19. Alakítsuk át az energiát!

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "19. Alakítsuk át az energiát!"

Átírás

1 Függ-e a unkavégzés az úttól? Ugyanazt az töegű testet lassan, egyenletesen ozgassuk először az ábrán látható ABC törött szakaszon, ajd közvetlenül az AC szakaszon. Mindkét alkaloal a ozgatott test h-val élyebbre kerül. Száoljuk ki a nehézségi erő testen végzett unkáját indkét esetben! B A Kezdjük az ABC pályán végzett unkavégzéssel. A folyaatot két részre bonthatjuk: az AB szakaszon az g nehézségi erő és az AB elozdulás egyirányú, tehát a unka W AB = F s = gh; a BC szakaszon az g nehézségi erőnek nincs unkája, ert erőleges a BC elozdulásra. Így: W ABC = W AB = W BC = gh + 0 = gh. Mekkora a unkavégzés az AC pályán? Az g nehézségi erő és az AC elozdulás ost ne egyező irányú. Ilyenkor két lehetőség közül választhatunk. Vagy az erő elozdulásirányú összetevőjét szorozzuk az elozdulással, vagy az erőt szorozzuk eg az elozdulás erőirányú összetevőjével. Az utóbbi tűnik egyszerűbbnek, hiszen az AC elozdulás erőirányú összetevője éppen AB: W AC = g AC párh = g AB = gh. C Megállapíthatjuk, hogy a nehézségi erő által végzett unka független az úttól, értékét a test agasságváltozása egyértelűen eghatározza. A nehézségi erő unkája a fenti folyaatban gh, iközben az töegű test helyzeti energiájának egváltozása gh. Ha a testet lassan, egyenletesen ozgatva a C pontból visszajuttatjuk az A pontba (például egyszerűen úgy, hogy kézbe vesszük, és követjük a kijelölt útvonalakat), akkor az általunk végzett unka lesz gh (ezért növekszik a test helyzeti energiája gh értékkel), és a nehézségi erő unkája lesz az előző ellentettje: gh. Ekkor is érvényes, hogy a unkavégzés független az úttól. Vegyük észre, hogy a nehézségi erő teljes unkája egy körfolyaat közben indig nulla, bárilyen úton is ozog a test. Ez azért van így, ert a körfolyaat egy odaútra és egy visszaútra bontható. De a körutazást fordítva is egtehetjük, ekkor a visszaútból lesz odaút, az odaútból pedig visszaút. Közben a nehézségi erő iránya ne változik, azonban az elozdulás ellentétes lesz, tehát a unkavégzés ( 1)-szeresére változik. Azonban ne inden erő esetében teljesül, hogy körfolyaat közben a unkavégzése nulla. Vízszintes felületen, tetszőleges pályán csúsztassunk végig egy testet úgy, hogy jussunk vissza a kiindulási pontba. Vizsgáljuk eg a csúszási súrlódási erő unkáját! A csúszási súrlódási erő indig ellentétes a test sebességével, vagyis a test pillanatnyi elozdulásával. Ezért a körfolyaat bárely kicsiny szakaszában a csúszási súrlódási erő unkája negatív, A Nap fénye a földfelszín felett különböző értékben elegíti fel a levegőt, eiatt alakulnak ki a szelek. A napsugárzás hatására a növekedő növényekben kéiai energia tárolódik. Azt látjuk, hogy az energiaforák kölcsönhatáskor átalakulhatnak. A echanikai energia háro foráját sikerült eddig egisernünk. Vizsgáljuk ezek átalakulásait! Hogyan változik a síugró echanikai energiája, iközben lecsúszik a agas sísáncról? 103

