamikája: elemzés és szimulációk CZETI TAMÁS HOFFMANN MIHÁLY

MNB-tanulmányok 50. A magyar államadósság dinamikája: elemzés és szimulációk CZETI TAMÁS HOFFMANN MIHÁLY MNB-anulmányok 5. 26 CZETI TAMÁS HOFFMANN MIHÁLY A magyar államadósság dinamikája: elemzés és szimulációk Czei Tamás Hoffmann Mihály A magyar államadósság dinamikája: elemzés és szimulációk 26. január

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai

Részletesebben

A MAGYAR KÖZTÁRSASÁG NEVÉBEN!

A MAGYAR KÖZTÁRSASÁG NEVÉBEN! i 7-5'33/07 A Fovárosi Íéloábla 2.Kf.27.561/2006/8.szám "\"?,', " R ".,--.ic-" i" lvöj.bul.lape" evlcz,,-.'{i-.)., Erkze:.. 2007 JúN 1 :szám:......,;.?:j.or; lvi\:dekleek:,""" : Ekiira ik szam ' m.:...,.

Részletesebben

Ancon feszítõrúd rendszer

Ancon feszítõrúd rendszer Ancon feszíõrúd rendszer Ancon 500 feszíőrúd rendszer Az összeköő, feszíő rudazaoka egyre gyakrabban használják épíészei, lászó szerkezei elemkén is. Nagy erhelheősége melle az Ancon rendszer eljesíi a

Részletesebben

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek. Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.

Részletesebben

ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü

Részletesebben

Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 DE, Kísérlei Fizika Tanszék Elekronika 2. TFBE302 Jelparaméerek és üzemi paraméerek mérési módszerei TFBE302 Elekronika 2. DE, Kísérlei Fizika Tanszék Analóg elekronika, jelparaméerek Impulzus paraméerek

Részletesebben

Területi ellátási egyenlőtlenségek az egészségügyben. Országos kórházi és egyéb ellátási tematikus térképek készítése és térbeli statisztikai elemzése

Területi ellátási egyenlőtlenségek az egészségügyben. Országos kórházi és egyéb ellátási tematikus térképek készítése és térbeli statisztikai elemzése Terülei elláási egyenlőlenségek az egészségügyben. Országos kórházi és egyéb elláási emaikus érképek készíése és érbeli saiszikai elemzése OKTK 1646/III.b. sz. kuaás Kuaási zárójelenés Nógrád Borsod-Abaúj-Zemplén

Részletesebben

Budapesti Corvinus Egyetem. Tudományos Diákköri Konferencia. A CDD-call opció gyakorlati alkalmazása

Budapesti Corvinus Egyetem. Tudományos Diákköri Konferencia. A CDD-call opció gyakorlati alkalmazása Budapesi Corvinus Egyee Tudoányos Diákköri Konferencia A CDD-call opció gyakorlai alkalazása Bella Klaudia Taralojegyzék 1. BEVEZETÉS 3 2. AZ IDŐJÁRÁSI DERIVATÍVÁK GYAKORLATI JELENTŐSÉGE 5 2.1. Konrakusok

Részletesebben

Természeti jelenségek fizikája gyakorlat. Pogány Andrea andrea@titan.physx.u-szeged.hu

Természeti jelenségek fizikája gyakorlat. Pogány Andrea andrea@titan.physx.u-szeged.hu Terészeti jelenségek fizikája gyakorlat Pogány Andrea andrea@titan.physx.u-szeged.hu Vektorok vektor: a tér egy rendezett pontpárja által kijelölt, az első pontból a ásodikba utató irányított szakasz nagysággal

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

Útmutató kezdők részére az energia és a teljesítmény megértéséhez

Útmutató kezdők részére az energia és a teljesítmény megértéséhez Útmutató kezdők részére az energia és a teljesítmény megértéséhez Neil Packer cikke, Staffordshire Egyetem, Egyesült Királyság - 2011. február Az energia Az energia a munkához való képesség. A történelemben

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Dinamika gyakorló feladatok. Készítette: Porkoláb Tamás

Dinamika gyakorló feladatok. Készítette: Porkoláb Tamás Dinaika gyakorló feladatok Kézítette: Porkoláb Taá Elélet 1. Mit utat eg a őrőég?. Írj áro példát aelyek a teetetlenég törvéével agyarázatók! 3. Írd le a lendület-egaradá tételét pontrendzerre! 4. Mit