2 A nagy teljesítény titka: Azokat az erőket, elyek unkája független az úttól, vagyis a unkájuk száértékét az út kezdő- és végpontja egyértelűen eghatározza, konzervatív erőknek nevezzük. Konzervatív erő a nehézségi erő, a gravitációs erő, a rugóerő, és ajd később látni fogjuk, hogy az elektrosztatikus erő is. Potenciális (helyzeti) energiát csak konzervatív erőkhöz tudunk rendelni. Ne konzervatív erő a súrlódási, a gördülő ellenállási és a közegellenállási erő. A konzervatív erő kifejezés abból szárazik, hogy a konzervatív erők ellenében végzett unka visszanyerhető, a külső erő unkája ilyen érteleben ne vész el, hane egarad, konzerválódik. A befektetett unka által a rendszernek unkavégző képessége lesz, tehát a rendszer energiát képes tárolni. Általánosan igaz, hogy inden egyes konzervatív erőhöz tartozik valailyen potenciális energia. A nehézségi erőhöz a test helyzetéből adódó gh agassági helyzeti energia rendelhető, a rugóerőhöz pedig a rugó deforációjából szárazó 2 Dx rugalassági energia. Általánosságban indkét energiát potenciális energiának hívjuk. A potenciális szó azt fejezi ki, hogy a rendszer a helyzetéből adódóan képes unkavégzésre. A jégkorongra ható erők közül elyik konzervatív, elyik ne? tehát az egész körfolyaatra is negatív. Ebből az is következik, hogy a csúszási súrlódási erő unkája ne független az úttól. Ugyanígy ne független az úttól a gördülési ellenállási erő és a közegellenállási erő unkája se. A echanikaienergia-egaradás törvénye Ha egy testre csak olyan erők hatnak, elyek unkája független az úttól (konzervatív erők), vagy a ne konzervatív erők unkája nulla, akkor a test echanikai energiája ne változik. Ha a test a nehézségi erő és a rugóerő hatására ozog, akkor a következő összefüggést írhatjuk fel: + E ozg = állandó, ahol a helyzeti (ás néven agassági) energia, E rug a rugalassági energia, E ozg pedig a test ozgási energiája. Ezt az összefüggést nevezzük a echanikaienergia-egaradás törvényének. A törvény segítségével a test két állapotát hasonlíthatjuk össze, elyeket nevezzünk (1)-es és (2)-es állapotnak. Ha a vizsgált rendszerben nincsenek olyan ne konzervatív erők (vagy ezek elhanyagolhatók), int ailyen a súrlódás és a közegellenállás, akkor a rendszer teljes echanikai energiája az (1)-es és a (2)-es állapotban ugyanakkora: (1) + E ozg (1) = (2) + E ozg A echanikaienergia-egaradás törvényének ezt az alakját úgy használhatjuk, hogy külön-külön tekintjük a test (1)-es és (2)-es állapotát. Összegyűjtjük az összes szóba jövő energiát indkét állapotban, és ezeket egyenlővé tesszük. A száítás során ne kell azzal foglalkoznunk, ilyen folyaattal jutott a test az (1)-es állapotból a (2)-esbe. SZÁMOLJUK KI! Feladat: A képen látható rugós puska régi, kedvelt gyerekjáték. A puskával 5 gra töegű űanyag golyót lehet kilőni. A lövedék ozgásakor a súrlódás és a közegellenállás elhanyagolható. A puskacsőben lévő 4 N/ rugóállandójú rugó nyújtatlan állapotban teljesen kitölti a csövet, összenyoott állapotban 20 c-rel rövidebb. Energetikai száítással adjunk választ a következő kérdésekre: Rugós játék puska, ellyel könnyű űanyag golyót lőhetünk ki a) Mekkora sebességgel hagyja el a vízszintesen tartott puska csövét a lövedék? b) Mekkora sebességgel hagyja el a függőlegesen felfelé tartott puska csövét a lövedék? c) A puskacső végétől száítva ilyen agasra repül a lövedék a ásodik esetben? Megoldás: A rugó összenyoása során végzett unkánkkal egyenlő rugalas energia tárolódik a rugóban. Mivel a súrlódás és a közegellenállás elhanyagolható, a lövedékre a nehézségi erőn és a rugóerőn kívül legfeljebb a cső falának nyoóereje hat. Azonban a nyoóerő unkája nulla, ert indig erőleges a lövedék elozdulására. Ezért alkalazhatjuk a echanikaienergia-egaradás törvényét: + E ozg = állandó. 104

3 a) Két állapotot hasonlítunk össze, elyek teljes echanikai energiája egegyezik. Az (1)-es állapotban a rugó összenyoott, a lövedék ne ozog. A (2)-es állapotban a rugó nyújtatlan, a lövedék éppen kirepül a csőből. Mivel a puska csöve vízszintes, ezért nincs helyzetienergia-változás, célszerű a cső szintjét tekinteni a helyzeti energia nulla szintjének. A két állapotra írjuk fel a echanikaienergia-egaradási törvényt: (1) + E ozg (1) = (2) + E ozg Az egyenletbe írjuk be a egfelelő energiatagokat: = v 2 0. D 4 N/ v x = 0,2 5,7. 0,005 kg s A kilövés közben lényegében az történt, hogy a rugóban tárolt energia a lövedék ozgási energiájává alakult. Sikerült úgy kiszáítanunk a lövedék sebességét, hogy ne kellett arra figyelnünk, ennyi idő alatt játszódik le a folyaat, hogyan változik a lövedék gyorsulása, sebessége, helye az idő függvényében. b) Függőleges puskacső esetén is ugyanazt a két állapotot hasonlítjuk össze, azonban az előző esethez képest az a különbség, hogy közben változik a lövedék agassági hely zeti energiája. A helyzeti energia nulla szintjét célszerű a lövedék kiindulási állapotához választanunk, így a puskacső elhagyásakor a lövedék eelkedése h = x értékű. (1) + E ozg (1) = = (2) + E ozg Írjuk be a egfelelő energiatagokat, figyelebe véve, hogy h = x (vagyis gh = gx): v Dx 2 += g x 0 v, (4 N/) (0,2 ) 2g 2 10 (0,2 ) = 5,3. 0,005 kg s 2 s 2 2 Ebben az esetben az történt, hogy a rugóenergia necsak a lövedék oz gási energiájára, hane részben a lövedék helyzeti energiájának növekedésére fordítódott. Ez a agyarázata annak, hogy a függőlegesen felfelé tartott puskacsőből kisebb sebességgel repül ki a lövedék. c) Miután elhagyja a puskacsövet a lövedék, és függőlegesen felfelé ozog, ozgási energiája fokozatosan agassági helyzeti energiává alakul. Ebben az esetben az (1)-es állapot a cső elhagyása, a (2)-es állapot pedig a lövedék legagasabb pontja. Érdees ilyenkor a helyzeti energia nulla szintjét a puskacső torkolati nyílásához rendelni. Ilyenkor az energiaegaradás törvénye egyszerűen így írható: v ghax, 2 = h ax A függőlegesen felfelé tartott puska esetén a lövedék energiájának összehasonlítási állapotai NE HIBÁZZ! Könnyű összekeverni a echanikaienergia-egaradás törvényét az energiaegaradás általános törvényével. Mindenki hallotta ár az isert ondatot, hogy az energia ne vész el, csak átalakul. Ez a rövid egállapítás az általános energiaegaradásra vonatkozik. Minden eddigi tapasztalatunk azt utatja, hogy teljesen általános érteleben az energia egaradó ennyiség, seiből ne keletkezik, ne tüntethető el. A echanikai energiák csak akkor aradnak eg, ha ne történik valailyen olyan folyaat, ai ásféle energiák egjelenésével jár. Legtöbbször a csúszási súrlódás, illetve a közegellenállás képes arra, hogy hőterelés révén olyan folyaatok játszódjanak le, elyek kezdetén és végén a rendszer echanikai energiája ne arad ugyanakkora. Tehát a echanikaienergia-egaradás törvénye csak korlátozottan érvényes. A ozgási energia különleges szerepet tölt be a echanikai energiák között. Ne tartozik a potenciális energiák közé, ert ne a test helyzetétől, hane ozgási állapotától függ. Sőt, a ozgási energia egváltozását necsak a helyzeti energiák változása alapján határozhatjuk eg, hane a testre ható erők unkájaként is. Ha súrlódás vagy közegellenállás iatt változik is a teljes energia, a ozgási energia egváltozása kiszáítható a testre ható összes erő unkájának összegeként (ezt a törvényt neveztük unkatételnek). Ekkor necsak a konzervatív, hane a ne konzervatív erők unkáját is figyelebe kell vennünk. 105

4 A nagy teljesítény titka: Jaes Prescott Joule ( ) angol fizikus egyik kutatási területe a unka, az energia és a hő terészete, valaint ezek egyásba alakulásának törvényszerűsége volt. Hosszas kutatás után egalkotott egy eszközt (Joule-készülék), aivel az akkori szóhasználat szerint a hő echanikai egyenértéke érhető. A készülékben egy huzal végére erősített süllyedő súly forgásba hoz egy tengelyt. A tengelyre lapátok vannak erősítve, elyekkel egy tartályban lévő vizet lehet keverni. Megutatta, hogy a test süllyedés közben bekövetkező helyzetienergia-változása egyenlő azzal a hővel, aire a víz a lapáttal való súrlódás közben tesz szert. Joule úgy alkotta eg a készülékét, hogy a lapátok nagy súrlódással, pontosabban közegellenállással ozogtak. Ezért a készüléket eghajtó súly egyenletesen ozog lefelé, ozgási energiája ne változik, helyzeti energiája csökken. A helyzeti-energia-változás ne alakul át ásféle echanikai energiává, hane az áraló víz terikus energiáját (ás néven belső energiáját) növeli. Ezt Joule úgy tudta egérni, hogy érzékeny hőérővel észlelte a víz keverés iatti felelegedését. ai azt fejezi ki, hogy a nulla szint egválasztása iatt a kezdőállapotban a lövedéknek csak ozgási energiája van, íg a végállapotban csak helyzeti energiája, hiszen ott egy pillanatra egáll a lövedék (a rugó ebben az esetben ár nincs kölcsönhatásban a lövedékkel, ezért ne kell a rugalas energiatagokat használnunk). A végeredény: hax = v 2 (5,3 /s)2 = = 1, 4. 2g (2 10/s2 ) NE HIBÁZZ! Ügyeljünk arra, hogy a helyzeti energia nulla szintjét inden alkaloal kijelöljük, ha a echanikaienergia-egaradás törvényét alkalazzuk. Önkényesen oda választjuk, ahova akarjuk, illetve ahova a probléa szepontjából célszerűnek tűnik. Vízerőűvekben a duzzasztott folyóvíz felgyorsulva lezúdul, egforgatja a turbinalapátokat. A víz helyzetienergiaváltozása biztosítja a turbinákba kerülő víz hatalas ozgási energiáját. A turbinákból lelassulva, kisebb ozgási energiával kerül ki a víz. Ezért tudja az állandó fordulaton űködő turbina eghajtani az árafejlesztő generátorokat. A vízerőű végső soron a víz helyzeti energiáját alakítja elektroossá. A víztorony tárolójába elektroos energiát felhasználva pupálják fel a vizet. Ha valaiért le kell ereszteni a víztorony vizét, akkor alul nagy sebességgel, nagy ozgási energiával ölik ki a víz. A Joule-készülék vázlata 106 A szivattyús energiatároló vízerőűvek a lakosság és az ipar alacsony villaosenergiafogyasztásakor (például éjszaka) ás alaperőűvek (ato-, szénerőű) által egterelt ára segítségével vizet szivattyúznak a agasan lévő víztározóba. A fogyasztási csúcs idején, aikor egnő az elektroosenergia-igény, leengedik az így tárolt vizet és egterelik a szükséges elektroos energiát.