Részletesebben

Á É ö ó ú á ö á ö ű ű ö ő á á ó ú á ó á ő ó á ő á ö á ö á ö Ú ó á á í ó ö ö á ő á á í ó í ú ő ö ö ö ö á á á ó á óí á ő á á á í ü Í á á ű ó ó ó á ó á í í ő í á ú á ő á á á á í á á á í á á á ú á á ö ö ö

Részletesebben

A harmonikus rezgőmozgás (emelt szint)

A harmonikus rezgőmozgás (emelt szint) haronikus rezgőozgás (eelt szint) ozgás jellezői: két szélső helzet között égbeenő periodikus (időben isétlődő) ozgás. Jellező enniségek: rezgésidő (periódusidő): eg teljes rezgés (a két szélső helzet

Részletesebben

2014.11.18. SZABÁLYOZÁSI ESZKÖZÖK: Gazdasági ösztönzők jellemzői. GAZDASÁGI ÖSZTÖNZŐK (economic instruments) típusai. Környezetterhelési díjak

2014.11.18. SZABÁLYOZÁSI ESZKÖZÖK: Gazdasági ösztönzők jellemzői. GAZDASÁGI ÖSZTÖNZŐK (economic instruments) típusai. Környezetterhelési díjak SZABÁLYOZÁSI ESZKÖZÖK: 10. hé: A Pigou-éelen alapuló környezei szabályozás: gazdasági öszönzők alapelvei és ípusai 1.A ulajdonjogok (a szennyezési jogosulság) allokálása 2.Felelősségi szabályok (káréríés)

Részletesebben

Hatvani István Fizikaverseny 2014-15. 3. forduló megoldások. 1. kategória. 7. neutrínó. 8. álom

Hatvani István Fizikaverseny 2014-15. 3. forduló megoldások. 1. kategória. 7. neutrínó. 8. álom 1. kaegória 1.3.1. 1. CERN 2. PET 3. elekronvol. ikloron 5. Porozlay. Fiziku Napok 7. neurínó 8. álom 9. környezefizikai 10. Nagyerdő A megfejé: SZALAY SÁNDOR Szalay Sándor (195-1975) köveő igazgaók: Berényi

Részletesebben

Dinamikus optimalizálás és a Leontief-modell

Dinamikus optimalizálás és a Leontief-modell MÛHELY Közgazdasági Szemle, LVI. évf., 29. január (84 92. o.) DOBOS IMRE Dinamikus opimalizálás és a Leonief-modell A anulmány a variációszámíás gazdasági alkalmazásaiból ismere hárma. Mind három alkalmazás

Részletesebben

á á á í ö á ö á á á ó ő ó ö á á á á ő ő á á ö ü Ü ó ő í ó ö ü ö ö í ó ö í ó ö ü Ü ö ü í ö ü ö í á á ö ü á ü ó á ö á í ö á á á á á á ö ó á á á á ő ö á á á á ó á ö á á á í á á ö í ő í ö ü ö ö í á í ö ö á

Részletesebben

AUTOMATIKA. Dr. Tóth János

AUTOMATIKA. Dr. Tóth János UTOMTIK UTOMTIK Dr. Tóh János TERC Kf. udapes, 3 Dr. Tóh János, 3 3 Kézira lezárva:. november 9. ISN 978-963-9968-57-8 Kiadja a TERC Kereskedelmi és Szolgálaó Kf. Szakkönyvkiadó Üzleága, az 795-ben alapío

Részletesebben

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény.

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény. 11/1. Teljesítén száítása szinuszos áraú álózatokban. Hatásos, eddô és látszólagos teljesítén. Szinuszos áraú álózatban az ára és a feszültség idıben változik. Íg a pillanatni teljesítén is változik az

Részletesebben

(Nem jogalkotási aktusok) IRÁNYMUTATÁSOK

(Nem jogalkotási aktusok) IRÁNYMUTATÁSOK 2011.8.23. Az Európai Unió Hivaalos Lapja L 217/1 II (Nem jogalkoási akusok) IRÁNYMUTATÁSOK AZ EURÓPAI KÖZPONTI BANK IRÁNYMUTATÁSA (2011. június 30.) az euróra vonakozó adagyűjésről és a 2. Készpénzinformációs