5 A terészet egiserése során arra törekszünk, hogy egaradási törvényeket fogalazzunk eg. Ilyen a töeg-, az elektroostöltés-, a lendületegaradás törvénye. Ahogy azt később tanulni fogjuk, ne csak echanikai energiák léteznek. Az energiaegaradás törvénye általánosan igaz: zárt anyagi rendszer teljes energiája állandó. Olyan rendszereket nevezünk zárt anyagi rendszereknek, elyek seilyen kapcsolatban ne állnak a környezetükkel. Az általános energiaegaradás törvényének egfogalazása ne köthető egyetlen tudóshoz. A gondolat ár az ókorban is felbukkant, újkori egfogalazásáért sokat tett Robert Mayer, Joule és Helholtz. NE FELEDD! Azokat az erőket, elyeknek két adott pont közötti unkája ne függ a két pont közötti úttól, konzervatív erőknek nevezzük. A konzervatív erő által végzett unka értékét egyértelűen eghatározza a ozgás kezdő- és végpontja. Konzervatív erők: nehézségi erő, gravitációs erő, rugóerő. A echanikaienergia-ega ra dás törvénye kiondja, hogy konzervatív erőtérben egy test echanikai energiája ne változik: + E ozg = állandó. Örökozgónak (perpetuu obile) olyan elképzelt eszközt nevezünk, aelyet, ha egyszer ozgásba hozunk, akkor az örökre ozgásban arad, anélkül, hogy energiát venne fel a környezetéből. Ez nyilvánvaló képtelenség, hiszen bárely szerkezet kölcsönhatásban áll a környezetével, és így a kezdeti echanikai energiáját szétszórja a külvilágba. Az eber ősi vágya az örökozgó egalkotása. A últban rengeteg feltalálót foglalkoztatott ez a feladat, eredénytelenül. A francia Tudoányos Akadéia 1775 óta olvasatlanul elutasít bárilyen örökozgóra vonatkozó szabadali beadványt. Manapság is felbukkannak örökozgót ígérő ötletek. Ezeket kritikusan kell értelezni. EGYSZERŰ KÉRDÉSEK, FELADATOK 1. Sorolj fel konzervatív és ne konzervatív erőket! 2. Az atléták a távol- és a agasugrás előtt nekifutnak. Miért? Hasonlítsd össze a távolugrás és a agasugrás nekifutását, és add eg a különbség fizikai okát! 3. A lillafüredi vízesés Magyarország legnagyobb esésű vízesése. A 20 éter agasról lezúduló víz legfeljebb ekkora sebességgel érkezik le a ederbe? 4. Egy lőszeres dobozon azt olvashatjuk, hogy a lövedék töege 8 g, energiája 475 J. Legfeljebb ilyen agasra lehet ezzel a fegyverrel lőni? 5. Egy turista 7 kg töegű hátizsákkal a hátán kirándul a Mecsekben. Egyik alkaloal a Tubesről túrázik a Zengőre. Mennyivel változik eg eközben a hátizsák helyzeti energiája, a) ha a helyzeti energia nullszintjét a Tubeshez rögzítjük? b) ha a helyzeti energia nullszintjét a Zengőhöz rögzítjük? A szükséges adatokat keressük ki az interneten! 6. Egy gyuradarabot a talajra ejtünk. Vajon i lesz a kezdeti echanikai energiájával? ÖSSZETETT KÉRDÉSEK, FELADATOK 1. A 20 /s kezdősebességgel felfelé hajított kislabda ilyen agasra jut? Milyen agasan lesz a sebessége 10 /s? 2. A 10 N/ rugóállandójú, nyújtatlan rugó felső végét rögzítjük. Az alsó végére erősített 100 g töegű testet egyszer csak elengedjük. a) Mekkora a rugó legnagyobb egnyúlása? b) Mekkora a rugó egnyúlása, ha elég sokat várunk? 3. Lehetséges-e, hogy egy testnek állandó gyorsulása van, a ozgási energiája égse változik? 4. Egy guilabda a keény talajjal való ütközés során elveszíti ozgási energiájának 20%-át. Hány pattanás után lesz a felpattanás kisebb, int az eredeti agasság fele? A labdát kezdősebesség nélkül ejtjük le, és a közegellenállást elhanyagolhatjuk. 107

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény 4. október 6., : A ai óráoz szükséges eléleti anyag: K unka W F s F s cos α skalárszorzat (száít az irány!). [W ] J F szakaszokra bontás,

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

Fluidizált halmaz jellemzőinek mérése

Fluidizált halmaz jellemzőinek mérése 1. Gyakorlat célja Fluidizált halaz jellezőinek érése A szecsés halaz tulajdonságainak eghatározása, a légsebesség-nyoásesés görbe és a luidizációs határsebesseg eghatározása. A érésekböl eghatározott

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

A feladatok közül egyelıre csak a 16. feladatig kell tudni, illetve a 33-45-ig. De nyugi, a dolgozat után azokat is megtanuljuk megoldani.

A feladatok közül egyelıre csak a 16. feladatig kell tudni, illetve a 33-45-ig. De nyugi, a dolgozat után azokat is megtanuljuk megoldani. Munka, energia, teljeítény, atáfok A feladatok közül egyelıre cak a 6. feladatig kell tudni, illetve a 33-45-ig. De nyugi, a dolgozat után azokat i egtanuljuk egoldani.:). Mitıl függ a ozgái energia?.

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

1. Kinematika feladatok

1. Kinematika feladatok 1. Kineatika feladatok 1.1. Egyenes vonalú, egyenletes ozgások 1. A kézilabdacsapat átlövője 60 k/h sebességgel lövi kapura a labdát a hatéteresvonal előtt állva. Mennyi ideje van a kapusnak a labda elkapására?

Részletesebben

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!)

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1 A XXII. Öveges József fizika tanulányi verseny első fordulójának feladatai és azok egoldásának pontozása 2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1. Egy odellvasút ozdonya egyenletesen

Részletesebben

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T) - 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására

Részletesebben

Milyen erőtörvénnyel vehető figyelembe a folyadék belsejében a súrlódás?

Milyen erőtörvénnyel vehető figyelembe a folyadék belsejében a súrlódás? VALÓDI FOLYADÉKOK A alódi folyadékokban a belső súrlódás ne hanyagolható el. Kísérleti tapasztalat: állandó áralási keresztetszet esetén is áltozik a nyoás p csökken Az áralási sebesség az anyagegaradás

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II.

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II. Oktatási Hivatal A 010/011. tanévi FIZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai fizikából II. kategória A dolgozatok elkészítéséhez inden segédeszköz használható.

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

F1. A klasszikus termodinamika főtételei

F1. A klasszikus termodinamika főtételei F1. A klasszikus terodinaika főtételei A klasszikus szó ebben az esetben azt jelenti, ogy a tudoányterület első, a kezdeteket jelentő egfogalazásáról van szó. Aint a bevezetésben ár elítettük, a terodinaika

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Gimnázium 9. évfolyam

Gimnázium 9. évfolyam 4 MIKOLA SÁNDOR FIZIKAVERSENY ásodik fordulójának egoldása 5 árcius 7 Gináziu 9 éfolya ) Egy test ízszintes talajon csúszik A test és a talaj közötti csúszási súrlódási együttható µ Egy ásik test α o -os

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Gázok. Készítette: Porkoláb Tamás

Gázok. Készítette: Porkoláb Tamás Gázok Készítette: Porkoláb Taás. Alapfogalak. Az ideális gáz nyoása, a Boyle-Mariotte törvény 3. A hıérséklet 4. Gay-Lussac I. törvénye 5. Gay-Lussac II. törvénye 6. Az állapotegyenlet 7. Az ideális gáz

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 2013. M E G O L D Á S A I ELSŐ FORDULÓ. A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I 2.

XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 2013. M E G O L D Á S A I ELSŐ FORDULÓ. A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I 2. XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 01. ELSŐ FORDULÓ M E G O L D Á S A I A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I. H H I H. H I H 4. I H H 5. H I I 6. H I H 7. I I I I 8. I I I 9.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint Javítási-értékelési útutató 063 ÉRETTSÉGI VIZSGA 006. ájus 5. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fizika eelt szint Javítási-értékelési

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

A mágneses kölcsönhatás

A mágneses kölcsönhatás TÓTH A.: Mágneses erőtér/1 (kibővített óravázlat) 1 A ágneses kölcsönhatás Azt a kölcsönhatást, aelyet később ágnesesnek neveztek el, először bizonyos ásványok darabjai között fellépő a gravitációs és

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul.

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul. MUNKA, NRGIA izikai érteleben unkavégzéről akkor bezélünk, ha egy tet erő hatáára elozdul. Munkavégzé történik ha: feleelek egy könyvet kihúzo az expandert gyorítok egy otort húzok egy zánkót özenyoo az

Részletesebben

Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2

Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi a csúszási súrlódási együttható mértékegysége? NY) kg TY) N GY) N/kg LY) Egyik sem. Mi a csúszási súrlódási együttható mértékegysége?

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont A Mikola Sándor Fizikavereny feladatainak egoldáa Döntı - Gináziu oztály Péc feladat: a) Az elı eetben a koci é a ágne azono a lauláát a dinaika alaegyenlete felhaználáával záolhatjuk: Ma Dy Dy a 6 M ont

Részletesebben

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése: Szabó László Áralástani alaptörények A köetelényodul egneezése: Kőolaj- és egyipari géprendszer üzeeltetője és egyipari technikus feladatok A köetelényodul száa: 07-06 A tartaloele azonosító száa és célcsoportja:

Részletesebben

Szakács Jenő Megyei Fizikaverseny

Szakács Jenő Megyei Fizikaverseny Szakács Jenő Megyei Fizikaverseny 2015/2016. tanév I. forduló 2015. noveber 30. Minden versenyzőnek a száára (az alábbi táblázatban) kijelölt négy feladatot kell egoldania. A szakközépiskolásoknak az A

Részletesebben

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola 5 Mikola Sándor Országos Tehetségkutató Fizikaerseny III forduló 06 ájus Gyöngyös, 9 éfolya Szakközépiskola feladat Soa, aikor a d = 50 széles folyón a partra erőlegesen eez, akkor d/ táolsággal sodródik

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31.

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31. 2010/2011. tanév Szakác enő Megyei Fizika Vereny II. forduló 2011. január 31. Minden verenyzőnek a záára kijelölt négy feladatot kell egoldania. A zakközépikoláoknak az A vagy a B feladatort kell egoldani

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 3. hét

Fizika 1 Mechanika órai feladatok megoldása 3. hét Fizika 1 Mechanika órai feladatok egoldása 3. hét 3/1. Egy traktor két pótkocsit vontat nyújthatatlan drótkötelekkel. Mekkora erő feszíti a köteleket, ha indításnál a traktor 1 perc alatt gyorsít fel 40

Részletesebben

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ. Egy kerékpáro zakazonként egyene vonalú egyenlete ozgát végez. Megtett útjának elő k hatodát 6 nagyágú ebeéggel, útjának további kétötödét 6 nagyágú ebeéggel, az h útjának

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban

Részletesebben

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor gészítsd ki a mondatokat Válasz lehetőségek: (1) a föld középpontja felé mutató erőhatást 1. fejt ki., (2) az alátámasztásra vagy a felfüggesztésre hat., (3) két 4:15 Normál különböző erő., (4) nyomja

Részletesebben

Tiszta anyagok fázisátmenetei

Tiszta anyagok fázisátmenetei Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív

Részletesebben

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz

Részletesebben

A harmonikus rezgőmozgás

A harmonikus rezgőmozgás Esszé a rezgőozgásról A haronikus rezgőozgás A környezetünkben sok periodikus (isétlődő) jelenséggel találkozunk. Ezen jelenségek egy része a rezgések közé sorolható. Például: rezgő gitárhúr, billegő teáscsésze,

Részletesebben

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet)

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet) 3. oán-magyar Előolipiai Fizika Verseny Pécs Kísérleti forduló 2. ájus 2. péntek MÉÉ NAPELEMMEL (zász János, PE K Fizikai ntézet) Ha egy félvezető határrétegében nok nyelődnek el, akkor a keletkező elektron-lyuk

Részletesebben

1.3.1. Önismeretet támogató módszerek

1.3.1. Önismeretet támogató módszerek TÁMOP.1. -08/1/B-009-000 PÁLYÁZAT 1. SZ. ALPROJEKT 1..1. Öniseretet táogató ódszerek - Pályaoritációs ódszertani eszköztár - - vitaanyag- Készítette: Dr. Dávid Mária Dr. Hatvani Andrea Dr. Taskó Tünde