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június I. Mechanika Newton törvényei Egyenes vonalú mozgások Munka, mechanikai energia Pontszerű és merev test egyensúlya, egyszerű gépek Periodikus

Részletesebben

EFG 213-320. Használati utasítás 09.09 - 03.13. EFG 213 EFG 215 EFG 216k EFG 216 EFG 218k EFG 218 EFG 220 EFG 316k EFG 316 EFG 318k EFG 318 EFG 320

EFG 213-320. Használati utasítás 09.09 - 03.13. EFG 213 EFG 215 EFG 216k EFG 216 EFG 218k EFG 218 EFG 220 EFG 316k EFG 316 EFG 318k EFG 318 EFG 320 EFG 213-320 09.09 - Használai uasíás 51151944 03.13 U EFG 213 EFG 215 EFG 216k EFG 216 EFG 218k EFG 218 EFG 220 EFG 316k EFG 316 EFG 318k EFG 318 EFG 320 Megfelel ségi nyilakoza Jungheinrich AG, Am Sadrand

Részletesebben

ć ü ú í ú ú ü í ü ö ú ö É É É É É Ü É É ŕ É š ů ü ü í ű ö ö đ ú ö í ź ö ź ö í ü ú í ü đ ü ú ö ą Ü í ę ü ö í Ĺ ú Ú Ö í ö í ú í ę ę ü í í í ť ę í ü í í í ö ö í ú í ü ö ö ö í ü ů ú ö ń ö í ű í í ź ú í ú í

Részletesebben

TÁJÉKOZTATÓ Technikai kivetítés és a költségvetési szabályok számszerűsítése 2011-2012

TÁJÉKOZTATÓ Technikai kivetítés és a költségvetési szabályok számszerűsítése 2011-2012 TÁJÉKOZTATÓ Technikai kiveíés és a kölségveési szabályok számszerűsíése 2011-2012 2009. okóber 21. Az elemzés szerzői: Baksa Dániel, Benk Szilárd, Berki Tamás, Draban Béla, Fehér Csaba, Gerner Vikória,

Részletesebben

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok 1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalak (35-41) Gondolat, 1976 3. A sugárzás érése (42-47) KAD 2010.09.15 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev 5.4

Részletesebben

Rövid távú elôrejelzésre használt makorökonometriai modell*

Rövid távú elôrejelzésre használt makorökonometriai modell* Tanulmányok Rövid ávú elôrejelzésre használ makorökonomeriai modell* Balaoni András, a Századvég Gazdaságkuaó Zr. kuaási igazgaója E-mail: balaoni@szazadveg-eco.hu Mellár Tamás, az MTA dokora, a Pécsi

Részletesebben

SZÁMVEVÕSZÉKI KONFERENCIA Közpolitikai kihívások az új évtizedben

SZÁMVEVÕSZÉKI KONFERENCIA Közpolitikai kihívások az új évtizedben Taralom SZÁMVEVÕSZÉKI KONFERENCIA Közpoliikai kihívások az új évizedben Közpoliikai kihívások az új évizedben 403 CSAPODI PÁL: Kihívások a számvevõszéki ellenõrzés elõ, az ÁSZ anácsadó szerepe 405 PULAY

Részletesebben

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS

Zsembery Levente VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS Zsembery Levene VOLATILITÁS KOCKÁZAT ÉS VOLATILITÁS KERESKEDÉS PÉNZÜGYI INTÉZET BEFEKTETÉSEK TANSZÉK TÉMAVEZETŐ: DR. SZÁZ JÁNOS Zsembery Levene BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI ÉS ÁLLAMIGAZGATÁSI EGYETEM

Részletesebben

A tôkemérés néhány alapproblémája

A tôkemérés néhány alapproblémája A ôkemérés néhány alapproblémája Hül Anónia, a KOPINT-TÁRKI Konjunkúrakuaó Inéze Zr. udományos anácsadója E-mail: anonia.hul@kopinarki.hu A reálőke és ezen belül a őkeszolgála mérése a nemzei számlák módszerani