Részletesebben

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer Gázok -1 Gáznyoás - Egyszerű gáztörvények -3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet -4 tökéletes gáz egyenlet alkalazása -5 Gáz halazállapotú reakciók -6 Gázkeverékek

Részletesebben

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v - III. 1- ALAKÍTÁSTECHNIKA Előadásjegyzet Prof Ziaja György III.rész. ALAKÍTÓ GÉPEK Az alakítási folyaatokhoz szükséges erőt és energiát az alakító gépek szolgáltatják. Az alakképzés többnyire az alakító

Részletesebben

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap ÖVEGES korcsoport Azonosító kód: Jedlik Ányos Fizikaverseny. (országos) forduló 8. o. 0. A feladatlap. feladat Egy 0, kg tömegű kiskocsi két végét egy-egy azonos osszúságú és erősségű, nyújtatlan rugóoz

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Magdi meg tudja vásárolni a jegyet, mert t Kati - t Magdi = 3 perc > 2 perc. 1 6

Magdi meg tudja vásárolni a jegyet, mert t Kati - t Magdi = 3 perc > 2 perc. 1 6 JEDLIK korcoport Azonoító kód: Jedlik Ányo Fizikavereny. (orzágo) forduló 7. o. 0. A feladatlap. feladat Kati é Magdi egyzerre indulnak otthonról, a vaútálloára ietnek. Úgy tervezik, hogy Magdi váárolja

Részletesebben

1. A hőszigetelés elmélete

1. A hőszigetelés elmélete . A hőszigetelés elélete.. A hővezetés... A hővezetés alapjai A hővezetési száítások előtt bizonyos előfeltételeket el kell fogadnunk. Feltételezzük, hogy a hőt vezető test két oldalán fellépő hőfokkülönbség

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK

KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK Környezetvédeli-vízgazdálkodási alaiseretek közéint ÉRETTSÉGI VIZSGA 0. október 5. KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

Magyar DEMOLITION. Bontás Avant módra

Magyar DEMOLITION. Bontás Avant módra Magyar DEMOLITION Bontás Avant ódra ROBOT 185 Kieelkedő tulajdonságok A teleszkópos gé 46 c extra gékinyúlást és ezzel további felhasználhatóságot nyújt a bontási feladatok során A unkahengereket speciális

Részletesebben

Dinamika példatár. Szíki Gusztáv Áron

Dinamika példatár. Szíki Gusztáv Áron Dinaika példatár Szíki Guztáv Áron TTLOMJEGYZÉK 4 DINMIK 4 4.1 NYGI PONT KINEMTIKÁJ 4 4.1.1 Mozgá adott pályán 4 4.1.1.1 Egyene vonalú pálya 4 4.1.1. Körpálya 1 4.1.1.3 Tetzőlege íkgörbe 19 4.1. Szabad

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája Első rész

Ujfalussy Balázs Idegsejtek biofizikája Első rész Ujfalussy Balázs Idegsejtek biofizikája Első rész MI A TITA? Ez a négyrészes sorozat azt a célt szolgálja, hogy az idegsejtek űködéséről ateatikai, fizikai odellekkel alkossunk képet középiskolás iseretekre

Részletesebben

FAIPARI ALAPISMERETEK

FAIPARI ALAPISMERETEK Faipari alapiseretek középszint 921 ÉRETTSÉGI VIZSGA 21. ájus 14. FAIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

Szakács Jenő Megyei Fizikaverseny

Szakács Jenő Megyei Fizikaverseny Szaác Jenő Megyei Fiziavereny 05/06. tanév I. forduló 05. noveber 0. . Egy cillagdában a pihenő zobából a agaabban lévő távcőzobába cigalépcő vezet fel. A ét helyiég özött,75 éter a zintülönbég. A cigalépcő

Részletesebben

NÉV osztály. Praktikus beállítások: Oldalbeállítás: A4 (210x297 mm), álló elrendezés, első oldal eltérő

NÉV osztály. Praktikus beállítások: Oldalbeállítás: A4 (210x297 mm), álló elrendezés, első oldal eltérő NÉV osztály Feladat cíe Dátu Praktikus beállítások: Oldalbeállítás: A (10x97 ), álló elrendezés, első oldal eltérő Margó indenütt c. oldaltól fejléc: felül, bal oldalon név, jobb oldalon dátu alul középen

Részletesebben

Dinamika gyakorló feladatok. Készítette: Porkoláb Tamás

Dinamika gyakorló feladatok. Készítette: Porkoláb Tamás Dinaika gyakorló feladatok Kézítette: Porkoláb Taá Elélet 1. Mit utat eg a őrőég?. Írj áro példát aelyek a teetetlenég törvéével agyarázatók! 3. Írd le a lendület-egaradá tételét pontrendzerre! 4. Mit