Részletesebben

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,

Részletesebben

Excel parancsfájlok felhasználása a statisztikai elemzésekben

Excel parancsfájlok felhasználása a statisztikai elemzésekben Kehl Dániel Dr. Sipos Béla Excel parancsfájlok felhasználása a saiszikai elemzésekben (Okaási segédle) Pécsi Tudományegyeem Közgazdaságudományi Kar Pécs,. Íra: Dr. Sipos Béla egyeemi anár, PTE KTK Az Excel

Részletesebben

33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása. Gimnázium 9. évfolyam

33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása. Gimnázium 9. évfolyam 33. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása A feladatok helyes megoldása maximálisan 10 pontot ér. A javító tanár belátása szerint a 10 pont az itt megadottól

Részletesebben

10. ELŐADÁS E 10 SZÉCHENYI ISTVÁN EGYETEM. Az ábrák forrása:

10. ELŐADÁS E 10 SZÉCHENYI ISTVÁN EGYETEM. Az ábrák forrása: SZÉCHNYI ISTVÁN GYTM TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az árák orrása:. LŐADÁS [1] Dr. Némeh György: Tarószerkezeek III., Acélszerkezeek méreezésének alapjai [] Halász Oó Plahy Pál: Acélszerkezeek

Részletesebben

M ISKOLCI E GYETEM GAZDASÁGTUDOMÁNYI KAR VÁLLALKOZÁSELMÉLET ÉS GYAKORLAT AKKREDITÁLT DOKTORI PROGRAM PROGRAMVEZETŐ: PROF. SZINTAY ISTVÁN, CSC.

M ISKOLCI E GYETEM GAZDASÁGTUDOMÁNYI KAR VÁLLALKOZÁSELMÉLET ÉS GYAKORLAT AKKREDITÁLT DOKTORI PROGRAM PROGRAMVEZETŐ: PROF. SZINTAY ISTVÁN, CSC. M ISKOLCI E GYETEM GAZDASÁGTUDOMÁNYI KAR VÁLLALKOZÁSELMÉLET ÉS GYAKORLAT AKKREDITÁLT DOKTORI PROGRAM PROGRAMVEZETŐ: PROF. SZINTAY ISTVÁN, CSC. Galbács Péer Akív szabályozás, vagy gazdaságpoliikai nihilizmus?

Részletesebben

A mágneses tér alapfogalmai, alaptörvényei

A mágneses tér alapfogalmai, alaptörvényei A mágneses ér alapfogalma, alapörvénye A nyugvó vllamos ölések közö erőhaásoka a vllamos ér közveí (Coulomb örvénye). A mozgó ölések (vllamos áramo vvő vezeők) közö s fellép erőhaás, am a mágneses ér közveí.

Részletesebben

A személyi jövedelemadó reformjának hatása a társadalombiztosítási nyugdíjakra

A személyi jövedelemadó reformjának hatása a társadalombiztosítási nyugdíjakra Közgazdasági Szemle, LVIII. évf., 20. december (029 044. o.) Cseres-Gergely Zsombor Simonovis András A személyi jövedelemadó reformjának haása a ársadalombizosíási nyugdíjakra 2009 és 203 közö a magyar

Részletesebben

BARANYA MEGYE TERÜLETRENDEZÉSI TERVE

BARANYA MEGYE TERÜLETRENDEZÉSI TERVE Készül a Baranya Megyei Önkormányza megbízásából BARANYA MEGYE TERÜLETRENDEZÉSI TERVE ELFOGADÁSI TERVFÁZIS II. KÖTET MEGALAPOZÓ MUNKARÉSZEK 2011. DECEMBER 1085 Budapes Kőfaragó u. 9. Tel: 267 05 08, 267

Részletesebben

Kényszerrezgések, rezonancia

Kényszerrezgések, rezonancia TÓTH A: Rezgése/ (ibővített óavázlat 13 Kényszeezgése, ezonancia Gyaolatilag is igen fontos eset az, aio egy ezgése épes endsze ezgései valailyen ülső, peiodius hatás (énysze űödése özben zajlana le Az

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

DIPLOMADOLGOZAT Varga Zoltán 2012

DIPLOMADOLGOZAT Varga Zoltán 2012 DIPLOMADOLGOZAT Varga Zolán 2012 Szen Isván Egyeem Gazdaság- és Társadalomudományi Kar Markeing Inéze Keresle-előrejelzés a vállalai logiszikában Belső konzulens neve, beoszása: Dr. Komáromi Nándor, egyeemi

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

LIKVIDITÁS ÉS REÁLGAZDASÁG KAPCSOLATA Az Egyesült Államok példáján

LIKVIDITÁS ÉS REÁLGAZDASÁG KAPCSOLATA Az Egyesült Államok példáján Szegedi Tudományegyeem Gazdaságudományi Kar Közgazdaságudományi Dokori Iskola Ács Aila LIKVIDITÁS ÉS REÁLGAZDASÁG KAPCSOLATA Az Egyesül Államok példáján Dokori érekezés ézisei Témavezeő: Dr. Boos Kaalin

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

A BIZOTTSÁG MUNKADOKUMENTUMA

A BIZOTTSÁG MUNKADOKUMENTUMA AZ EURÓPAI UNIÓ TANÁCSA Brüsszel, 2007. május 23. (25.05) (OR. en) Inézményközi dokumenum: 2006/0039 (CNS) 9851/07 ADD 2 FIN 239 RESPR 5 CADREFIN 32 FELJEGYZÉS AZ I/A NAPIRENDI PONTHOZ 2. KIEGÉSZÍTÉS Küldi:

Részletesebben

A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is!

A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is! 1 A Maxwell - kerékről Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is! 1. ábra forrása: [ 1 ] Itt azt láthatjuk, hogy egy r sugarú kis hengerre felerősítettek

Részletesebben

Tájékoztató a portfólió értékelésérıl, illetve a portfólión elért hozam számításáról

Tájékoztató a portfólió értékelésérıl, illetve a portfólión elért hozam számításáról Tájékozaó a pofóló éékeléséıl, lleve a pofólón elé hoza száíásáól Jelen ájékozaó elválaszhaalan észé képez az Ügyfél és az EQUILOR Befekeés Z. (ovábbakban EQUILOR) közö léejö pofólókezelés szezıdésnek.

Részletesebben

34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra. A verseny hivatalos támogatói

34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra. A verseny hivatalos támogatói 34. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2015. március 17. 14-17 óra A verseny hivatalos támogatói Gimnázium 9. évfolyam 1.) Egy test vízszintes talajon csúszik. A test és a

Részletesebben

Mozgással kapcsolatos feladatok

Mozgással kapcsolatos feladatok Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek

Részletesebben

Legfontosabb farmakokinetikai paraméterek definíciói és számításuk. Farmakokinetikai paraméterek Számítási mód

Legfontosabb farmakokinetikai paraméterek definíciói és számításuk. Farmakokinetikai paraméterek Számítási mód Legfonosabb farmakokineikai paraméerek definíciói és számíásuk Paraméer armakokineikai paraméerek Név Számíási mód max maximális plazma koncenráció ideje mér érékek alapján; a max () érékhez arozó érék

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

ÖVEGES JÓZSEF FIZIKAVERSENY

ÖVEGES JÓZSEF FIZIKAVERSENY ÖVEGES JÓZSEF FZKAVERSENY skolai forduló Számításos feladatok Oldd meg az alábbi számításos feladatokat! ibátlan megoldás esetén a szöveg után látható kis táblázat jobb felső sarkában feltüntetett pontszámot

Részletesebben

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIAI FELADATMEGOLDÓ VERSENY Hódezőásáhely, 04. ácius 8-0. 9. éfolya 9/. feladat: Adatok: a /s, t 6 s, a 0, t 5 s, a - /s, édések: s?, t?, átl?, a átl? [/s] 0 0 0 40 Az

Részletesebben

ú É ú ü ú ü ü ú ú ú Í ü ü ü Í ű ü ü ü ü ü ü ü ű ű ü ü ü Í ű ü ú ü ü ú ú ú É Á Á É Á Ő Á Á Á Á É ü Á É ú ú Ó É É Á Í Á ú ü Ó Á Á ú ü ü Á É Á Ó ú ü ú Í ú ú ú ű Í Í ű ú ú ú Í ü Í ü ü ű ú ú ű Í ü ú ú Í ú ú

Részletesebben

Mechanika. 1.1. A kinematika alapjai

Mechanika. 1.1. A kinematika alapjai Tartalojegyzék Mecanika 1. Mecanika 4. Elektroágnee jelenégek 1.1. A kineatika alapjai 1.2. A dinaika alapjai 1.3. Munka, energia, teljeítény 1.4. Egyenúlyok, egyzerű gépek 1.5. Körozgá 1.6. Rezgéek 1.7.