Részletesebben

Beküldési határidő: 2015. március 27. Hatvani István Fizikaverseny 2014-15. 3. forduló

Beküldési határidő: 2015. március 27. Hatvani István Fizikaverseny 2014-15. 3. forduló 1. kategória (Azok részére, akik ebben a tanévben kezdték a fizikát tanulni) 1.3.1. Ki Ő? Kik követték pozíciójában? 1. Nemzetközi részecskefizikai kutatóintézet. Háromdimenziós képalkotásra alkalmas berendezés

Részletesebben

Mozgástan feladatgyűjtemény. 9. osztály POKG 2015.

Mozgástan feladatgyűjtemény. 9. osztály POKG 2015. Mozgástan feladatgyűjtemény 9. osztály POKG 2015. Dinamika bevezető feladatok 61. Egy 4 kg tömegű test 0,7 m/s 2 gyorsulással halad. Mekkora eredő erő gyorsítja? 61.H a.) Egy 7 dkg tömegű krumpli gyorsulása

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

M13/III. javítási-értékelési útmutatója. Fizika III. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny

M13/III. javítási-értékelési útmutatója. Fizika III. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny M/III A 006/007 tanévi Országos Középiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója Fizika III kategóriában A 006/007 tanévi Országos Középiskolai Tanulányi Verseny

Részletesebben

DINAMIKA. Newtonnak a törvényei csak inerciarenszerben érvényesek.

DINAMIKA. Newtonnak a törvényei csak inerciarenszerben érvényesek. DINAMIKA A ozást indi viszonyítanunk kell valaihez. Azt a környezetet, aihez viszonyítjuk a test helyzetét vonatkoztatási rendszernek, nevezzük. A sokféle vonatkoztatási rendszer közül indi azt választjuk

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása 2015. április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Egyetlen tömegpont: 3 adat (3 szabadsági fok ) Példa:

Részletesebben

Szakács Jenő Megyei Fizika Verseny, II. forduló, Megoldások. F f + K m 1 g + K F f = 0 és m 2 g K F f = 0. kg m

Szakács Jenő Megyei Fizika Verseny, II. forduló, Megoldások. F f + K m 1 g + K F f = 0 és m 2 g K F f = 0. kg m Szakác Jenő Megyei Fizika Vereny, II. forduló, Megoldáok. oldal. ρ v 0 kg/, ρ o 8 0 kg/, kg, ρ 5 0 kg/, d 8 c, 0,8 kg, ρ Al,7 0 kg/. a) x? b) M? x olaj F f g K a) A dezka é a golyó egyenúlyban van, így

Részletesebben

Egyfázisú aszinkron motor

Egyfázisú aszinkron motor AGISYS Ipari Keverés- és Hajtástecnika Kft. Egyfázisú aszinkron otor 1 Egy- és árofázisú otorok főbb jellegzetességei 1.1 Forgórész A kalickás aszinkron otorok a forgórész orony alakjának kialakításától

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

VEGYIPARI ALAPISMERETEK

VEGYIPARI ALAPISMERETEK Vegyipari alapiseretek eelt szint 08 ÉRETTSÉGI VIZSGA 008. ájus 6. VEGYIPARI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos

Részletesebben

2007/2008. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló. 2007. november 9. MEGOLDÁSOK

2007/2008. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló. 2007. november 9. MEGOLDÁSOK 007/008. tané Szakác Jenő Megyei Fizika Vereny I. forduló 007. noeber 9. MEGOLDÁSOK 007-008. tané - Szakác Jenő Megyei Fizika Vereny I. forduló Megoldáok. d = 50 = 4,4 k/h = 4 / a) t =? b) r =? c) =?,

Részletesebben

NULLADIK MATEMATIKA szeptember 13.

NULLADIK MATEMATIKA szeptember 13. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

A szállítócsigák néhány elméleti kérdése

A szállítócsigák néhány elméleti kérdése A szállítócsigák néhány eléleti kédése DR BEKŐJÁOS GATE Géptani Intézet Bevezetés A szállítócsigák néhány eléleti kédése A tanulány tágya az egyik legégebben alkalazott folyaatos üzeűanyagozgató gép a

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Feladatok a zárthelyi előtt

Feladatok a zárthelyi előtt Feladatok a zárthelyi előtt 05. október 6. Tartalojegyzék. ineatika Utolsó ódosítás 05. október 6. 0:46. ineatika.. Egyenes vonalú ozgások.......... Egyenletes ozgás.......... Gyorsuló ozgás..........

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2005. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Fizika középszint írásbeli vizsga

Részletesebben