Részletesebben

A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév

A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév Dr. Paripás Béla 6. Előadás (2010.10.27.) Ponthatárok: 0 13 elégtelen (1) 14 18 elégséges (2) 19 22 közepes (3) 23 26 jó (4) 27

Részletesebben

ÉPÜLETGÉPÉSZ TECHNIKUS SZAKKÉPESÍTÉS SZÁMÁRA KÉPLETGYŐJTEMÉNY 1.0 VERZIÓ PÉCS 2012. SZERKESZTETTE: NÉMETH SZABOLCS

ÉPÜLETGÉPÉSZ TECHNIKUS SZAKKÉPESÍTÉS SZÁMÁRA KÉPLETGYŐJTEMÉNY 1.0 VERZIÓ PÉCS 2012. SZERKESZTETTE: NÉMETH SZABOLCS ÉPÜLETGÉPÉSZ TECHIKUS SZKKÉPESÍTÉS SZÁMÁR KÉPLETGYŐJTEMÉY.0 ERZIÓ PÉCS 0. SZERKESZTETTE: ÉMETH SZBOLCS Éüegéésze Kéegyőjeény ://energeia.s.u II Szereszee: ée Szabocs Éüegéésze Kéegyőjeény KÉPLETGYŐJTEMÉY.

Részletesebben

Kamat átgyűrűzés Magyarországon

Kamat átgyűrűzés Magyarországon Kama ágyűrűzés Magyarországon Horváh Csilla, Krekó Judi, Naszódi Anna 4. február Összefoglaló Elemzésünkben hiba-korrekciós modellek segíségével vizsgáljuk a piaci hozamok és a banki forin hiel- és beéi

Részletesebben

ú ő ő ő ö ú í á ö ő ú ö ő ő ö á í á á ő ő á ö ő á í ő ő ö ö ö ő á ő ő í á á ú á íí á ú á ú í á Á í í á ö ő í ő ö ő á í á ő í í á í á ú ö ö í á í í í á ö í ő ö á í ö ö í ö í ö ő í á í ú í á í í íí á í í

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Mozgások. Munkadarab. főmozgás - forgácsolósebesség, vc, m/min. mellékmozgások:

Mozgások. Munkadarab. főmozgás - forgácsolósebesség, vc, m/min. mellékmozgások: Anyag és gyártásiseret Forgásolás alapolyaat ő tevékenység alkatrészgyártás (alkatrész orientált) leválasztó eljárás A unkadarabról (M) a elesleges anyagot egelelő ozgások révén az alkalas szerszá (S)

Részletesebben

A nemzetgazdasági tervezés megújításának koncepciója

A nemzetgazdasági tervezés megújításának koncepciója SZÁMVEVÕSZÉKI KONFERENCIA Báger Guszáv A nemzegazdasági ervezés megújíásának koncepciója AAz Állami Számvevõszék (ÁSZ) ellenõrzései és kuaóinézeének elemzései alapján az a véleményünk, hogy Magyarországon

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

1997. évi LXXXI. törvény. a társadalombiztosítási nyugellátásról, egységes szerkezetben a végrehajtásáról szóló 168/1997. (X. 6.) Korm.

1997. évi LXXXI. törvény. a társadalombiztosítási nyugellátásról, egységes szerkezetben a végrehajtásáról szóló 168/1997. (X. 6.) Korm. 1997. évi LXXXI. örvény a ársadalombizosíási nyugelláásról, egységes szerkezeben a végrehajásáról szóló 168/1997. (X. 6.) Korm. rendeleel [A vasag beűs szöveg az 1997. évi LXXXI. örvény (a ovábbiakban:

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

ó Á á á ő Á Í ő Á ő á ő ő Á ó Í í Í Í Á ő Í Í Ö ó á Ü é ő á ö á é ő ő í á í Ö á á Ú í á ő á á á á ü é ó á á ú í ó é é é á í á á ü ö ö á á á á é ö á ő á á ő á á ú é ö á ú ú é ö á ú ú é ö á ú ú á

Részletesebben